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SUMMARY 

 

Operating models were developed from the 2021 stock assessment of bigeye tuna. Four types of 

projected climate impact were simulated: increasing natural mortality rate, and decreases in 

recruitment strength, somatic growth and condition factor. Defining a robustness threshold 

enabled the calculation of a performance metric of climate robustness that was calculated for 

each type of climate impact for three management procedure (MP) archetypes and two MP 

derivatives. Shifting the focus away from establishing defensible climate forecasts and towards 

climate robustness performance metrics, provided information that could support the selection 

of MPs accounting for climate impacts. It was not necessary to know the exact type of impact or 

the exact level of forecasted impact to identify an MP that clearly and consistently outperformed 

the rest in terms of climate robustness. 
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Introduction 

 

A review of papers that describe possible climate impacts on fisheries revealed very few examples where 

defensible forecasts were available (Carruthers 2024). In theory, it is possible to develop an ‘end-to-end’ model 

that combines sub-models of emissions (e.g., Algieri et al. 2023, Wang et al. 2017), earth systems (Kawamiya et 

al. 2020), ecosystems (e.g., Beaugrand and Kirby 2018, Lehodey et al. 2010; 2011), behaviour (e.g., Bushnell and 

Brill 1991, Cayré and Marsac 1993) and physiology (e.g., Gooding et al. 1981, Graham et al. 1989, Checkley et 

al. 2009). Forecasting fishery impacts would therefore combine a complex series of linked projections that include 

greenhouse gas emissions (least uncertain), response of climate processes (uncertain), linkages with 

oceanographic conditions (more uncertain) and the expected impact of those on pelagic communities and 

individual species (most uncertain). It can be argued that any forecast of climate impacts on fisheries should be 

seen as firmly hypothetical, and the relative credibility of impact scenarios should be considered highly uncertain.  

 

This large uncertainty over climate impact scenarios poses a problem for the provision of ‘climate ready’ fishery 

management advice using the contemporary stock assessment and management strategy evaluation (MSE) 

frameworks. That is because those frameworks rely on the specification of models that represent climate impacts 

and the frequency (weighting) of those models could strong affect the advice provided. For example, it may not 

be clear whether there will be small or large future changes in natural survival (natural mortality, M). Advice 

arising from scenarios with large M changes would likely lead to the provision of strongly differing advice from 

scenarios with small M changes, yet their relative credibility is not easily evaluated.  

 

Although quantitative forecasts of climate impacts on fisheries may not be available, qualitatively, the way in 

which climate can impact individual populations is clear. Most papers documenting possible impacts predict 

changes in recruitment strength (carrying capacity, spawning habitat, larval survival), adult survival (natural 

mortality rate), somatic growth, spatial distribution (range contraction, catchability) age at maturity and condition 

factor (fecundity). Additionally, it is generally understood what direction of change in those variables poses a 

challenge for management procedures: lower recruitment strength, decreased survival, lower somatic growth rate, 

reduced spatial distribution, older age at maturity and poorer condition factor.  

 

Rather than leaving the investigation of climate resilience stalled in the (perhaps indefinite) wait for scientifically 

defensible forecasts of climate impacts, this paper proposes an alternative approach. The solution proposed here 

is to shift the focus from model-based tests of climate robustness in favour of performance metrics of climate 

robustness. Those metrics are linked to a language of climate robustness to help enable managers to select climate-

ready management procedures.  

 

A proof-of-concept is presented here for Atlantic bigeye tuna where metrics of climate robustness were derived 

from four possible climate impacts on populations.  

 

 

Methods  

 

Types of Impact 

 

Climate robustness metrics were developed for four types of impact: 

 

M: increasing natural mortality rate (decreased adult survival) 

R: decreasing recruitment strength (carrying capacity, fecundity, larval survival) 

K: decreasing somatic growth (von Bertalannfy growth parameter K) 

C: decreasing condition factor (weight at age).   

 

For the purposes of this demonstration, these properties were linearly increased/decreased over time. In other 

climate robustness tests, step changes or variability could also be simulated.  

 

 

Operating model 

 

The operating model was developed from the base case model from the 2021 Stock Synthesis 3 assessment of 

bigeye tuna (Anon 2021). The model was modified in two ways: (1) the mean current (2019) depletion level was 

lowered from 1.07 SSBMSY to SSBMSY and (2) a 15% CV on current depletion was assumed, creating depletion 
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scenarios starting both below and above the maximum likelihood estimate from the Base Case assessment (a 90% 

interval of SSB between 71% and 135% SSBMSY in 2019). These changes were so that management procedures 

(MPs) would have to navigate situations where the stock was both under and overfished and potentially subject 

to current overfishing and underfishing (i.e. more uncertain and challenging test of MP performance) 

 

 

Defining Robustness Threshold 

 

In a real management setting, the managers would be required to define what they consider to be a threshold for 

determining climate robustness. In this demonstration this was defined as a 30% decline in current spawning 

biomass over 20 years (MPs were tuned to obtain current biomass in 20 years with no climate impact, see below).  

 

The choice of spawning biomass as the variable used to defining robustness was deliberate. Any MSY-based 

reference points are difficult because they can be highly inconsistent among climate impacts. For example, 

decreasing recruitment strength impacts estimates of SSB unfished, and SSBMSY but does not impact estimates 

of FMSY. On the other hand, increasing natural mortality rate both increases FMSY and decreases SSBMSY. In 

the increasing natural mortality rate scenario the stock could decline strongly while staying above SSBMSY (i.e. 

it was robust only due to the definition of MSY reference points changing). The use of spawning biomass removes 

this problem of a moving goal post depending on the type of impact that was simulated.   

 

 

Management procedures 

 

In order to show a diversity of performance outcomes, three index (e.g., CPUE, fishery independent survey) based 

MP archetypes were tested: 

 

• Index target (It) - reduces TAC when index is below the target level, increases TAC when index is above 

target level (tuned by adjusting the index target level) 

• Index ratio (Ir) - fishes at a constant multiplier of the recent index level, i.e. a constant F policy (tuned 

by adjusting the ratio) 

• Index slope (Is) - aims to achieve a constant slope in the index and reduces TAC when slope is below 

target and increases TAC when slope is above target (tuned by adjusting target slope).  

 

For each of these MP archetypes, two derivative were specified leading to six MPs in total: 

 

• Max TAC change of 10% (It_10, Ir_10, Is_10) 

• Max TAC change of 30% (It_30, Ir_30, Is_30) 

 

In order to make the climate test comparable among MPs, they were all tuned such that they achieved a mean 

spawning stock biomass in 20 years (2039) that was equal to the current spawning biomass in 2019. In this way, 

when the various climate impacts are imposed, the difference in spawning biomass after 20 years can be more 

easily interpreted among MPs.  

 

 

Calculating and Labelling Robustness 

 

For each climate impact, multiple operating models were specified each with an increasing level of impact in the 

projection years. Closed-loop simulation was used to calculate spawning biomass outcomes for each level of 

impact and MP (Figure 1, lefthand panels).  

 

Linear interpolation was used to determine the level of impact before the MP crossed the robustness threshold 

(Figure 1, righthand panels).  

 

Robustness performance was labelled according to the impact and the lowest integer value of change achieved. 

For example, if an MP was robust up to an 18.92% change in natural mortality rate, that MP would be labelled 

as M18 robust.  
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Software and Code 

 

Operating model specification, MP design, closed-loop simulation and metric calculation was carried out using 

the openMSE package (Hordyk et al. 2024). The code for completing these analyses is available from the 

Climate Test repository, github.com/Blue-Matter/ClimateTest.  

 

 

Results 

 

Natural mortality rate was the toughest test of climate resilience (M column, Table 1). This impact type 

provided the most consistent robustness results among MPs.  

 

The least challenging test of climate robustness and the impact with the highest variability in MP results was 

condition factor (weight at age, C column, Table 1).  

 

The index target MP archetype was somewhat more climate resilient than the index ratio MP archetype. Both 

were substantially more climate robust across all impacts than the index slope MP.  

 

The 10% maximum TAC change derivatives always outperformed the 5% maximum TAC change derivatives 

across all MPs archetypes and climate tests.  

 

The index target MP with 10% maximum TAC change was consistently the climate robust across all climate 

impact types.  

 

 

Discussion 

 

In this analysis the robustness threshold was chosen arbitrarily in terms of the level of decline and time horizon 

(30% decline after 20 years) but spawning biomass was selected to deliberately avoid the complicating issue of 

fishery reference points (e.g., FMSY, SSBMSY) that can change to varying degrees depending on the climate 

impact. Mean yield is an alternative to spawning biomass that also does not require reference point calculations. 

To conduct a climate test of MPs for a robustness threshold of say 30% decline in mean yields after 20 years, it 

would first be necessary to tune MPs to a stable mean yield after 20 years (as was done in this demo for 

spawning biomass).  

 

Asking managers for the robustness threshold provided top-down information that could be used to identify 

climate resilient MPs. This type of top-down guidance could provide an opportunity to dramatically streamline  

MSE development. For example, if managers could instead define ‘ignorable difference’ in MP performance, 

this could greatly reduce the passing of large amounts of irrelevant information between the technical team and 

the managers. For example, independently, the technical team cold reject certain MP archetypes within the 

‘ignorable difference’ of others, reduce the set of MPs presented to managers to only those spanning greater 

than the ‘ignorable difference’, and reduce the set of OMs to those spanning at least the ‘ignorable difference’.   

 

 

Conclusion 

 

Shifting the focus away from establishing defensible climate forecasts and towards climate robustness 

performance metrics, provided information that could support the selection of MPs accounting for climate 

impacts. It was not necessary to know the exact type of impact (M, R, K or C in this demo) or the exact level of 

forecasted impact to identify an MP that clearly and consistently outperformed the rest in terms of climate 

robustness (Index target with 10% maximum TAC change). 
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Figures 

Figure 1. Derivation of climate robustness scores based on linear interpolation of MSE projections. The coloured 

time series lines represent the mean spawning stock biomass outcome under various MSE projections where the 

somatic growth parameter K declines by various percentages after 20 projection years (between 0 and 24% 

declines). MP It_10 (index target allowing for 10% changes in TAC between years) (bottom) is more robust (given 

this definition) in that it takes a much larger decrease in somatic growth (K) to drop below the critical level of 

spawning biomass (30% decline in biomass from today). Given this definition of robustness, MP It_5 (up to 5% 

changes in TAC) is ‘K8’ robust, it is only robust to 8% declines in somatic growth compared with 18% for the 

MP It_10.  
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Tables 

 

Table 1. Climate robustness metrics. Tabulated numbers are the percentage change in each impact before the 

robustness threshold is reached. Higher percentages that are shaded green represent higher robustness. Shading is 

scaled per climate test (by column) according to the maximum robustness (highest %) achieved by one of the 

tabulated MPs. For example, the top lefthand cell is 7%: the Index target MP with up to a 5% change in TAC 

between years is M7 robust – it can withstand a 7% increase in natural mortality rate before reaching the 

performance threshold. In this demonstration, the performance threshold is a 30% decline in SSB from current levels 

after 20 years.  

 
 

 

 


