A Length-Based Catch Curve for Mulitgear Fisheries

IO YFT Example

Paul A Medley (paulahmedley@gmail.com)

Motivation

- Use length frequency data (as LBSPR with variable growth)
- Bayesian fitting
- Allow flexible selectivity functions and multiple gears

Assumptions

- 1. The population has been in an approximate steady-state for a generation or more around when the length sampling takes place (No time series).
- 2. Mean growth follows the von Bertalanffy growth curve.
- 3. Fish asymptotic size (L_{∞}) is Gamma distributed for individual fish which governs growth variability.
- 4. Mortality fixed within each length interval. It can vary arbitrarily between intervals.
- 5. Length data are representative of the catch length composition and the relative total catch numbers for each selectivity group.

MODEL DESCRIPTION

Population Model

The probability that fish will survive to length interval n with lower bound L_n is given by:

$$S_n = \int_{L_n}^{\infty} \frac{\beta^{\alpha}}{\Gamma(\alpha)} L_{\infty}^{\alpha-1} e^{-\beta L_{\infty}} (L_{\infty} - L_0)^{-Z_1} (L_{\infty} - L_n)^{Z_n} \prod_{i=1}^{n-1} (L_{\infty} - L_i)^{Z_i - Z_{i+1}} dL_{\infty}$$

$$N_n = \frac{S_n - S_{n+1}}{Z_n}$$
$$C_n = \frac{F_n}{Z_n} (S_n - S_{n+1})$$

• F_n will reflect the selectivity pattern, can be split into multiple gears.

Gauss-Laguerre quadrature is used for numerical integration (fast and accurate in this case).

Multiple Gears

APPLICATION

Application R package: *fishblicc*

- Work-In-Progress
- Implements Bayesian length-based catch curve (in Stan)
- Selectivity models based on simple mixtures of logistic, normal, single-sided normal and double-sided normal
- Simulation testing suggests similar results to LBSPR for single gear logistic selectivity

• R Package: https://github.com/PaulAHMedley/fishblicc

Priors

- Informative priors:
 - L_{∞} is required often available from Fishbase or elsewhere
 - Natural mortality: $M \approx 1.5 \text{ K}$
 - Growth CV (Galpha) default 10%
 - K and t_0 not required
- Non-informative priors (usually)
 - Fishing mortality / selectivity parameters
 - Observation error

ILLUSTRATIVE EXAMPLE: IO YELLOWFIN

Yellowfin Length Frequency Data + Catches

IOTC Yellowfin data used in the 2019 stock assessment SS3 V3.30 https://iotc.org/sites/default/files/documents/2019/09/IOTC-2019-WPTT21-DATA15-YFT_SA_0.zip#"Stock assessment inputs (SS3 and SCAA) for YFT"#"IOTC-2019-WPTT21-DATA15"

Catch Numbers

Fitted model

- Selectivity mixtures
- Length-inverse M
- Fishbase L_{∞}

Selectivity Mixtures

Model Flexibility

Scenario	L∞	Galpha	M/K	SPR	Ip Decision
All domed single selectivity	166.67	73.17	4.00	0.80	- <mark>812.9</mark> Rejected
Selectivity Mixture Model	179.06	133.28	1.61	0.21	-550.7 Accept
Allow Linf estimation	160.44	170.07	1.50	0.61	-549.6 Sensitivity
Length-inverse M	178.87	123.84	1.68	0.23	-547.6 Accept
Longline dome-shaped	184.30	98.14	1.48	0.80	-559.3 Rejected
SS3 parameters	148.16	164.54	0.73	0.48	-537.1 Sensitivity

Results

Parameter Estimates

Conclusion

- Bayesian length-based catch curve with flexible modelling of mortality-at-length implemented in the *fishblicc* package
- *Key assumption* is population is in stationary state
- *Fits* single and multiple sample length frequency data
- *Estimates* F-at-length, selectivity, SPR, YPR etc.
- Used for data limited assessments + examine selectivity models
- *Caution* with overfitting (use sensitivities)