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Executive Summary

This report presents the 2024 stock assessment for Indian Ocean yellowfin tuna (Thunnus al-
bacares) using Stock Synthesis 3. The assessment uses an age-structured spatially-explicit pop-
ulation model and is fitted to catch, catch per unit effort (CPUE) indices, length compositions,
tagging data, and conditional age-at-length. The assessment covers 1950 – 2023 and represents
an update of the previous assessment model carried out in 2021, taking into account progress
and improvements made since the previous assessment, including recommendations from the
review of the previous assessment undertaken between 2018 and 2023. The assessment assumes
that the Indian Ocean yellowfin tuna constitute a single spawning stock, modelled as spatially
disaggregated four regions, with twenty-one fisheries. Key biological parameters were revised,
specifically growth and natural mortality. Standardized CPUE series from the main longline
fleets 1975 – 2023 were included in the models as the relative abundance index of exploitable
abundance in each region, including alternative assumptions regarding changes in the efficiency
of the longline fleet (“effort creep”). The CPUE indices from EU purse seine sets on free schools
were included in a subset of models. Tag release and recovery data from the RTTP-IO program
were included in the model to inform abundance, movement, and mortality rates. The inclusion
of conditional age-at-length data from the GERUNDIO project was also explored in a subset of
models.

Overall, the estimates of this stock assessment are principally driven by the increasing trend
estimated for the longline CPUE indices and by the positive trends in recruitment deviates
estimated by the model. The model estimates a large decline in biomass between the 1980s and
early 1990s following the CPUE decrease. In that period, the catch increased from 54,000 mt
to 404,000 mt in 1993, which was followed by a significant decrease in abundance. However, in
the period 2003-2023, the catch has remained above 400,000 mt (average of 406,000 mt) and
CPUE in the northwestern region has remained stable or increasing in recent years. The model
seems to use the 1980-1993 data to scale long-term equilibrium productivity of the stock (stock-
recruitment relationship, maximum sustainable yield -MSY-, and other benchmarks) and fit the
more recent data with recruitment deviates. Without positive recruitment deviates in the recent
period (∼ 20 years), the observed catch would not be plausible. Therefore, there is a need to
update reference points (MSY, unfished recruitment, and unfished spawning biomass) to recent
conditions.

The stock status estimates of this assessment are qualitatively different from the 2021 assessment.
The reasons for this being the significant increase in CPUE and a narrower range of biological
parameters (growth and natural mortality). Spawning biomass in 2023 was estimated to be
32% higher than the level that supports the maximum sustainable yield (𝑆𝑆𝐵2023/𝑆𝑆𝐵𝑀𝑆𝑌 =
1.32). Current fishing mortality is estimated to be 25% lower than 𝐹𝑀𝑆𝑌 (𝐹2023/𝐹𝑀𝑆𝑌 = 0.75).
The probability of the stock being in the green Kobe quadrant in 2023 is estimated to be
89%. Therefore, the yellowfin tuna stock is determined to be not overfished and not subject to
overfishing.

The new model represents a marked improvement over the previous model, as demonstrated
using a number of statistical diagnostic analyses. However, there are still important uncer-
tainties in the data used for yellowfin and other tropical tuna stock assessments. There are
uncertainties in relation to the CPUE standardization but also on reported catches from some
Contracting Parties and Cooperating Non-Contracting Parties (CPCs), size frequency data, and
model configuration such as the spatial structure. These will need to be further explored in the
future.
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1 Introduction

Before 2008, Indian Ocean (IO) yellowfin tuna (Thunnus albacares) was assessed using meth-
ods such as Virtual Population Analysis (VPA) and production models (Nishida and Shono,
2007, 2005). In 2008, a preliminary stock assessment of IO yellowfin tuna was conducted using
MULTIFAN-CL (Langley et al., 2008), enabling the integration of the tag release/recovery data
collected from the large-scale tagging programme conducted in the IO in the preceding years.
The MULTIFAN-CL assessment was revised and updated in the following years (Langley et al.,
2012, 2011, 2010, 2009).

The 2015 assessment (Langley, 2015) was implemented using the Stock Synthesis 3 (SS3) mod-
elling platform (Methot and Wetzel, 2013). SS3 is conceptually similar to MULTIFAN-CL, and
the two platforms have yielded similar results. On the basis of that assessment, the yellowfin
tuna stock was determined to be overfished and subject to overfishing. At its 20th meeting,
the Indian Ocean Tuna Commission (IOTC) adopted an Interim Plan for Rebuilding the Indian
Ocean Yellowfin Tuna Stock (Res. 16/01). The interim rebuilding plan was revised in 2017 (Res
17/01), 2018 (Res 18/01), 2019 (Res 19/01) and most recently in 2021 (Res 21/01).

The SS3 assessment was updated in 2016 (Langley, 2016) and was revised and updated in 2018
(Fu et al., 2018). These assessments utilised new composite longline catch per unit effort (CPUE)
indices derived from the main distant water longline fleets, replacing the Japanese longline
CPUE indices used previously. The 2018 assessment also included a comprehensive analysis of
the main assumptions of the stock assessment. A model ensemble covering major components
of structural uncertainty was used to characterise the stock status. The assessment estimated
that the spawning stock biomass in 2017 was below 𝑆𝑆𝐵𝑀𝑆𝑌 , and that fishing mortality was
above 𝐹𝑀𝑆𝑌 . Therefore, the stock status was determined to remain overfished and undergoing
overfishing.

An external review of the 2018 assessment provided recommendations to improve model
parametrisations (Methot, 2019). An attempt was made to update the assessment in 2019
with extensive investigations of alternative spatial structures, data weighting, and biological
parameters (Urtizberea et al., 2019). Further analyses were conducted in 2020 to refine the
process of model selection through an objective scoring system based on diagnostic metrics
(Urtizberea et al., 2020).

The most recent assessment was conducted in 2021 (Fu et al., 2021), which also used SS3 as the
modelling platform and was based on the four-area spatial configuration as in 2018. This recent
assessment included a standardised CPUE series from the main longline fleets as the main index
but also tested the inclusion of EU purse seine indices, operating on free schools and floating
objects, and an index from the Maldivian pole and line fishery. A range of exploratory models
were presented to address issues in observational datasets, improve the stability of the assessment
model, and explore the effects of alternative model assumptions. Overall, stock status estimates
did not differ substantially from the 2018 assessment, estimating 𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌 = 0.78 and
𝐹/𝐹𝑀𝑆𝑌 = 1.27 for the terminal model year (2020), which suggests that the stock is overfished
and experiencing overfishing. An external review of the 2021 assessment was carried out in 2023
(M. Maunder et al., 2023), which provided a set of recommendations for the next assessment
implementation. Some of these recommendations were investigated by Langley et al. (2023).

In this report, we document the results of the stock assessment of IO yellowfin tuna accepted
by the 26th WPTT meeting. The assessment included fishery and biological data up to the end
of 2023 and its configuration is based on the 2021 assessment, although two additional spatial
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configurations were also tested. It implements an age- and spatially-structured population model
using SS3 (v3.30.22.1) and incorporates some recommendations made by the last external review
(M. Maunder et al., 2023). The WPTT adopted a set of model options and sensitivities for key
model parameters to derive estimates of stock status in 2023 and associated uncertainty.

2 Background

2.1 Biology

Yellowfin tuna is a cosmopolitan species distributed mainly in the tropical and subtropical
oceanic waters of the three major oceans, forming large schools. Spawning occurs mainly from
December to March in lower latitudes with warmer waters and mesoscale oceanographic activity
(Muhling et al., 2017), with the main spawning grounds west of 75∘E. However, spawning activity
has also been reported in the Oman Sea (Hosseini and Kaymaram, 2016), Bay of Bengal (Kumar
and Ghosh, 2022), off Sri Lanka and the Mozambique Channel, and in the eastern IO off
Australia Nootmorn et al. (2005). The size at 50% maturity for this species in the IO was
initially estimated at around 75 cm based on cortical alveolar stage (Zudaire et al., 2013).
Still, an updated study suggests that it might be at a larger size (∼ 101 cm) (Zudaire et al.,
2022). Tag recoveries provide evidence of large movements of yellowfin tuna within the western
equatorial region; however, few observations of large-scale transverse movements in the IO have
been reported (Gaertner and Hallier, 2015). Yellowfin dwell preferentially in the surface mixed
layer and the thermocline (Pecoraro et al., 2017), above 200 m approximately (Sabarros et al.,
2015).

This species has a high metabolic rate and, therefore, requires large energy supplies to fulfil the
bioenergetics demands for movement, growth, and reproduction (Artetxe-Arrate et al., 2021).
Feeding behaviour is largely opportunistic, with a variety of prey species being consumed, in-
cluding large concentrations of crustaceans that have occurred recently in tropical areas and
small mesopelagic fishes (Duffy et al., 2017; Krishnan et al., 2024; Roger, 1994). Recent growth
studies have generally supported a two-stanza growth curve, with a slow initial growth phase
up to ∼ 60 cm followed by much faster growth (Farley et al., 2023). In addition, differences in
mean length-at-age have been identified between males and females for fish older than four years.
Environmental variability in the IO impacts the abundance and catch rates of this species. A
significant negative association between the Indian Ocean Dipoles (IODs) and the catch rates
of yellowfin tuna with a periodicity of approximately four years was observed (Lan et al., 2020,
2013). Likewise, Lan et al. (2020) also found that the El Niño Southern Oscillation (ENSO)
impacted on catch rates near the Arabian Sea.

2.2 Stock structure

Fisheries information indicates that adult yellowfin are distributed continuously throughout the
entire tropical IO, but some more detailed analysis of fisheries data suggests that the stock
structure may be more complex. The tag recoveries may indicate that the western and eastern
regions of the IO support relatively discrete sub-populations of yellowfin tuna. Studies of stock
structure using DNA techniques have suggested that there may be genetically discrete subpop-
ulations in the northwestern IO (Dammannagoda et al., 2008) and within Indian waters (Kunal
et al., 2013). A recent study of stock structure using gene sequencing technology along with
a basin-scale sampling design indicated genetic differentiation between north and south of the
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equator within the IO, and possibly additional genetic structure within the locations north of the
equator (Grewe et al., 2020). Parasite composition and abundance suggest limited movement
between the Indonesian archipelago (eastern IO) and the Maldives (central IO) (Moore et al.,
2019). Isotope studies have also suggested relatively limited movement, with resident behaviour
at the temporal scale of their muscle turnover (∼ 3 months) (Ménard et al., 2007). Otolith
chemistry analyses concluded that fisheries operating in the western IO are mainly composed
of fish of western origin, which suggests limited movement from east to west (Artetxe-Arrate
et al., in review). These studies generally support the potential presence of population units
of yellowfin tuna within the IO, despite the fact that considerable uncertainty remains on the
sub-regional population structure in this region. This assessment assumes that the IO yellowfin
tuna stock consists of several interconnected regional populations (Figure 1) that have the same
biological characteristics; however, we acknowledge that more studies are needed to reveal the
structure of this species.

2.3 Fisheries

Yellowfin tuna are harvested with a diverse variety of gear types, from small-scale artisanal
fisheries (in the Arabian Sea, the Mozambique Channel and waters around Indonesia, Sri Lanka,
the Maldives, and Lakshadweep Islands) to large gillnetters (from Oman, Iran and Pakistan,
mainly operating but not exclusively in the Arabian Sea) and distant-water longliners and purse
seiners that operate widely in equatorial and tropical waters (Figure 2). Purse seiners and
gillnetters catch a wide size range of yellowfin tuna, whereas the longline fishery mostly catches
adult fish (Figure 3).

Prior to 1980, annual catches of yellowfin tuna remained below 80,000 mt and were dominated
by longline catches (Figure 4). Annual catches increased markedly during the 1980s and early
1990s, mainly due to the development of the purse-seine fishery as well as an expansion of
the other established fisheries (fresh-tuna longline, gillnet, baitboat, handline and, to a lesser
extent, troll). A peak in catches was recorded in 1993, with catches over 400,000 mt. The
increase in catch is almost fully attributable to longline fleets, particularly longliners flagged in
Taiwan, which reported exceptional catches of yellowfin tuna in the Arabian Sea. The Taiwanese
longline fishery in the IO has been equipped with super-cold storage. Since around 1986, the
fleet has fished more frequently with deep sets.

Catches declined in 1994 to about 350,000 mt, remaining at that level for the following decade,
then increasing sharply to reach a peak of about 520,000 mt in 2004-2005, driven by a large
increase in catch by all fisheries, especially the purse-seine (free school) fishery. Total annual
catches declined sharply from 2004 to 2007 and remained at about 300,000 mt during 2007–
2011. In 2012, total catches increased to about 400,000 mt and were maintained at about that
level from 2013 to 2015. Total catches increased to an average of 430,000 mt between 2016
and 2019, and a maximum of close to 450,000 mt in 2019 (Figure 4), despite IOTC Resolution
17/01, which requested major fleets to substantially reduce their yellowfin catches below the
2014 or 2015 catch level. Furthermore, catch levels of about 440,000 mt reported for 2018
might be underestimated, to some extent, because of changes in data processing methodology
by European Union-Spain for its purse seine fleet for that year (IOTC, 2021).

In recent years (2015–2023), purse seine has been the dominant fishing method, harvesting ∼
35% of the total IO yellowfin tuna catch (by weight), with the gillnet and handline fisheries,
principally in the Arabian Sea, comprising ∼ 20% and 18% of the catch, respectively. A smaller
component of the catch was taken by industrial longline (5%) and the regionally important
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baitboat (4%) and troll (4%) fisheries. The recent increase in the total catch has been mostly
attributable to a rise in catch from the gillnet and handline fisheries (Figure 4), mostly from the
Omani fleet.

The purse-seine catch is generally distributed equally between free-school and associated (log
and FAD sets) schools, although the large catches in 2003–2005 were dominated by fishing on
free-schools. Conversely, during 2015–2023, the purse-seine catch was dominated (∼ 70%) by
the associated fishery.

Historically, most of the yellowfin catch has been taken from the western equatorial region
of the IO (∼ 44%, Figure 2) and, to a lesser extent, the Arabian Sea (∼ 26%), the eastern
equatorial region (∼ 24%) and the Mozambique Channel (∼ 5%). The purse-seine and baitboat
fisheries operate almost exclusively within the western equatorial region, while catches from
the Arabian Sea are principally by handline, gillnet, and longline (Figure 2). Catches from
the eastern equatorial region were dominated by longline and gillnet (around Sri Lanka and
Indonesia). The southern IO accounts for a small proportion of the total yellowfin catch (1%)
taken exclusively by longline.

During 2008–2012, due to the threat of piracy, the bulk of the industrial purse seine and longline
fleets moved out of the western equatorial region to avoid the coastal and off-shore waters off
Somalia, Kenya and Tanzania. The threat of piracy particularly affected the freezer longline
fleet, and levels of effort and catch decreased markedly from 2007. The total catch by freez-
ing longliners declined to about 2,000 mt in 2010, a 10-fold decrease in catch from the years
before the onset of piracy. Purse seine catches also dropped in 2007–2009 and then started to
recover. Piracy off the Somali coast was almost eliminated by 2013, but longline catches have
not recovered.

The sizes caught in the IO range from 30 cm to 180 cm fork length (Figure 3). Intermediate-age
yellowfin are seldom taken in industrial fisheries but are abundant in some artisanal fisheries,
mainly in the Arabian Sea (Figure 5). Newly recruited fish are primarily caught by the purse
seine fishery on floating objects and the pole-and-line fishery in the Maldives. Males are pre-
dominant in the catches of larger fish at sizes larger than 150 cm, which is also observed in other
oceans. Medium-sized yellowfin concentrate for feeding in the Arabian Sea (Figure 5).

3 Model structure

3.1 Spatial stratification

The geographic area considered in the assessment is the IO, defined by the coordinates 40∘S-25∘N
and 20∘E-150∘E. Earlier yellowfin stock assessments have adopted a five-area spatial structure
(Langley et al., 2012), but several issues were identified for that structure. Since 2015, a four-
area spatial structure is used for this stock (Figure 1). The Arabian Sea (region 1a) and western
equatorial area (region 1b) make up the region 1 but kept the fishery information separated (i.e.,
areas-as-fleet approach) to account for differences in selectivity between these sub-areas (Punt,
2019). The spatial structure retains two regions that encompass the main year-round fisheries
in the tropical area (regions 1 and 4) and two austral, subtropical regions where the longline
fisheries occur more seasonally (regions 2 and 3).

The current spatial structure separates the purse-seine fishery in the northern Mozambique
Channel (10-15∘S) from the equatorial region, as the fishery in the northern Mozambique Channel
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exhibits strong seasonal variation in effort and operates differently from the equatorial region
(Langley, 2015). There is also a separation of the purse-seine fishery between the western and
eastern tropical regions with the current boundary between regions 1b and 4. In addition to
the four-area configuration, we also evaluated two additional spatial structures: one-area and
two-area configurations. The 2021 assessment also evaluated a modified version of the four-area
structure (Fu et al., 2021), but it produced similar results. We did not evaluate that modified
four-area configuration in the current assessment.

3.2 Temporal stratification

The period covered by the assessment is 1950−2023, which represents the period for which
catch data are available from the commercial fishing fleets. Langley (2015) suggested that
the assessment results were not sensitive to the early catches from the model (pre-1972), and
commencing the model in 1950 or 1972 (assuming unexploited equilibrium conditions) yielded
very similar results as also found in the current assessment.

The time step in the assessment model was a quarter (i.e., three months duration, four quarters
per year), representing 296 model time steps. The definition of these time steps enabled recruit-
ment to be estimated for each quarter to approximate the continuous recruitment of yellowfin
in the equatorial regions. However, the quarterly model time step precluded the estimation of
seasonal model parameters, particularly the movement parameters. Fu et al. (2018) explored
an alternative annual/seasonal model structure which explicitly estimated seasonal movement
dynamics. However, the alternative temporal structure did not yield substantially different
results.

4 Model inputs

Catch (1950-2023) and size (1952-2023) information was provided by the IOTC Secretariat in
a comma-separated values (CSV) format. These datasets and the metadata can be found on-
line at the IOTC website: https://iotc.org/documents/WPTT/26AS/Data/01. Four indices
of abundance were also available: joint longline, purse seine fishing on free schools, purse
seine fishing on associated schools, and the associative behaviour-based abundance index; how-
ever, we only used the joint longline index in the main set of models and the purse seine
free school index as sensitivity analysis. These indices can also be found online at https:
//iotc.org/documents/standardised-cpue-yft-and-bet. Release and recovery data (2005-2015)
from two tagging programs were also available, as well as age data from the GERUNDIO project
(2009-2022). Raw tagging and age datasets are confidential and cannot be shared; however,
processed tagging and age-length data for SS3 can be found at https://github.com/Fundacion-
AZTI/IOTC_YFT_2024_Assessment/tree/reproducible.

4.1 Definition of fisheries

The current assessment adopted the equivalent fisheries definitions used in the previous stock
assessments. First, nine fishery groups were defined based on fleet, gear, purse seine set type,
and type of vessel in the case of the longline fleet (Table 1), representing relatively homogeneous
fishing units with similar selectivity and catchability characteristics that do not vary greatly
over time. Then, fishery groups were divided into regions, producing twenty-one fisheries in the
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assessment model (Table 2). We also provide some initial analyses that might help to implement
alternative fishery definitions in future assessments (see Section 14.1).

A brief description of each fishery group is provided below.

The longline fishery was partitioned into two main components:

• Freezing longline fisheries (LL), or all those using drifting longlines for which one or more
of the following three conditions apply: (i) the vessel hull is made up of steel; (ii) the
vessel length overall of 30 m or greater; (iii) the majority of the catches of target species
are preserved frozen or deep-frozen. A composite longline fishery was defined in each model
area, aggregating the longline catch from all freezing longline fleets (principally Japan and
Taiwan).

• Fresh-tuna longline fisheries (LF), or all those using drifting longlines and made of vessels
(i) having fibreglass, fibre-reinforced plastic, or wooden hull; (ii) having length overall less
than 30 m; (iii) preserving the catches of target species fresh or in refrigerated seawater. A
composite longline fishery was defined as aggregating the longline catch from all fresh-tuna
longline fleets (principally Indonesia and Taiwan) in region 4, where the majority of the
fresh-tuna longliners have traditionally operated.

• The purse-seine catch and effort data were apportioned into two separate method fisheries:
catches from sets on associated schools of tuna (log and drifting FAD sets; LS) and sets
on unassociated schools (free schools; FS).

• A single baitboat fishery (BB) was defined within region 1b (essentially the Maldives
fishery).

• Gillnet fisheries (GI) were defined in the Arabian Sea (region 1a), including catches by
Iran, Pakistan, and Oman, and in region 4 (Sri Lanka and Indonesia).

• Three troll fisheries (TR) were defined, representing separate fisheries in regions 1b (Mal-
dives), 2 (Comoros and Madagascar) and 4 (Sri Lanka and Indonesia).

• A handline fishery (HD) was defined within region 1a, principally representing catches
from Yemen, Oman, and Maldives.

• A miscellaneous “Other” fishery (OT) was defined as comprising catches from artisanal
fisheries other than those specified above (e.g. trawlers, small purse seines or seine nets,
sport fishing, and a range of small gears).

4.2 Catch

The catch dataset was composed of information about time (year and month), CPCs, gear type,
type of association of the fish school, grid code at a 5∘ ×5∘ resolution, and catch in weight (metric
tons) and numbers. The grid code contained information on the grid resolution, quadrant, and
longitude and latitude of the corner of the grid.
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4.2.1 Processing

We followed the next steps to produce the catch input for SS3:

• Month information was used to assign quarters (i.e., four quarters from January to De-
cember).

• The fishery group was assigned based on CPC, gear type, and the type of association of
the fish school.

• Catch was summed by year, quarter, CPC, gear type, fishery group, and grid code.
• The grid code was used to calculate the longitude and latitude of the centre of the grid

(called centroid hereafter).
• The centroid was used to assign regions used in the assessment model (Figure 6).
• Fishery was assigned based on fishery group and region.

4.2.2 Reassignment

To simplify the fishery structure in the stock assessment model, we reassigned catches in regions
with low fishing activity to main regions, as done in the 2021 assessment.

• LF fisheries: catch in regions 1 to 3, representing only ∼ 3% of the total catches over the
time series, was assigned to region 4.

• FS and LS fisheries: purse seine catches in region 1a and 3 were reassigned to region 1b
and 4, respectively.

• BB fisheries: a small proportion of the total baitboat catch and effort occurs on the
periphery of region 1b, within regions 1a and 4. Therefore, we assigned all BB catches to
region 1b.

• GI fisheries: a very small proportion of the total gillnet catch and effort occurs in regions
1b and 2, which was reassigned to area 1a. Likewise, catch in region 3 was reassigned to
region 4.

• TR fisheries: moderate troll catches are taken in regions 1a and 3, which were reassigned
to regions 1b and 4, respectively.

• HD fisheries: moderate handline catches are taken in regions 1b, 2 and 4, which were
reassigned to region 1a.

• OT fisheries: catch from region 1b and 2 was reassigned to region 1a, while catch from
region 3 was reassigned to region 4.

4.2.3 Aggregation

After catch reassignment, catch data (in metric tons) was summed by year, quarter, and fishery,
and then organized in an SS3 format. Overall, the time series of catch per fleet were quite similar
to the catch series included in the 2021 assessment (Figure 7). The largest differences were
observed for OT and TR in region 4, especially during the last two decades. Also, current catch
estimates for LL in region 3 are slightly larger than the previous assessment during 2008-2020.
The changes are mostly attributed to revisions of catch estimation by the IOTC Secretariat.
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4.3 Size data

The size data was composed of information about time (year and month), CPC, gear type, type
of association of the fish school, grid code, number of fish sampled per fork length bin (cm),
and the score of reporting quality (RQ). The RQ score is a proxy of the quality (e.g., sampling
coverage, reporting details) of the size information provided to the IOTC Secretariat by CPCs
(Herrera, 2010; IOTC, 2024). The length bin width was 2 cm and the length bins spanned
from 10 to 340 cm. The data were collected from a variety of sampling programs, which can be
summarised as follows:

• FS and LS fisheries: Length frequency samples from purse seiners have been collected from
a variety of port sampling programmes since the mid-1980s. The samples are comprised
of very large numbers of individual fish measurements. The length frequency samples are
available by set type, with sets catches from associated sets typically composed of smaller
fish than free school catches (Figure 3). The size composition of the catch from the free-
school fishery is bimodal, being comprised of the smaller size range of yellowfin and a broad
mode of larger fish. The bimodal distribution is likely to have reflected different types of
schools in the catch composition (e.g., free schools of mostly large adult yellowfin or mixed
species schools consisting of smaller yellowfin, M. Chassot, pers. comm.). Hence, the
relative composition of large (>80cm) vs. small (<80cm) yellowfin in the purse seine free
schools fluctuates considerably over time. Between 2010 and 2023, there was a dip in the
average size of large fish caught in the FAD fishery and a temporary increase in the average
sizes of large fish caught in the free school fishery (Figure 8). There is also a considerable
catch of smaller fish taken during free school fishing operations in the Mozambique Channel
area in region 2 (Chassot, 2014). The free-school fishery in region 4 appears to catch larger
fish (Figure 5).

• LL fishery: Length and weight data have been collected from sampling at ports and aboard
Japanese commercial, research vessels, and observer programmes. Weight frequency data
collected from the fleet have been converted to length frequency data via a processed
weight-whole weight conversion factor and a weight-length key. Length frequency data
from the Taiwanese longline fleet from 1980−2003 were included in the 2018 assessment,
although data from the more recent years were excluded due to concerns regarding their
reliability (Geehan and Hoyle, 2013). Length data have also been available from other
fleets (e.g., Seychelles, Korean, China, etc.) in more recent years. Analyses of size data
show that the average lengths of yellowfin caught by the longline fleet are generally larger
in the southern regions, particularly in the southwest (Hoyle, 2021a). There is considerable
temporal variation in the length of fish caught (Figure 8), but some of this variation is
inconsistent between datasets, such as temporal patterns of variation in the 1970s that
differ between length and weight data from the Japanese fleet. For all longline fisheries,
there was a marked decline in the size of fish caught by Japan during the 1950s and 1960s,
while the size of fish caught stabilised during the 1970s and 1980s (Figure 8).

• LF fishery: Length and weight data were collected in port during the unloading of catches
for several landing locations and time periods, especially on fresh-tuna longline vessels
flagged in Indonesia and Taiwan/China (IOTC-OFCF sampling).

• GI fishery: Samples come from Iran, Pakistan, Sri Lanka, and Oman in the Arabian Sea
from 1987 and from Indonesia and Sri Lanka in other tropical areas from 1975.
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• BB fishery: Size data come principally from the Maldivian fleet from 1983 with a large pro-
portion of juveniles. Also, samples from Indonesia and Sri Lanka have also been available
for some years but with a low sample size.

• TR fishery: Samples come mainly from Comoros in the western IO from 2015, although
some small samples are also available from EU (France, Mayotte) and Maldives. In the
eastern IO, size data come from Indonesia (1985-1990 and after 2019) and Sri Lanka
(1994-2018) fleets.

• HD fishery: Samples come from a high diversity of fleets, although the Maldivian fleet
has been the most consistent over the years (2005-2023). Limited sampling was conducted
over the last decade.

• OT fishery: Samples are available from 1983 in the eastern IO and from 1997 in the western
IO. The main fleets are the Indian, Indonesian, Sri Lankan, and Maldivian. Limited
samples have been available during the last few years.

The IOTC Secretariat provided two size datasets with two distinct grid resolutions:

• original data: the size dataset had six main types of grid dimensions (see Table 3 and
Figure 9), although ∼ 97% of observations were category 5 or 6. A seventh category was
also present that covered the Seychelles National Jurisdiction Area, but those observations
were removed from the size database. This type of size dataset was used in the 2021
assessment.

• cwp55 data: the size dataset was provided at a 5∘ × 5∘ grid resolution (Figure 6).

4.3.1 Processing

First, we removed gear types with unclear classification (HOOK, HATR, PSOB, and PS with
unclassified school type UNCL). Then, we reduced the number of length bins in the data by
summing the number of sampled fish ≥ 198 cm and assigning it to the 198 cm length bin. We
followed these steps to produce the SS3 size inputs:

• Month information was used to assign quarters, with four quarters from January to De-
cember.

• The fishery group was assigned based on the CPC, gear type, and type of association of
the fish school.

• The number of sampled fish per length bin was summed and the RQ was averaged by year,
quarter, CPC, gear type, fishery group, and grid code.

• The grid code was used to calculate the grid centroid.
• The centroid was used to assign regions. Note that this region assignment varied depending

on the type of dataset (see Figure 9 and Figure 6).
• Fishery was assigned based on fishery group and region.
• We converted the length bin width from 2 to 4 cm. To do so, we summed the number of

sampled fish from pairs of length bins (e.g., 10 and 12 cm were summed and assigned to 10
cm, 14 and 16 cm were summed and assigned to 14 cm, and so on). After this conversion,
we had a total of 48 length bins.

Only for the size dataset with regular grids, we then assigned the catch (in numbers) that
corresponded to every observation in the size data (i.e., year, quarter, grid, CPC, and gear
type). We found a perfect match for ∼ 76% of cases, but there were some size observations
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without catch. In order to fill in these catch gaps, we followed an imputation procedure with
four levels:

• Level 1: Fill in catch gaps with the average catch per grid for a given year, quarter, CPC,
gear type, and fishery group.

• Level 2: Fill in catch gaps with the average catch per grid for a given year, CPC, gear
type, and fishery group.

• Level 3: Fill in catch gaps with the average catch per grid for a given year, gear type, and
fishery group.

• Level 4: Fill in catch gaps with the average catch per grid for a given gear type and fishery
group.

Figure 10 shows the percentage of size observations that needed each level of imputation.

4.3.2 Reassignment

We conducted the size data reassignment as done for the catch data in Section 4.2.2.

4.3.3 Filtering

In order to remove inconsistent patterns in the length-frequency data, we carried out these
filters:

• The first filter was to remove observations with less than 100 fish sampled and not con-
sidered best quality based on the RQ score.

• LL fishery: a review of the longline size data shows that the sampling behaviour of Tai-
wanese and Seychelles fleets (mostly reflagged Taiwanese vessels) have changed over time,
with patterns in the logbook length data inconsistent with other fleets (Hoyle, 2021a), and
as such the WPTT23 (Data Preparatory) recommended omitting all Taiwanese and Sey-
chelles logbook length data from the 2021 assessment (IOTC, 2021). Following this advice,
we removed length frequency data from the Taiwanese and Seychelles longline logbooks
from the final length frequency data sets. Length data collected by observers from these
fleets were retained in the final data set.

• LL fishery: longline length frequency data during 1970-1995 and 2010-2023 in region 1a
was removed.

• LL fishery: attempts to fit the size data of this fishery in past assessments suggested
that the large decline in mean size observed before 1960 is inconsistent with the yellowfin
population dynamics. Hoyle (2021a) suggests that selectivity may have changed during
this early period and recommends avoiding fitting to these data with the same selectivity.
Therefore, we omitted longline size data before 1960 for regions 1b, 2, 3, and 4.

• LL fishery: longline length frequency data in 2001-2005, 2015, and 2019 in region 4 was
removed.

• LF fishery: we removed size data before 2005.

• GI fishery: we removed size data from the Sri Lankan fleet in 2021.
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• HD fishery: we only retained size information from the Maldivian fleet. We also removed
Maldivian size data in 2003 and 2015 (quarter 1) due to inconsistent patterns. The contri-
bution of the Omani fleet to the total catch has increased in recent years; however, length
samples were almost absent (Figure 14). Lengths from the Maldivian fleet is assumed to
be quite similar to the Omani fleet since both fisheries operate on dolphin-associated sets.

• OT fishery: we removed size data sampled during 2021-2022 in region 1a and data sampled
in 2016 in region 4.

• TR fishery: we removed size data in regions 1b and 2. Also, we removed size data in region
4 from 2016 to 2019.

The filters applied to the LL, LF, and TR fisheries were also applied in the 2021 assessment.
Other filters were exclusive to the current assessment.

4.3.4 Aggregation

In order to aggregate the size data by year, quarter, and fishery for SS3, we followed two
approaches: simple and catch-raised aggregation.

• Simple aggregation: this type of aggregation was performed only for the original size
dataset. We summed the number of sampled fish per length bin and averaged the RQ
values by year, quarter, and fishery. This aggregation approach was used in the 2021
assessment and assumed that the collection of samples was broadly representative of the
operation of the fishery in each quarter.

• Catch-raised aggregation: this type of aggregation was performed only for the cwp55 size
dataset. We performed a catch-weighted sum of the number of sampled fish by length bin
and a catch-weighted average of the RQ values.

A graphical representation of the availability of length samples is provided in Figure 11. The
longline fishery provided size data from the 1960s but with relatively low quality during the first
decades. Most of the size information started to be available in the 1980s, and the purse seine
fisheries provided the most consistent and high quality size information (Figure 11). The RQ
scores did not differ between aggregation methods.

The differences in size compositions between the simple and catch-raised aggregation methods
were minimal for most fisheries (Figure 3). The largest differences were found for the OT
fisheries in region 1a and 4, and for the handline fishery in region 1a. We observed an increase
in the mean length for the LL fisheries in all regions (Figure 8). In the case of the free school
purse seine fishery, we also noted an increase in mean length over time in region 1b. Conversely,
we noted a decrease in the mean length for the log school purse seine fishery over the years in
regions 1b, 2, and 4, especially from 1980 to ∼ 2005. For the handline fishery, we noted an
increase in mean length from the 1990 until ∼ 2010, and then a decrease until recent years.
These patterns were quite similar between the two aggregation methods (Figure 8).

In general, the size compositions used in the current assessment were comparable with the 2021
assessment (both using the simple aggregation approach), although small differences can be
observed for the OT and TR fisheries in region 4 (Figure 12). Regarding mean length, most
fisheries other than longline had similar tendencies over time when comparing 2021 and current
values. For the LL fisheries, size compositions in 2021 had larger mean lengths before 1990
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than the current size compositions (Figure 13). This difference is attributed to revisions of size
estimation by the IOTC Secretariat regarding the conversion from fish weights to fish lengths.

4.4 Indices

4.4.1 Longline (LL) CPUE

Standardised LL CPUE indices (1975-2023) were available from a joint workshop held by Japan,
Korea, and Taiwan (Matsumoto et al., 2024). The indices were derived following the method-
ology developed for previous stock assessments. Longline catch and effort data were analysed
using a hurdle generalized linear modelling approach (GLM) utilizing either operational data
(subsampled ∼ 10-30%) or aggregated data at 5∘× 5∘ grid resolution. The main variables used in
the GLM included operation date, fishing location, vessel ID, fishing effort (number of hooks per
set), and catch in numbers of fish. Cluster analyses of species composition data for each fleet and
model area were used to separate datasets into fisheries that target different species. Selected
clusters were then combined and standardized using GLMs. The log-transformed yellowfin catch
per number of hooks set was the dependent variable of the positive model component, while
the probability of the catch rate being zero was the dependent variable in the binomial model
component. In addition to the year and quarter variables, GLMs also included covariates for 5∘

square location, cluster, and vessel ID.

For the 2021 assessment, quarterly indices were provided using aggregated data only (COVID
restrictions prevented the workshop from being held). For 2024, quarterly indices were provided
for the aggregated data only, while annual indices were derived from the sub-sampled operational
data (Table 4). Moreover, data from regions 1a and 1b were combined as a single region, whereas
data from region 1a was not included in previous standardization processes.

For the regional longline fisheries, a common catchability coefficient (and selectivity) was esti-
mated in the assessment model, thereby linking the respective CPUE indices among regions.
This significantly increases the power of the model to estimate the relative (and absolute) level
of biomass among regions. However, as CPUE indices are essentially density estimates, it is
necessary to scale them to account for the relative abundance of the stock among regions. For
example, a relatively small region with a very high average catch rate may have a lower level of
total biomass than a large region with a moderate level of CPUE.

We determined regional scaling factors that incorporated both the size of the region and the
relative catch rate to estimate the relative level of exploitable longline biomass among regions.
This approach was also used in the 2021 assessment and is similar to that used in the Western
and Central Pacific Fisheries Commission (WCPFC) regionally disaggregated tuna assessments.
Hoyle and Langley (2020) proposed a set of regional weighing factors for IO yellowfin based on
aggregated longline catch effort data. The authors recommended the estimates by method ‘8’
for the period 1979–1994 (referred to as ‘7994m8’, see Table 2 of Hoyle and Langley (2020)) to
be included in the current assessment. The relative scaling factors calculated for regions 1–4 are
1.674, 0.623, 0.455 and 1, respectively.

For each of the principal longline fisheries, the standardized CPUE index was normalized to
the mean of the period for which the region scaling factors were derived (1979–1994). The
normalized GLM index was then scaled by the respective regional scaling factor to account for
the regional differences in the relative level of exploitable longline abundance among regions
(Figure 15).

16



IOTC-2024-WPTT26-11

A number of important trends are evident in the CPUE indices:

• The western tropical (region 1b) CPUE increased during the late 1970s and early 1980s,
then suddenly declined from 1987 to 1990. After 1990, the CPUE in this region declined
at a slower rate until the late 2000s, which coincided with a number of piracy incidents in
the western Indian Ocean (2008–2011). After that time, it remained close to the lowest
level observed in that region but showed very large seasonal and annual variations. From
2020 to 2023, there was a substantial (∼ 50%) increase in the CPUE indices compared to
the 2013-2018 period.

• The eastern tropical region 4 followed a similar pattern until 1990 but then declined
steadily and, by 2016, was also close to the lowest level in the time series. The CPUE
decline observed from 2007 to 2016 is consistent with a decline in the proportion of yellowfin
in the combined tuna catch from the Japanese longline fleet in the eastern IO. It is unclear
whether the change in species proportion is related to a decline in the abundance of
yellowfin in the region (relative to the other species) or a regional change in the targeting
of the fishing fleet. However, there is an indication that there has been a differential shift
towards deeper longline gear (greater HBF) in the eastern IO since 2000 and this may
indicate a shift in targeting toward bigeye tuna (Thunnus obesus) in this region (Hoyle
pers. comm. additional JP LL analyses). Such factors may not be adequately accounted
for in the standardisation of the yellowfin CPUE data. There is also a substantial increase
in CPUE indices in 2022 and 2023.

• Since the 1980s, the CPUE indices for the western temperate region 2 fluctuated, typically
with a 3-5 year cyclical trend. From 2019 to 2023, there was a general increase in the
CPUE indices.

• The CPUE index values from the eastern temperate region (region 3) are the lowest com-
pared to other regions, reflecting the low regional scaling factor. However, the overall trend
in the CPUE indices is broadly comparable to the other regions. The temporal pattern
was similar to the western temperate area before 1979. After 1979, catch rates decreased
steadily until the mid-2010s and then slightly increased in recent years (2022 and 2023).

• There is an exceptionally high peak in CPUE indices 1976–78 (especially in regions 1 and
2), which is also associated with a high uncertainty. Hoyle et al. (2017) showed that this
discontinuity exists in Japanese, Taiwanese and Korean data in different oceans for both
bigeye and yellowfin tuna. Hoyle et al. (2017) suggested this is unlikely to be explained
by changes to the population or catchability but may be associated with catch reporting
and data management.

• The spike in the CPUE indices around 2012 in the west equatorial region (region 1) was
evident for most fishing fleets. Several hypotheses have been proposed on what could have
caused CPUE to have increased, including a return to fishing in areas that were most
affected by piracy. However, further investigation is required.

The values and trends of LL CPUE used in the 2021 assessment and in the current assessment
were quite similar for all model areas before 1990 (Figure 16). After 1990, we noted large
differences for region 1, where the current CPUE showed consistently larger values ( ∼ 40%)
than the 2021 CPUE, especially after 2005. For region 4 and after 2005, we also observed slightly
larger current CPUE values compared to the CPUE series from the last assessment. On the
other hand, this discrepancy was minimal for regions 2 and 3. The standardization procedure
for the current and 2021 LL CPUE used aggregated data (Kitakado et al., 2021); however, the
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difference between both series might be caused by the inclusion of information from region 1a
in the current LL CPUE standardization and/or differences in the species clustering for the
tropical fisheries.

The quarterly LL CPUE indices, which used aggregated data in the standardization, were the
primary indices included in the 2024 stock assessment. The annual LL CPUE indices using
operational data from regions 1 and 4 had a more pronounced decline during the 1990s compared
to the quarterly aggregated indices (Figure 17). Further, the R1 annual operational indices did
not exhibit a strong increase in recent years. A range of model options incorporating the annual
indices was investigated, although the models failed to meet reasonable convergence criteria,
indicating a conflict between key model inputs (or model miss-specification), particularly from
region 1.

4.4.2 Purse seine CPUE indices

The European and associated flags purse seine fishing activities in the IO from 1981 to 2022
have been monitored through the collection of logbooks and observer sampling. Standardised
indices of the biomass of yellowfin caught by European purse seiners (Spain and France) from
sets on free-swimming schools (1991 – 2022) and sets on associated tuna schools (2010 – 2022)
were developed (Figure 18). The free school index was based on the application of a general
additive mixed effect model with three components to model (Kaplan et al., 2024): i) the
detection rate of free swimming schools per unit search time, ii) the probability that adult
yellowfin are present in a set, and iii) the adult biomass per set given presence assuming a
lognormal distribution. The log school index was based on the application of two models: a
generalized linear mixed model and a spatiotemporal model, both using a hurdle approach
(Correa et al., 2024b). These standardizations considered a comprehensive list of candidate
covariates, including the effect of the technological improvement related to the use of echosounder
buoys and environmental variables. The predicted CPUE over time was obtained using the
predict-then-aggregate approach, which is considered best practice (Hoyle et al., 2024).

The log school purse seine (LS) index mainly informs the biomass of juvenile yellowfin, while the
free-school (FS) index informs the biomass of the adult portion of the population in region 1b.
The LS index displays juvenile biomass fluctuations over the years, with larger values during
2013 and 2014, and a remarkable increase after 2020. On the other hand, the FS CPUE index
showed an increase from the late 1990s until 2004 and then a dramatic decrease until 2009.
From 2015, the free school index showed another dramatic decrease until 2018 and a slight
recovery after that (Figure 18), possibly associated with the introduction of yellowfin catch
limits during that period. Theoretically, the LL (region 1) and FS CPUE indices should display
similar temporal patterns since both contain information from adults. However, we only noticed
comparable trends between 2005 and 2017, and distinct trend after 2017 (Figure 19).

We evaluated the impact of incorporating the FS CPUE series as an auxiliary index (i.e., always
in conjunction with the LL CPUE index) in the assessment model. We could not evaluate the
impact of the LS CPUE index due to time constraints.

4.4.3 Effort creep

It is well recognised that the relationship between PS CPUE and abundance is unlikely to be
proportional, as the improvement of catch efficiency due to technology development is challenging
to quantify, and the changes in catchability are not fully accounted for in the standardisation
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process. Effort creep can be defined as an unquantified increase in the average fishing power
over time that disturbs the relationship of proportionality between the index and the stock
trajectory (Hoyle, 2024). These changes in catchability over time can affect CPUE indices and,
therefore, the outcomes of stock assessments. This is especially important for assessments that
lack abundance indices from fishery-independent surveys, which include the majority of the
fisheries managed by tuna regional fishery management organizations (RFMOs).

In the case of longline fleets, technological advances include electronic devices to help navigate,
communicate, and find target species. Synthetic materials allowed fishers to improve hooks and
lines, which increased the probabilities of both hooking and landing. Satellite imagery improved
search efficiency. Freezers increased the proportion of time spent on fishing grounds, while
equipment for faster longline retrieval increased hooks set without affecting soak time (Hoyle,
2024). Nonetheless, there may have been changes in the relative targeting of yellowfin by the
longline fleet that are not adequately accounted for by the standardisation procedure, as evident
from the decrease in the catch of yellowfin relative to bigeye tuna. Such changes may exaggerate
the decline in the yellowfin tuna CPUE indices and counter any increases in fishing efficiency.

In the 2021 IO yellowfin assessment, a sensitivity analysis was run during the WPTT meeting
that included 1% effort creep per year for the entire period of the index, which resulted in
changes in the stock depletion level. In the current assessment, we evaluated two different levels
of effort creep for the LL CPUE index: no effort creep and 0.5% per annum, assuming that the
source is associated with vessel turnover.

The WCPFC assessments have often estimated substantial changes in PS FAD-associated fish-
eries (e.g., McKechnie et al. (2017)). Using a similar approach, Kolody (2018) estimated a
catchability increase of approximately 1.25% per year for the standardised purse seine effort for
yellowfin from sets on associated schools. Likewise, studies on the French fleet indicate a 10%
increase in catch per set associated with echosounder use, equivalent to about 1% per annum,
and a 1.7 – 4.0 % increase in efficiency (stable across time) arising from fishing their own floating
objects (Wain et al., 2021). In the current assessment, since the inclusion of the FS CPUE index
was done for model sensitivity, we assumed no effort creep for this index.

4.5 Conditional age-at-length data

Age and size information was available for fish sampled between 2009 and 2022 (Figure 20)
from the GERUNDIO project that aimed the collection and analysis of biological samples of
tropical tunas, swordfish, and blue sharks to improve age, growth, and reproduction data for
the IOTC. In a first step, Farley et al. (2021) presented this data that contained information
from otoliths from 253 yellowfin tuna sampled mainly in the western IO. Then, Farley et al.
(2023) presented an updated dataset with age and length information from an additional 136
individuals. To calculate the decimal age of sampled fish, daily and annual ageing methods
were used. Decimal age was calculated for each fish with an annual count based on the method
developed for yellowfin and bigeye tuna in the western Pacific Ocean (Farley et al., 2020). To
find more details on the ageing estimation method, see Farley et al. (2023).

Age and fork length information from a total of 389 individuals was provided to be used in
the current stock assessment. This source of information can be included in SS3 as conditional
age-at-length data, which is important to inform growth and stock age structure because they
provide direct observations of the distribution of fish ages within length classes (Lee et al.,
2019). The model fits the observed age-length data along with information from size mode
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progression to influence the estimation of the growth curve. The inclusion of this data type was
recommended by the yellowfin tuna assessment peer review (M. Maunder et al., 2023).

We followed these steps to produce the input CAAL data for SS3:

• We first removed observations with incomplete age and fleet data, retaining 375 observa-
tions.

• Month information was used to assign quarters.
• There was no discrimination between the set type for the purse seine fishery. So, we

assigned observations ≤ 80 cm as LS (log school) and > 80 cm as FS free school.
• Fork length was grouped into the length bins used in the assessment model.
• Fish older than seven years were grouped into a single group (age 7).
• Real ages were converted to model ages (i.e., quarters).
• Region was assigned based on geographical location.
• There were several observations ( ∼ 37%) with no geographical location, which were as-

signed to region 1b.

Figure 21 shows the CAAL information included in the assessment model per fishery. Adults
were mostly sampled from the LL, FS, and HD fisheries. Conversely, juveniles were mainly
present in the LS fishery. The lengths ranged from 18 to 182 cm, and all the age quarters were
sampled. The largest and oldest fish were observed in the GI, LL, and FS fisheries. Due to the
ageing error was not available, we assumed that the age estimation was precise (i.e., no error)
in the assessment model.

4.6 Tagging

Tagging data was available for inclusion in the assessment model, which consisted of yellowfin
tuna tag releases and returns from the Indian Ocean Tuna Tagging Programme (IOTTP) and the
main phase of the Regional Tuna Tagging Project-Indian Ocean (RTTP-IO) conducted during
2005−2009. The IOTC has compiled all the release and recovery data from the RTTP-IO and
the complementary small-scale programmes in a single database. A total of 54,688 yellowfin
tuna were released by the RTTP-IO program. Most of the tag releases occurred within the
western equatorial region (region 1b), and a high proportion of these releases occurred in the
second and third quarters of 2006 (Figure 22). Limited tagging also occurred within regions 1a
and 2. The model included all tag recoveries up to the end of 2014. The spatial distributions of
tag releases and recoveries are presented in Figure 23.

A total of 9,916 tag recoveries (after removing tags with unknown recovery date or length) could
be assigned to the fisheries included in the assessment model. Almost all of the tags released
in region 1 were recovered in the home region, although some recoveries occurred in adjacent
regions, particularly in region 2. A small number of tags were recovered in region 4 (from tags
released in region 1b) and there were no tags recovered from region 3 (Figure 24). Most of
the tag recoveries occurred between mid-2006 and mid-2008 (Figure 22). The number of tag
recoveries started to attenuate in 2009, although small numbers of tags were still recovered up
to the end of 2014.

Most of the tags were recovered by the purse seine fishery within region 1b (Figure 24). A
significant proportion (35%) of the tag returns from purse seiners were not accompanied by
information concerning the set type. These tag recoveries were assigned to either the free-school
or log fishery based on the expected size of fish at the time of recapture; i.e. fish larger than
80 cm at release were assumed to be recaptured by the free-school fishery; fish smaller than 80
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cm at release and recaptured within 18 months at liberty were assumed to be recovered by the
floating object fishery; fish smaller than 80 cm at release and recaptured after 18 months at
liberty were assumed to be recovered by the free-school fishery.

Tag releases were stratified by release region, time period of release (quarter), and age class
for incorporation into the assessment model. The recaptures by fishery for each release group
inform the assessment model on fishing mortality and abundance and fish movement. Therefore,
factors that might have affected the interpretation of tag returns need to be accounted for to
minimise potential bias. Fu (2020) provides a summary of how the tag data were incorporated
into the assessments of IOTC tropical tuna species, and below is a description of the procedure
applied to yellowfin tuna.

4.6.1 Age assignment of tag release

The age at release was assumed based on the fish length at release and the average length-at-age
from the yellowfin growth function (see Section 5.1.3). Fish aged 15 quarters and older were
aggregated in a single age group. Tag releases in regions 1a and 1b were stratified in separate
release groups due to the spatial separation of the individual release events. A total of 54,392
releases were classified into 131 tag release groups. Most of the tag releases were in the 5−8
quarter age classes (Figure 22).

4.6.2 Initial tagging mortality

Hoyle et al. (2015) examined the effects of various covariates (e.g., individual tagger effect) on
tag failures for the RTTP program and estimated a combined effect of 20% for all tropical tuna
species relative to a base failure rate. No formal estimate was made for the base failure rate, but
the WPTT suggested 7.5% in 2018 based on the assessment of the western and central Pacific
tuna species. This equates to a total tag failure rate of 27.5%. For the current assessment, the
number of tags in each release group was reduced by 27.5% to account for initial tag mortality.

4.6.3 Chronic tag loss

Tag recoveries were also corrected for long-term tag loss (tag shedding) based on an update of the
analysis of Gaertner and Hallier (2015). Tag loss for yellowfin was estimated to be approximately
20% at 2000 days at liberty. This was accounted for through the SS3 chronic tag loss parameter
(an annual rate of 0.03).

4.6.4 Reporting rate

The returns from tag release group were classified by recapture fishery and recapture time period
(quarter). The results of associated tag seeding experiments conducted during 2005−2008 have
revealed considerable temporal variability in tag reporting rates from the IO purse-seine fishery
(Hillary et al., 2008b). Reporting rates were lower in 2005 (57%) compared to 2006 and 2007
(89% and 94%). Quarter estimates were also available but were similar in magnitude (Hillary
et al., 2008a). This large increase over time was the result of the development of publicity
campaign and tag recovery scheme raising the awareness of the stakeholders, i.e. stevedores
and crew. SS3 assumes a constant fishery-specific reporting rate. To account for the temporal
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change in reporting rate, the number of tag returns from the purse-seine fishery in each stratum
(tag group, year/quarter, and length class) was corrected using the respective estimate of the
reporting rate. Following Kolody et al. (2011), Fu (2020), and Fu (2017), a 100% reporting
rate was assumed for at-sea recoveries, whereas tags recovered from Seychelles landings were
corrected for reporting rates based on the quarterly estimates from Hillary et al. (2008a), and
were also corrected for the portion of the total purse-seine catches examined for tags, based the
proportions of EU purse seine catch landed in the Seychelles relative to the total EU purse seine
catches (Kolody et al., 2011). For example, the adjusted number of observed recaptures for an
LS fishery as input to the model, the reporting rate (𝑅′

𝐿) was calculated using the following
equation:

𝑅′
𝐿 = 𝑅𝑠𝑒𝑎

𝐿 + 𝑅𝑠𝑒𝑧
𝐿

𝑃 𝑠𝑒𝑧𝑟𝑠𝑒𝑧

where:

• 𝑅𝑠𝑒𝑎
𝐿 is the number of observed recaptures recovered at sea for the LS fishery

• 𝑅𝑠𝑒𝑧
𝐿 is the number of observed recaptures recovered in Seychelles for the LS fishery

• 𝑟𝑠𝑒𝑧 is the reporting rates for purse seine tags removed from the Seychelles
• 𝑃 𝑠𝑒𝑧 is the scaling factor to account for the EU purse seine recaptures not landed in

Seychelles

The adjusted number of recaptures for the FS fishery was calculated similarly. The SS3 reporting
parameters for the purse seine fisheries were subsequently fixed at 100% in the model. Some
of the other (no purse-seine) fisheries also returned a substantial number of tags. There are
no direct estimates of fishery-specific reporting rates for these fisheries. The reporting rates for
these fisheries are estimated within the assessment model.

4.6.5 Small-scale tagging programmes

Additional tag release/recovery data are available from a number of small-scale tagging pro-
grammes. The data set included a total of 7,828 tags released during 2002-08, primarily within
regions 1b (70%) and 4 (28%). A total of 366 tag recoveries were reported, predominantly from
the bait boat fishery in region 1a. There has been no comprehensive analysis of these data
and there is no information available concerning the fishery-specific reporting rate of these tags.
The tag release/recovery data from the SS tagging programmes were not incorporated in the
current range of assessment models. Earlier analysis indicated that the stock assessment results
were relatively insensitive to the inclusion of these data (Langley et al., 2012). Fu et al. (2018)
investigated a range of alternative options for processing and incorporating the tagging data
into the assessment model (see Table 5 of Fu et al. (2018)). These exploratory analyses are not
repeated in the current assessment.

4.7 Environmental data

The 2018 assessment included a range of environmental data to investigate the potential for
incorporating environmental covariates to inform the movement of fish. However, although
there is evidence that there may be an association between the movement of yellowfin tuna and
seasonal and temporal changes in ocean conditions in the IO, the potential relationship between
environmental indices and fish movement is unclear. Langley (2016) and Fu et al. (2018)
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suggested that these environmental indices had no influence on the estimation of yellowfin tuna
movement rates of different life stages between adjacent model regions, and seasonal variation
in movement may be better accounted for by models that can explicitly incorporate seasonal
effects (Fu et al., 2018). Therefore, environmental information was not included in the 2021
assessment.

A significant negative association between the IODs and the catch rates of yellowfin tuna was
observed (Lan et al., 2020, 2013), as well as an impact of the ENSO on catch rates near the
Arabian Sea (Lan et al., 2020). Langley et al. (2023) found that periods of strong recruit-
ment in regions 1 and 4 appear to correspond with oceanographic conditions indexed by Dipole
Mode Index (DMI), but they did not find apparent correspondence between yearly trends in IO
environmental conditions and the LL CPUE indices from each of the model regions. There is
no strong indication that the catchability of the equatorial longline fisheries (region 1 and 4)
is strongly influenced by the prevailing environmental conditions, but there is some indication
that oceanographic conditions may influence short-term (1-2 yr) variation in longline catchabil-
ity in the subtropical regions (region 2 and 3) (Langley et al., 2023). Variability in deviates of
movement rates between region 1 and 4 is broadly consistent with the fluctuations in the DMI
with higher movement estimated under positive IOD conditions.

Since no strong relationships between IO environmental conditions and the yellowfin dynamics
have been identified, we did not incorporate any environmental variable in the current assess-
ment; however, we suggest further studies on this topic.

5 Model parameters

5.1 Population dynamics

The main model configuration partitions the population into four spatial regions (Figure 1) and
29 or 41 quarterly age classes (0 − 28+ or 0 − 40+), both sexes combined. The last age-class
(28+ or 40+) comprises a plus group in which mortality and other characteristics are assumed to
be constant. Age quantities are partitioned into 48 4-cm length bins ranging from 10 to 198 cm,
which covers the main size range observed for yellowfin in the IO. The population is monitored
in the model at quarterly time steps, extending through a time window of 1950–2023. The main
population dynamics processes are as follows.

5.1.1 Recruitment

Recruitment in SS3 is defined as the appearance of age class 0-quarter fish in the population.
Yellowfin tuna spawning occurs all year round, with higher activity from November to February
and higher batch fecundity estimates (i.e., number of oocytes released) in the largest females
(Zudaire et al., 2022). The assessment model assumed that recruitment occurs instantaneously
at the beginning of each quarter. This is a discrete approximation of continuous recruitment, but
provides sufficient flexibility to allow a range of variability to be incorporated into the estimates
as appropriate.

Global recruitment was assumed to be a function of spawning biomass via a Beverton and Holt
stock-recruitment relationship (SRR) with a fixed value of steepness (ℎ). Steepness is defined
as the ratio of the equilibrium recruitment produced by 20% of the equilibrium unexploited
spawning potential to that produced by the equilibrium unexploited spawning potential (Francis,
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1992). Typically, fisheries data are not very informative about the steepness parameter of the
SRR parameters (Lee et al., 2012); hence, the steepness parameter was fixed at a moderate
value (0.80) and the sensitivity of the model results to the value of steepness was explored by
setting it to lower (0.7) and higher (0.9) values as performed in other tuna RFMOs (Harley,
2011). Deviates from the SRR curve (recruitment deviates) were estimated from 1972 to 2021
(i.e., 200 deviates), which covers the period with more data in the assessment (Figure 25). The
recruitment deviates were assumed to have a standard deviation of 0.6 (𝜎𝑅) in log scale, which
was fixed during the model development process.

Global recruitment was apportioned to the tropical regions 1 and 4. The choice of these regions
was based on the temperature preference for the spawning of yellowfin tuna and a minimum
temperature for larval survival of about 24∘C (Reglero et al., 2014; Suzuki, 1993). The overall
proportion of the quarterly recruitment allocated to regions 1 and 4 was estimated and varied
for quarters between 1977 and 2021 (180 deviates). A time block was imposed on the temporal
deviates of the recruitment distribution parameters, which were divided into two periods: 1977
– 2008 and 2009 – 2021 (both assuming a standard deviation of 1.5 for the deviates). The time
block makes it possible to use the average recruitment distribution of the most recent period
instead of the long-term average in the model prediction. The selection of the time period is
based on the estimated relative trend of regional recruitment distribution.

The 2021 assessment performed a sensitivity model in which recruitment was assumed to occur
in all model regions, which allowed the model to have more flexibility in distributing fish in model
regions. This might be preferable because although spawning and larvae require water of at least
24∘C, the growing juveniles can move to other regions before they reach the size of recruitment
to the fishery, when the model first needs to predict their distribution. Their pre-recruitment
movement behaviour is likely to differ from older fish. However, there was a significant increase
in the computational overhead associated with the additional temporal deviates parameters for
the regional recruitment distribution (unless a stationary regional distribution is assumed). As
such, this parametrization was not explored in the current assessment.

5.1.2 Initial population

The population age structure in the initial time period in each region was assumed to be in
an unexploited, equilibrium state. As noted above, the population is partitioned into quarterly
age classes with an aggregate class for the maximum age (plus-group). The aggregate age class
makes it possible for the accumulation of old and large fish, which is likely in the early years of
the fishery when exploitation rates were assumed to be absent.

5.1.3 Somatic growth

The 2021 assessment used growth parameters that replicated the growth curve derived by Fonte-
neau (2008) (Figure 26). This growth curve did not follow the traditional von Bertalanffy growth
pattern, displaying slow growth between 30 and 60 cm fork length and faster growth between
60 and ∼ 120 cm, so the authors had to approximate it in SS3 by varying the growth rates
(𝑘 parameter) for age quarters from 2 to 13. Dortel et al. (2015) estimated growth parame-
ters by integrating otolith readings, growth increments from mark-recapture data, and modal
progressions from purse seine length frequency data. Mean length-at-age estimates were compa-
rable to the values estimated by Fonteneau (2008) for young ages and then diverges, with larger
length-at-age due to higher asymptotic length (𝐿∞).
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Eveson et al. (2012) used otolith and growth increment from tag data to estimate a mean
asymptotic length of about 130 cm fork length, which was low compared to the maximum
lengths historically reported for yellowfin in the IO. Sex-specific estimates from a small subset
of samples supported the hypothesis that, on average, males grow to a larger size than females,
with the mean asymptotic length estimate being 151 cm for males versus 140 cm for females.
Similar differences between sexes have been observed in Atlantic yellowfin (Pacicco et al., 2021)
and other Thunnus species. The sex-specific estimates were explored in a two-sex model in the
2018 assessment (Fu et al., 2018).

Farley et al. (2021) presented growth estimates using otolith information from the GERUNDIO
project and found quite different growth patterns compared to previous studies, especially for
young ages. In an updated study, Farley et al. (2023) provided new growth estimates based on
daily and annual otolith readings validated with radiocarbon (Fraile et al., 2024), and used a
two-stage von Bertalanffy curve to fit the age-length data. Farley et al. (2023) found a larger 𝐿∞
parameter compared to previous studies, and also found distinct mean length-at-age patterns
between males and females for ages older than 4 years. Since Farley et al. (2023) is the most
recent study on growth, we use it in the current assessment. We approximated the two-stage von
Bertalanffy curve by varying the growth rate 𝑘 parameters for age quarters 2 to 13 (Figure 26).
We also tested the modelling of different 𝐿∞ parameter for males and females (Figure 27) in a
sensitivity run.

Farley et al. (2023) found a larger variation of lengths for older ages, as also seen in previous
growth studies. In SS3, we modelled the variation of lengths at ages as a function of mean
length-at-age. The parameters of the length-weight relationship were updated in 2016 using
information from more than 20,000 fish sampled since 1987 (Chassot et al., 2016), which were
used in the 2021 assessment. Zudaire et al. (2022) also estimated these parameters using data
from the GERUNDIO and EMOTION programs, which were similar to the ones estimated in
Chassot et al. (2016) despite the much smaller sample size. Therefore, we used the length-weight
parameters from the 2021 assessment (Figure 28).

5.1.4 Sexual maturity and fecundity

The 2021 assessment used the length-based maturity ogive from Zudaire et al. (2013), who
presented two alternative maturity ogive based on either the cortical alveolar or vitellogenic
stages of ovarian development. Fu et al. (2021) converted the length-based ogive to age-based
ogive, assuming an equilibrium population age-length structure. Fu et al. (2018) showed that
the assessment estimates are not sensitive to whether age or length-based ogive was used. The
maturity ogive based on cortical alveolar stage development indicated that the onset of maturity
occurs at about age 5 quarters (∼ 75 cm) and full maturity was attained at about 12 age quarters.
The maturity ogive based on vitellogenic stage development was offset by about three quarters.
The 2021 assessment included only the ogive based on cortical alveolar stage development.

Zudaire et al. (2022) provide the most recent review on the sexual maturity of yellowfin in the
IO. They analyzed samples from a few data collection programs since 2009, principally from
the purse seine fleet and western IO, and estimated the length at 50% maturity (𝐿50) by apply-
ing two different maturity thresholds depending on the oocyte development stage considered:
physiological maturity (threshold established at cortical alveolar oocyte development stage) and
functional maturity (threshold at initial vitellogenic oocyte development stage). The former
method estimated 𝐿50 at 75 cm fork length (FL) and was used in the 2021 assessment, while the
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latter estimated 𝐿50 101.7 cm fork length. Using functional maturity as the threshold to deter-
mine sexually mature fish is preferable since it guarantees that the fish will inevitably reproduce
in the very short term (Pacicco et al., 2023; Zudaire et al., 2022), so we used the functional
maturity curve in the current assessment. In addition, we decided to use length-based matu-
rity since some of the model runs estimated growth parameters, which can affect the length
to age conversion. In SS3, we modelled maturity-at-length using a logistic function with two
parameters (Figure 29) that remained fixed during the model development process.

Zudaire et al. (2022) also examined the sex ratio and found it to be close to 1:1 for most of
the small and intermediate size classes (smaller than 115 cm). However, males dominated the
samples for sizes larger than 150 cm, probably due to differences in growth between sexes (Farley
et al., 2023). Based on the current evidence, we assumed a sex ratio of 0.5. Finally, we assumed
that the egg production (𝑒𝑔𝑔𝑠/𝑘𝑔) was a linear function of female body weight (kg).

5.1.5 Natural mortality

Hoyle (2021b) reviewed approaches for estimating natural mortality (𝑀) and provided esti-
mates of age-specific natural mortality based on methods described in M. N. Maunder et al.
(2023). The new approach assumes a Lorenzen-type relationship (Lorenzen, 1996) between nat-
ural mortality and length or weight. This relationship models high 𝑀 for younger fish, which
then declines as fish get older. Mortality increases again after individuals become mature, and
this increase is linked to the proportion of mature fish following a logistic curve. This approach
has also been applied in the 2021 South Pacific albacore stock assessment (Castillo-Jordan et
al., 2021).

The 2019 yellowfin tuna assessment in the Atlantic Ocean (ICCAT, 2019) adopted natural mor-
tality estimates based on the results of a study of the relationship between maximum observed
age and natural mortality (Then et al., 2015), and maximum age estimates derived from an
aging study using annual otolith increments (Andrews et al., 2020; Pacicco et al., 2021). A
Lorenzen (1996) natural mortality form was developed with an 𝑀 of 0.35 for adult yellowfin,
based on a validated maximum observed age of 18 years (Andrews et al., 2020). This level of
𝑀 was slightly lower than the low 𝑀 option considered in the 2018 assessment of IO yellowfin
tuna.

In the 2021 assessment, two alternative estimates were provided: one based on a maximum age
of 10.5 years observed for IO yellowfin tuna (Shih et al., 2014), and the other based on the
validated maximum age of 18 years obtained in the Atlantic Ocean (as the Mlow option above).
The range estimates by Hoyle (2021b) were somewhat lower than the natural mortality options
in the basic and Mlow models for the sub-adults/adults, particularly for juveniles, and do not
include a ‘hump’ to allow for higher female natural mortality 1.5 years after maturation. The
hump is removed because the change in sex ratio at length observed for yellowfin tuna can be
partly or completely explained by males growing larger than females (Pacicco et al., 2021). The
estimates by Hoyle (2021b) were examined in sensitivity models in 2021.

Artetxe-Arrate et al. (2024) presented the most recent update of natural mortality estimates
for yellowfin in the IO. They presented three 𝑀 estimates based on different methodologies
that relied on biological features of the stock such as growth or maximum age. For the current
assessment, we used the 𝑀𝑎 estimates following Hamel and Cope (2022) and then rescaled based
on Lorenzen (2005). In SS3, the reference natural mortality is calculated from 𝑀𝑟𝑒𝑓 = 5.4/𝐴𝑚𝑎𝑥,
where 𝐴𝑚𝑎𝑥 is the assumed maximum age in the population equal to 11.7 years based on Farley
et al. (2023). 𝑀𝑟𝑒𝑓 is the natural mortality that corresponds to the age at the 95% maturity,
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assumed to be 16 age quarters based on Zudaire et al. (2022). Then, the rescaling of natural
mortality at age is performed as a function of the 𝐿∞ and 𝑘 growth parameters. The resulting
𝑀𝑎 is shown in Figure 30.

5.1.6 Movement

Reciprocal movement was assumed to occur between adjacent model regions, specifically R1-R2,
R1-R4, R3-R4 (Figure 31). Movement is parameterised as the proportional redistribution of fish
among regions, including the proportion remaining in the home region. The redistribution of fish
occurs instantaneously at the end of each model time step. Movement was parameterised to esti-
mate differential movement for young (2–8 quarters) and old (≥ 9 quarters) fish to approximate
potential changes in movement dynamics associated with maturation. Thus, for each movement
transition two separate movement parameters were estimated. Fish did not commence moving
until the end of age 2 quarters.

It is not possible to estimate seasonal movements directly due to the temporal model con-
figuration. The seasonal variation in the longline CPUE indices and the purse-seine catches,
particularly in region 2, indicate that there are likely to be significant seasonal changes in the
regional abundance of yellowfin. Seasonal movement dynamics were investigated in the 2018
assessment and Langley et al. (2023) by correlating movement parameters with the environ-
mental indices or using an alternative model structure that can explicitly estimate seasonal
movements. However, neither option was able to explain the magnitude of variability exhibited
in the longline CPUE nor have any significant effect on the model results.

5.2 Fishery dynamics

5.2.1 Fishing mortality

Fishing mortality was modelled using the hybrid method, which uses Pope’s equation and an
iterative method to approximate the fishing mortality (𝐹 ).

5.2.2 Catchability

Since we performed a regional scaling to the standardized LL CPUE (see Section 4.4.1), we only
estimated the catchability parameter for LL CPUE in region 1b. Catchability in regions 2, 3,
and 4 were mirrored to the catchability in region 1.

5.2.3 Selectivity

• Longline (LL) fisheries: Assumed to be age-specific, time-invariant, and principally pa-
rameterised with a logistic function that constrains the older age classes to be fully se-
lected (“flat top”). However, the resultant fits to the LL length compositions from the
equatorial LL fisheries were poor: persistently over-estimating the lengths prior to 2000
and under-estimating the lengths for the subsequent period. Therefore, some configura-
tions also included time-variant selectivity with two blocks: before 2000 (double-normal
parametrization) and after 2000 (logistic parametrization) for LL 1b and LL 4 to account
for changes in fleet contribution to length data (Figure 32). The selectivity in each fishery
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is shared by the corresponding set of LL CPUE indices. The LL CPUE index produced
for region 1 was linked to the LL 1b selectivity.

• Longline fresh tuna (LF) fishery: The LF 4 fishery was age-specific and parameterised
using a logistic function.

• Purse seine (FS and LS) fisheries: Assumed to be length-based and formulated using a
cubic spline with five nodes. The nodes were specified to approximate the main inflection
points of the selectivity function. We only estimated selectivity parameters for fisheries in
region 1b, while purse seine selectivities in other regions (2 and 4) were mirrored to the
1b selectivities.

• Handline (HD) fishery: Assumed to be age-specific and followed a logistic function.

• Gillnet (GI), baitboat (BB), and other (OT) fisheries: Assumed to be age-specific and
used a double-normal parametrization.

• Troll (TR) fishery: Assumed to be age-specific and used a double-normal parametrization.
Selectivity parameters were only estimated for region 1b, while selectivity in regions 2 and
4 was mirrored to region 1b.

5.3 Dynamics of tagged fish

The dynamics of the tagged and untagged fish are generally governed by the same model struc-
tures and parameters. An exception to this is recruitment, which for the tagged population
is simply the release of tagged fish. The probability of recapturing a given tagged fish is the
same as the probability of catching any given untagged fish in the same region. For this as-
sumption to be valid, either the distribution of fishing effort must be random with respect to
tagged and untagged fish and/or the tagged fish must be randomly mixed with the untagged
fish. The former condition is unlikely to be met because fishing effort is almost never randomly
distributed in space. The second condition is also unlikely to be met soon after release because
of insufficient time for mixing to occur. Depending on the distribution of fishing effort in re-
lation to tag release sites, the probability of capture of tagged fish soon after release may be
different to that for the untagged fish. It is therefore desirable to designate one or more time
periods after release as pre-mixed and compute fishing mortality for the tagged fish based on
the actual recaptures, corrected for tag reporting (see below), rather than use fishing mortality
from the general population parameters. This, in effect, desensitizes the likelihood function to
tag recaptures in the pre-mixed periods while correctly discounting the tagged population for
the recaptures that occurred.

Several analyses of the tag recovery data have been undertaken to determine an appropriate
mixing period for the tagging programme (Kolody and Hoyle, 2013; Langley and Million, 2012).
The analysis revealed that the tag recoveries from the FAD purse-seine fishery were not ade-
quately mixed, at least during the first six months following release. Conversely, the free-school
tag recoveries indicate a higher degree of mixing within the fished population. Most of the tagged
yellowfin were in the length classes that are not immediately selected by the free-school fishery
(< 90 cm). A mixing period of about 6−12 months is sufficient for most tagged fish to recruit
to the free-school fishery (> 90 cm) and no longer be vulnerable to the FAD fishery. However,
the maximum displacements of tags reached a plateau within a few weeks of release suggesting
rapid movement of yellowfin within the tag release/recovery areas. On basis of the above, it was
considered that a mixing period of 3 or 4 quarters was probably sufficient to allow a reasonable

28



IOTC-2024-WPTT26-11

degree of dispersal of tagged fish in the yellowfin tuna population within the primary region of
release.

The release phase of the tagging programme was essentially restricted to the western equatorial
region. Fu et al. (2018) showed that the recovery rate of tags after three quarters at liberty
was similar both in trend and magnitude between the main latitude bands within the western
equatorial region, which suggested a reasonable degree of mixing of tagged fish at the regional
scale. The distribution of tags throughout the wider IO appears to have been relatively lim-
ited as is evident from the low number of tag recoveries from the fisheries beyond region 1b.
Tag recoveries from beyond region 1b are unlikely to significantly inform the model regarding
movement rates.

Estimates of tag reporting rates from the purse seine fishery were available from tag seeding
trials. These estimates were applied to correct the number of tags included in the recovery
dataset for the purse seine fisheries within region 1b and region 2 (see Section 4.6 for details).
For the other fisheries, there was very limited information available to indicate the tag reporting
rates. Fishery-specific reporting rates were estimated based on uninformative priors. All fishery
reporting rates were assumed to be temporally invariant and were estimated within the model.
The assumptions on tagging dynamics just described did not vary from the 2021 assessment.

5.4 Likelihood components

The total likelihood is composed of a number of components, including the fit to the catch
data, indices of abundance (CPUE), length frequency, CAAL, and tagging data. There are also
contributions to the total likelihood from the recruitment deviates and priors on the individual
model parameters. Details of the formulation of the individual components of the likelihood are
provided in Appendix A of Methot and Wetzel (2013).

5.4.1 Catch

The catch data assumed a lognormal error structure. There is no objective estimates of the degree
in uncertainty in aggregated catch data, therefore, like in the 2021 assessment, we assumed a
value of 0.01 for every observation.

5.4.2 Indices of abundance

The CPUE indices assumed a lognormal error structure. The 2021 assessment assumed a coeffi-
cient of variation for every LL CPUE observation of 0.2, which did not differentiate low or high
uncertain CPUE estimates. In the current assessment, the coefficient of variation associated
with every CPUE observation was derived from the standardization method (e.g., GLM) and
then rescaled to a mean of 0.2 per region for the LL indices. A constant coefficient of variation
of 0.2 was also evaluated. In a sensitivity run, the FS CPUE index assumed a constant CV of
0.3 for every observation. The LS CPUE index was not tested due to time constraints.
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5.4.3 Length frequency

The length frequency assumed a multinomial error structure. The reliability of the length
composition data is variable across fisheries and over time. For that reason, it was considered
that the length composition data should not be allowed to dominate the model likelihood and
directly influence the trends in stock abundance. In the 2018 and 2021 assessments, an overall
input sample size (ESS) of 5 was assigned to all length composition observations (all fisheries, all
time periods). That approach essentially gave the entire length composition data set a relatively
low weighting in the overall likelihood, but did not differentiate data quality among fisheries and
years. In order to incorporate a better proxy of size quality information, the current assessment
treated the RQ values (see Section 4.3) as the input sample size.

5.4.4 Conditional age-at-length

For sensitivity analyses, a further log-likelihood component involves the CAAL dataset. The
observed age composition within each length interval is assumed to be multinomially distributed,
and this forms the basis of the likelihood component for this data source.

5.4.5 Tagging data

There are two components of the tag likelihood: the multinomial likelihood for the distribution
of tag recoveries by fleets over time and the negative binomial distribution of expected total
recaptures across all regions. The relative weighting of the tagging data was controlled by
the magnitude of the over-dispersion parameters assigned to the individual tag release groups.
Like in the 2018 and 2021 assessments, the overdispersion parameters for all tag release groups
were set at 7 in the current assessment, determined iteratively from the residuals of the fit
to the tag recovery data (observed – expected number of tags recovered). During the model
implementation, we tested downweigthing the influence of the tagging likelihood component on
the total likelihood by 90% (i.e., lambda of 0.1).

5.5 Parameter estimation and uncertainty

The parameters of the model were estimated by minimising the sum of the negative log-likelihood
components associated with each of the data components plus the negative log of the proba-
bility density functions of the priors and recruitment deviates. Estimation was conducted in a
series of phases, the first of which used relatively arbitrary starting values for most parameters.
Some parameters had starting values consistent with available biological information. Models
were run with a gradient criterion of 10−4. The Hessian matrix computed at the mode of the
posterior distribution was used to obtain estimates of the covariance matrix, which was used in
combination with the Delta method to compute approximate confidence intervals for parameters
of interest.

The structural uncertainty grid attempts to describe the main sources of structural and data
uncertainty in the assessment. For the current assessment, we have continued with a factorial
grid of model runs which incorporates the following sources of uncertainties:

• Effort creep in the LL CPUE indices: no effort creep and a 0.5% annual rate.
• Steepness: 0.7, 0.8, and 0.9.
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• LL selectivity: assuming time-invariant selectivity for LL fisheries, or modelling two time-
blocks: before and after 2000.

5.5.1 Diagnostics

Misspecification of key parameters or assumptions in integrated stock assessment models such as
SS3 can strongly impact model outcomes and the estimates of quantities of management interest
(Mangel et al., 2013). Model misspecifications can include incorrect specifications of important
biological parameters or selectivity functions, or not accounting for spatial stock structure (Punt,
2019) or temporal variation in recruitment (Thorson et al., 2019), growth (Correa et al., 2021),
selectivity (Stewart and Monnahan, 2017), among others. Failing to account for an important
process can also lead to conflicting information among data sets (Francis, 2011) and retrospective
and forecast bias (Carvalho et al., 2017).

In order to evaluate model misspecification, we applied a series of diagnostics tools described
in Carvalho et al. (2021) to candidate reference models. Regarding convergence, we examined
the maximum final gradient, invertible Hessian, parameters stuck on bounds, and a jittering
analysis to evaluate if models converged to a global solution. Regarding goodness-of-fit, we
analyzed residuals patterns (RunTest) and the root mean square error (RMSE) for CPUE and
mean length (Carvalho et al., 2017).

For highly complex population models fitted to large amounts of often conflicting data, it is
common to have difficulties estimating total abundance. Therefore, a likelihood profile analysis
was undertaken of the marginal posterior likelihood with respect to population scaling (𝑅0),
variability in recruitment (𝜎𝑅), steepness (ℎ), asymptotic length (𝐿∞), and natural mortality
(𝑀). Retrospective analyses were conducted as a general test of the stability of the model, as
a robust model should produce similar output when rerun with data for the terminal quarters
sequentially excluded (Cadigan and Farrell, 2005). We used the Mohn’s 𝜌 (Mohn, 1999) as an
indicator of retrospective patterns for spawning biomass, recruitment, and 𝐹/𝐹𝑀𝑆𝑌 .

Providing fisheries management advice requires predicting a stock’s response to management
and checking that predictions are consistent with future reality (Kell et al., 2016). The accuracy
and precision of the predictions depend on the validity of the model, the information in the data,
and how far ahead of time predictions are made. We applied the hindcasting cross-validation
technique (HCXval) to CPUE data. Likewise, we calculate the mean absolute scaled error
(MASE) (Hyndman and Koehler, 2006) for CPUE and mean length. The MASE is built on
the principle of evaluating the prediction skill of a model relative to a naive baseline prediction.
Finally, we also evaluated possible misspecification of biological parameters by identifying trends
in recruitment deviates (Merino et al., 2022).

5.6 Stock status

Maximum Sustainable Yield (MSY) based estimates of stock status were determined for the final
candidate reference models, and those included in the uncertainty grid. The incorporation of
both model and estimation uncertainty into management advice is necessary to accurately cap-
ture the current state of stock status as model uncertainty is not always greater than estimation
uncertainty (Ducharme-Barth and Vincent, 2022). MSY based reference points were derived for
the model options based on the average F-at-age matrix for 2023. The period was considered
representative of the recent average pattern of exploitation from the fishery. An impact plot
was also produced to display the influence of each fishery groups on spawning biomass.
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6 Model runs

6.1 Stepwise revisions

All recommendations made by the 26th Working Party on Tropical Tunas data preparatory
meeting were implemented in SS3 as stepwise, iterative model implementation to a proposed set
of reference models (Table 5). The effect of each revision on spawning stock biomass estimates
is highlighted in Figure 33 and the effect on stock spawning biomass relative to unfished biomass
(𝑆𝑆𝐵/𝑆𝑆𝐵0) in Figure 34. The stepwise process started with a base case, which was chosen
from the uncertainty grid of 2021: assuming the regional structure adopted in the basic model
(io), steepness of 0.8, catchability of LL CPUE in region 1 constant with time, growth from
Fonteneau (2008), no downweighting the tagging data, and natural mortality based on values
applied in the Pacific Ocean (io_h80_q1_Gbase_Mbase_tlambda1).

After all the recommendations from the data preparatory were included (run 17, Table 5),
Figure 33 and Figure 34 show that the main changes in the trajectory and virgin biomass
were due to the update of the CPUE, length, M, growth and consequently the update of the
purse seiners selectivity. We noticed that the reference model 1 (i.e., run 17) overestimated the
catch of large fish for longline fishery (Figure 35). The selectivity of longline CPUE of each
region is linked to the longline fishery in the corresponding region, and therefore, this makes
it especially important to understand the source of the overestimation of catch of large fish.
Different alternatives were explored:

• Higher natural mortality for ages older than 5 years: We mirrored the natural mortality
at ages older than 5 years with the previous values. However, the residual pattern was not
improved and this option was no further explored.

• Sex-specific growth: Different growth for males and females. However, the residual pattern
was not improved and this option was no further explored.

• Estimate 𝐿∞: Estimate it by introducing the CAAL data. The estimated 𝐿∞ was 163 cm
but the residual pattern was not improved. Therefore, this option was no further explored.

• Divide LL fisheries into two periods: We divided the LL fisheries in regions 1, 2, and 4
into two parts: before and after 2000.

The length compositions of LL fisheries show differences in the mean length across time before
and after 2000, observing larger fish, on average, in the second period. Prior to 2000, the length
composition data came mainly from the Japanese fishery, but after 2000 the main source of
length composition data was the Taiwanese fleet. The fits to the length composition data of
LL fishery were substantially improved assuming two different fisheries previous and after the
year 2000 for longlines in region 1, region 2 and region 4. The selectivity for regions 1 and 4
were estimated with a double normal shape in the first period and logistic in the second. For
region 2 both periods were assumed with logistic selectivity. In region 3, the differences were
not so obvious and thus the fishery LL 3 was not splitted. Nevertheless, the selectivities of the
LL CPUE indices were linked to the longlines’ fishery and thus, different options were explored
regarding the selectivity of the longline CPUE. It was difficult to define a unique reference model,
and therefore, three reference models (RMs) are proposed with different assumptions regarding
the selectivity of the LL CPUEs.
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6.1.1 Reference models

• RM1: assuming the same selectivity the entire model period, estimated from LL fishery
as one block (same as run 17 in Table 5).

• RM2: assuming the selectivity of the LL CPUEs did not change over time and is like the
selectivity of LL fishery before 2000.

• RM3: assuming the selectivity of the LL CPUEs changed over time as the LL fisheries.

We also explored the effect of effort creep on the LL CPUE indices (0.5% per annum), and thus
another reference model was also proposed for the assessment:

• RM4: apply an effort creep of 0.5% per year to the LL CPUE indices, based on the RM2.

In the uncertainty grid of the 2021 assessment, the tagging data was downweighted in half of the
models selected for the reference ensemble, due to the bias of the data (on spatial distribution
and the lack of mixing) and the general lack of fit to the data. The 2023 external review (M.
Maunder et al., 2023) also suggested reducing the effect of the tagging data. Therefore, another
scenario was developed as an additional candidate reference model:

• RM5: downweight tagging data by 90% (lambda of 0.1 in SS3). The model is based on
the RM2.

In addition, based on the RM2, a range of exploratory analyses were carried out.

The temporal trajectory of the estimated spawning biomass was compared between the 5 refer-
ence models, as well as the trajectory of 𝑆𝑆𝐵/𝑆𝑆𝐵0 (Figure 36). The model with the largest
virgin biomass is the RM1 and also the most optimistic in terms of depletion (𝑆𝑆𝐵/𝑆𝑆𝐵0)
during the last years.

The estimated 𝑆𝑆𝐵0 of three reference models is larger than the base case from the 2021
assessment. The RM4 is the most pessimistic and RM1 the most optimistic. The spawning
biomass levels in recent years is similar to the RM1 model (Figure 36). It is estimated that in
the 1950s, 1960s, and early 1970s, the spawning biomass was still relatively high, reflecting the
relatively low catch and the assumption of equilibrium recruitment during this period. Total
spawning biomass declined rapidly from the late 1980s to the mid-1990s, recovered slightly in
the late 1990s and early 2000s, and then fell to low levels in 2008–2009. The spawning biomass
rebounded slightly from 2009 to 2011 and then increased to the current year with fluctuations,
while in the base case from 2021 it showed a decreasing trend.

7 Model results

7.1 Fits

The model provides a reasonable fit to the overall trend in the CPUE indices for each region
(Figure 37). The CPUE indices exhibit a high degree of seasonal variability that is not estimated
by the model. There is no discernible temporal trend in the residuals from the fit to the CPUE
indices for regions 1, 2 and 3, but for region 4 between 2014 and 2018 the residuals are negative
while for the last 2 years the residuals are positive, showing difficulties to estimate the large
increase of the LL CPUE in region 4 for the last two years (Figure 38). The large decline in the
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CPUE index for the tropical regions over the data period appeared to be consistent with the
exploitation history in the regions.

For most fisheries, there is a reasonable overall fit to the length composition data (Figure 39 and
Figure 40). For the main longline fisheries (LL 1b, LL 2, and LL 4), the model fit the long-term
trends in the average length substantially better (Figure 41 and Figure 42) as a consequence of
the split in the LL fisheries in two fisheries (Figure 43).

For the main purse seine fisheries (particularly the FS fishery), the relative proportion of small
(≤ 80cm) and large (> 80cm) fish is variable over time, probably due to size-related schooling
behavior of adult yellowfin tuna, resulting in strong residual patterns in the fits (Figure 44).
The recent trends in the predicted average fish size for the FS 1b and FS 2 fisheries are broadly
consistent with the sampling data with larger fish caught during the mid-2000s and smaller fish
from 2010 onwards. There is a marked decline in the average size of fish sampled from the purse
seine LS fisheries in both region 1b and region 2 (Figure 44), particularly during the mid-1990s.
This trend is not evident in the predicted average fish size derived from the model for region 2.
There is an improvement in the fits to the length data from the handline and gillnet fisheries in
region 1a.

A comparison of the observed and predicted numbers of tags recovered (excluding recoveries
during the four-quarter mixing period) by quarterly time period aggregated across tag groups
are presented in Figure 45. Overall, the model underestimate the recovered tags. The model
cannot fit the high reported tag data during the main recovery period (2007–2009). Most of the
tag returns were from the purse-seine fishery in region 1b, to a lesser extent, region 2 (Figure 46).
In region 1b, there are several quarters when the model substantially underestimates the number
of tag recoveries from both regional purse seine fisheries. These quarters correspond to the first
quarter following the four-quarter mixing period for the large releases of tags in 2006 (quarters
2, 3 and 4) and 2007 quarter 3 (see Figure 47). The lack of fit to the recoveries in those quarters
suggests that even the four-quarter mixing period may not be sufficient to allow for adequate
dispersal of tagged fish in the population. The lack of fit is also spread though time which
may indicate that the fishing mortality estimate may be too low and biomass too high, and/or
the natural mortality may be too high. The tag recoveries from the non purse seine fisheries
are not considered to be very informative and the model has the flexibility to freely estimate
reporting rates for these fisheries. Of these fisheries, only the LL fisheries in regions 1b and 2
recovered moderate numbers of tags during the period following the four-quarter mixing phase.
The numbers of tags recovered from these fisheries was low relative to the purse-seine fishery
and the fishery specific tag reporting rates were estimated to be very low.

7.2 Estimates

The estimated parameters in the basic model include: the overall population scale parameter
𝑅0, the time series of recruitment deviates, the distribution of recruitment among regions, age
specific movement parameters, the fishery selectivity parameters, fishery tag reporting rates,
and the catchability parameters for the CPUE indices.

The age-based and size-based (for purse seine fisheries) selectivity functions are presented in
Figure 48 and Figure 49. Independent selectivity functions are estimated for the principal
longline fisheries (LL 1a, 1b, 2–4). In regions 1b and 4, double normal selectivity is assumed
prior to 2000 with full selectivity between 10 and 19 age quarters in region 1b and a bit smaller
from age 8 to 17 quarters in region 4. After 2000, the logistic shape is assumed for both fishery
with full selectivity in age 18 and age 12. In region 2, in both periods is assumed logistic
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selectivity but the full selectivity age changes from 12 to 22 age quarters. The fresh tuna fishery
(LF 4) is estimated to have a relatively similar selectivity to the principal longline fisheries,
with logistic selectivity and with full selectivity at age 12 quarters. The logistic selectivity of
the handline (HD 1a) fishery is estimated to have a full selectivity at age 21 quarters. The
associated purse-seine fisheries have a high selectivity for small fish, while the FS fishery catches
substantially larger fish. For all regions, the selectivity of the purse seine fisheries were held
constant through time. The selectivity of the LS fishery is relatively broad compared to the
modal structure of the length frequency data. The pole-and-line fishery is also highly selective for
juvenile fish. Limited or no size data were available for several fisheries, specifically the artisanal
fisheries (OT 1a and 4) and the troll fishery in regions 1b and 2 (TR 1b and 2). Consequently,
the selectivity for these fisheries is poorly estimated or, in the absence of size data, assumed
equivalent to a fishery with the same gear code in another region. The model did not estimate
a significant change of selectivity for gillnet fishery in region 1a, despite the fishery appeared to
have caught smaller fish after the 2000s than the early period.

The quarterly recruitment deviates indicate that recruitment varies seasonally (Figure 50). Re-
cruitment deviates were positive from 1996 to 2003 and negative afterwards during 2004–2006,
especially during 2005. This low recruitment occurred shortly before the tagging program and
may be related to the intention of the model to achieve the estimation of a lower biomass (and
a higher fishing mortality) to better predict the tag returns. The low recruitment estimate may
also be due to the subsequent decline in CPUE rates in the 2007–2011 piracy period. However,
the pattern persists in models where either the tagging data or LL 1b CPUE indices (after 2007)
were removed, but disappeared when both datasets were removed (see Figure C22 in Fu et al.
(2018)), suggesting that the estimation of low recruitment in 2004–2006 was likely related to
both factors. After 2012, there is an overall increase of positive recruitment deviates.

Recruitment is parameterised to occur in region 1 and 4 only. The model estimates about 70%
and 30% of the total annual recruitment is assigned to regions 1 and 4 in the initial period
1950–1977, respectively. The proportion of total recruitment assigned to either region varies
temporally during the estimation period (1977–2021) and the proportion allocated to region 1
has increased to be above 80% since mid-2000s (and viceversa for region 4, Figure 51). The
large increase of the recruitment to region 1 coincided with the exceptionally high catches that
occurred in the western tropical region between 2003–2006. In a hypothetical model which
assumed that the sharp increase in catches in region 1 occurred in region 4 instead, the regional
recruitment trend is reversed (Fu et al., 2021).

The model estimates that there is a relatively low degree of connectivity between the two western
regions (R1 and R2) and between the eastern regions (R3 and R4), and no longitudinal movement
between regions 1 and 4 (Figure 52). This contrasts with the estimates from the early assessment
which indicated that the movement between R1 and R2, and between R3 and R4 is relatively
high, especially for the juveniles (Fu et al., 2018).

The relative trends of the four model regions are largely comparable (Figure 53), although the
overall magnitude of decline is substantially higher in regions 1 and 4. The biomass in region
4 declined steadily throughout the 1990s and 2000s following the trend in the LL CPUE index.
For the most recent years, biomass in regions 4 and 3 is estimated to be at a very low level.

Fishing mortality rates for the HD 1a fishery increased sharply since 2010, corresponding to
relatively high catches from that fishery in 2020 (Figure 54). Estimates of fishing mortality for
the LS 1b fishery appeared to be low by comparison, considering that this fishery mostly catches
juvenile fish (in contrast to the HD 1a fishery which catches mostly adults). The highest fishing
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mortality rates in area 1 in 2020 were from HD 1a, LS 1b, but since 2015 both fishing mortality
rates are decreasing and GI 1a and BB 1b increasing.

In region 4, recent fishing mortality rates from the LF 4 fishery were increasing until 2019 but
after start to decrease (Figure 54). Although there remains great uncertainty in annual catches
from the fishery during last years (Geehan, 2018). The high fishing mortality rates correspond
to the sharp decline in model biomass from the late 2000s and are also related to the selectivity
of the fishery, with full selection occurring at age 22 quarters. The GI 4 fisheries represent
the other main sources of fishing mortality in Region 4 until 2014, when it started to decrease
(Figure 54). LS 4 fishing mortality is increasing the last years with the highest fishing mortality
in this region the last year. Fishing mortality rates are estimated to be very low in both regions
2 and 3 (Figure 54).

Spatially aggregated, age-specific fishing mortality rates are derived for each model time period
(Methot and Wetzel, 2013). Average total fishing mortality rates by region were derived for
the last years of the assessment model (2021-2023), with highest fishing mortality for age 20-40
quarters (Figure 55).

7.3 Diagnostics

A summary of the diagnostic analysis is shown in Table 7.

7.3.1 Jitter analysis

Jitter analysis suggests that RM2 model converged at parameters with the maximum negative
log-likelihood, although it also shows sensitivity to the starting values (Figure 56). However, the
models converging in the minimum log-likelihood give the same results. From the five reference
models proposed in this study, RM4 and RM5 are the only models that have convergence level
< 1𝑒−4, however, the five reference models inverted the Hessian matrix.

7.3.2 Retrospective analysis

The reference models temporal structure treat quarter as years, and this makes to be difficult the
use of packages as ss3diags for diagnosis of the models. However, with some ad-hoc functions
it was possible to estimate Mohn’s 𝜌 for SSB, F and recruitment, but we were only able to
produce figures for SSB and F. Figure 57 and Table 7 show values of Mohn’s 𝜌 for SSB within
the acceptable range proposed by Carvalho et al. (2021); however, the Mohn’s 𝜌 for 𝐹/𝐹𝑀𝑆𝑌
is larger than 0.2, but this estimate gets smaller when we add new data (Figure 58). This
pattern may be explained due to the revised unfished biomass between the runs, the increase of
the estimated 𝑅0 in the last years, and the positive recruitment deviates of the last years. For
recruitment, the analysis was performed for the RM2, and estimated a Mohn’s 𝜌 of -0.08.

7.3.3 Run test

Most of the models only passed the runs test for the LL CPUE in region 1, but the RM3, which
includes seven LL CPUE indices, also passed the runs test for LL CPUE in region 2 and 4 before
year 2000 (Figure 59, Table 7). The best performance on runs test of the mean length of the
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fleets also is RM3 model, seven fleets passed the runs test, while the worst performance is again
RM1 model (Table 7).

7.3.4 Hindcast analysis

Prediction skill of the model was tested using the hindcasting cross-validation approach of Kell
et al. (2021). A skilled model would improve the model forecast compared to the baseline (i.e.,
random walk), with a mean absolute scaled error value of 0.5 indicative of a forecast being twice
as accurate as the baseline and values > 1 indicative of average model forecasts worse than the
baseline (Carvalho et al., 2021; Kell et al., 2016). The results suggest that the RM3 has the best
LL CPUE predictive ability, with prediction skills of the CPUE in region 1 for every season.
In the case of RM1 model shows poor LL CPUE prediction skills, only one season has MASE
value <1. Figure 60 shows the prediction skills of RM2 in regions 1 and 3 of four seasons show
predictive skills of the LL CPUE (MASE < 1).

7.3.5 Likelihood profiles

Profiling of 𝑅0 was studied with the RM2 model (Figure 61). Results suggest that the minimum
log likelihood is close to the estimated value by the model (𝑙𝑛(𝑅0) = 11.61), although the model
also show some convergency issues. The profiling also shows some conflict between tagging data,
which prefer smaller 𝑅0 while the length composition and recruitment data seems to have better
fit at higher 𝑅0 values. Profiling of steepness suggest to have the minimum log-likelihood at
the largest steepness value. Profiling of 𝜎𝑅 shows conflict between recruitment and the rest of
the parameters. The minimum log-likelihood is close to 𝜎𝑅 = 0.4, while the model assumes
𝜎𝑅 = 0.6. Profiling of 𝐿∞ shows the minimum log-likelihood around 165 cm, which is very close
to the value assumed in the model 167 cm. Profiling of natural mortality at age 4 was performed
assuming steepness of 0.7, 0.8 and 0.9 (Figure 62). The minimum log-likelihood for all of them
is ∼ 0.46, which is the value assumed in the model.

7.4 Exploratory analyses

The next sensitivity analyses were explored during the 26th WPTT meeting.

• Lower natural mortality: A sensitivity analysis was run assuming M=0.3 at age 4 in RM2
model (Figure 63). The results show a lower R0 was estimated (𝐿𝑛(𝑅0) = 10.45) with a
very clear trend in the recruitment deviates and very high fishing mortality values reaching
values of 𝐹 > 3.

• Natural mortality derived assuming differences by gender: The same natural mortality as
in 2021 was assumed for sensitivity in RM2 model (Figure 64). The estimated 𝑙𝑛(𝑅0) was
lower than 11.14, 𝐹/𝐹𝑀𝑆𝑌 values were lower than 1 the all time series and the spawning
biomass in region 1 at the end of the time series reach the SSB at the beginning of the
time series.

• Last years of recruitment deviates: Sensitivity analysis was performed based on RM2 model
to understand the driver of the last year recruitment deviates. The length composition
data from quarter 296 (i.e., last quarter of 2021) onward were removed step by step by
gear until the last fishery was left Other fishery (Figure 65). So the results suggest that
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the model is driven by the information of the other fishery to estimate the high and the
low recruitment deviates.

• Variable CV in the CPUE: The variability on the CV of the CPUE was estimated scaled
on the values of the CPUE standardization but assuming a mean of 0.2 across years
(Figure 66). The residual pattern on the eastern part of the region suggest some conflicts
between regions (Figure 67).

• Operational LL CPUE: different analysis were performed with the operational LL CPUE
based on RM2 model. The operational LL CPUE indices were estimated by quarter
following the same trend as in the aggregated LL CPUE (Figure 68). However, the model
did not converge and the residual pattern show the conflicts on the trend of the CPUE
between regions (Figure 69).

• LL CPUE 2021: sensitivity analysis performed adding the LL CPUE used in the 2021
assessment to the RM3 model. This analysis indicates that the relative stock biomass in
2021 estimated using the LL CPUE index available in 2021 would be -23% (𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌
1.01 vs 0.77) than the estimated by the RM3 (Figure 70). For that analysis, the estima-
tion period was terminated in 2021, as in the stock assessment developed in 2021. In
order to update this exploration for this report, we carried out the analysis using the
6_SplitCPUE_tag01_EC0_h08 included in the uncertainty grid (see Table 6), which is
very similar to the RM3, except that tagging data was downweighed. We run the same
exploration with the CPUE data available in 2021 but finalizing the estimation period
in 2023 (Figure 71). In other words, the new information for 2021-2023 was included
except the new CPUE (i.e., catch and length data). In relative terms, the results are
almost identical as the model run previously (difference between the reference model and
the model with the old CPUE being -23% (𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌 1.07 vs 0.78) in 2021 and
-24% (𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌 -1.39 vs 1.05) in 2023. A salient aspect of this analysis is that
the new information on catch and length data also seems to suggest a change in stock
status (at least with this reference model) by 2023, and it is not only the new CPUE
that is driving the recovery estimated by this new stock assessment. The combination of
the four models used for this exploration: RM3, RM3 using the 2021 CPUE (terminated
in 2021), 6_SplitCPUE_tag01_EC0_h08 and 6_SplitCPUE_tag01_EC0_h08 using the
2021 CPUE (terminated in 2023) are shown in Figure 72.

• Downweighted tagging data and effort creep of 0.5% per year: was run on RM3. The
diagnostics of the three models were similar and also the trends, with the most pessimistic
model when effort creep is assumed in the model and the more optimistic with tagging
data downweighted (Figure 73).

• FS CPUE: The purse seine FS CPUE was introduced in the RM2 model assuming a
constant CV of 0.3 linked with the selectivity of the FS fishery in region 1 (Figure 74).
However, the residual pattern show the conflict between this index and LL CPUE.

• Indonesian revised catches: Indonesian revised catches were introduced in the RM2 model
and the time series of SSB shows very small difference with the catches assumed in the
reference model (Figure 75).

7.5 Stock status

Reference points and estimates of stock status in 2023 were calculated for the five candidate
reference models Table 8. MSY-based reference points were derived from the average F-at-
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age matrix that represents the most recent pattern of exploitation for the fishery. Note that the
biomass at MSY is the benchmark used to evaluate stock status (𝑆𝑆𝐵𝑀𝑆𝑌 ) and it was calculated
using two methods: (i) estimated by SS3 from the SRR relationship and (ii) scaled to the recent
20-year recruitment deviates average. The first method is what has been generally used in the
IOTC and is based on long-term equilibrium conditions, while the second method aims to update
the benchmark to current conditions (see Section 8 for details). The new benchmark will also
be used to evaluate the impact of alternative catch limits in the K2SM. This adaptation aims
to reflect the current conditions and productivity of yellowfin, including the apparent increase
in recruitment, which should be followed by an increase in 𝑆𝑆𝐵𝑀𝑆𝑌 and 𝑀𝑆𝑌 as well.

Figure 76 shows the stock status for the candidate reference models. For all models, the unfished
biomass has been increasing in recent years. This is a consequence of the estimated increase in
recruitment (and recruitment deviates), which seem to be necessary for the model to explain
the large catch observed since 2003 and, therefore, the recent productivity (𝑀𝑆𝑌 ).

In general, the observed trends are very similar for the five candidate models with an appreciable
difference between the models with the LL selectivity splitted (RMs 2, 4 and 5) and not splitted
(RMs 1 and 3) estimated for the recent years. Overall, the five models estimate a steep decline
after 1980s and recovery after 2008, and a steep increase between 2020 and 2023. Fishing
mortality trends display a period of overfishing between 1995 and 2020, with a notable reduction
in the last three years.

The 26th WPTT decided to build the final uncertainty grid for management advice based on
RM1 (NoSplitCPUE) and RM3 (SplitCPUE), two options for effort-creep (EC0 = 0% and EC1
= 0.5% per year), and three options for steepness (ℎ): 0.7, 0.8 and 0.9. With regards to tagging
data, the 26th WPTT agreed to use only models with these data downweighed (lambda of 0.1).
This resulted in an ensemble of 12 models for management advice (Table 6).

The model 6_SplitCPUE_tag01_EC0_h0.8 was used to illustrate each fishery’s impact on the
spawning stock biomass using an impact plot (Figure 77).

The estimated trajectories, stock status in 2023 for the 12 models in the final uncertainty grid
are shown in Figure 78, Figure 79, and Figure 80. For each scenario, the probability of the
biomass being below the 𝑆𝑆𝐵𝑀𝑆𝑌 level and the probability of fishing mortality being above
𝐹𝑀𝑆𝑌 were determined using the delta-MVLN estimator (Walter and Winker, 2020), based
on the variance-covariance derived from estimates of 𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌 and 𝐹/𝐹𝑀𝑆𝑌 across the
model grid. These results indicate that in 2023, the yellowfin tuna stock is determined to be
not overfished and not subject to overfishing.

8 Projections

In order to evaluate the impact of alternative catch limits on the stock’s sustainability and to
develop management advice in the form of Kobe 2 Strategy Matrix, we ran ten-year projections
from each of the models in the final uncertainty grid.

The projections had the following biological and selectivity specifications:

• Biological features (e.g., natural mortality, growth, maturity) used in the assessment was
kept during the projection period.
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• The predicted quarterly recruitment was estimated from the deterministic SRR (i.e., no
recruitment deviates). The predicted recruitment was then multiplied by a scalar (see
below) to represent the recent recruitment levels.

• The distribution of recruitment between regions 1 and 4 for the projection period was
based on the recent distribution (2008-2023) estimated by the assessment model. This
approach reflects current conditions in recruitment patterns.

• The fleets’ selectivity at the terminal year (2023) was used during the projection period.

Regarding the catch per fleet in the projection period, different projected catch scenarios were
evaluated. First, The quarterly catch per fleet was calculated using the 2023 catch information.
Then, that quarterly catch was multiplied by a factor (catch multiplier), which ranged from 0.6
to 1.2, resulting in the final quarterly catch per fleet used for all years in the projection period.

The recruitment deviates showed a strong temporal trend, with higher frequency of negative
and positive values before and after ∼ 1997, respectively. The use of a scalar to multiply the
projected recruitment aimed to represent better the higher frequency of above-average quarterly
recruitment estimated in recent years. Three different scalars were tested during the 26th
WPTT:

• Scalar of 1: this approach do not vary the recruitment calculated from the SRR, making
it representative of the entire assessment period (1950-2023).

• Scalar calculated from the last twelve years: the average recruitment deviates from the
last twelve years ( ̄𝑟12) is calculated. Then, the scalar is 𝑒𝑥𝑝( ̄𝑟12), which multiplies the
recruitment from the SRR in the projection period.

• Scalar calculated from the last twenty years: the average recruitment deviates from the
last twenty years ( ̄𝑟20) is calculated. Then, the scalar is 𝑒𝑥𝑝( ̄𝑟20), which multiplies the
recruitment from the SRR in the projection period.

Figure 81 shows the impact of the three scalars on the projected recruitment for RM 3. The 26th
WPTT agreed to use the scalar calculated from the last 20 years due to the stability of catch
levels and size compositions observed during that period for the development of management
advice and the K2SM.

Likewise, to evaluate the impact of the projected catch scenarios on the stock status, the
𝑆𝑆𝐵𝑀𝑆𝑌 calculated by SS3 was multiplied by the chosen scalar. The stock status was cal-
culated for each model in the final uncertainty grid, and then averaged by quarter. We noticed
that all catch multipliers would maintain the stock status above 1 in 2026, and catch multipliers
smaller than 1.2 would maintain the stock status above 1 in 2033 (Figure 82).

9 Discussion

The update of the model was done using the stepwise process and this facilitates the evaluation
of the impact that each element has in the model outputs. So, the updates of the CPUE, the
length composition data, natural mortality, growth and the updates of the PS selectivity had
the biggest impact in the model outcomes.

One of the most influential factors in this assessment was the LL CPUE. In 2021, the joint LL
CPUE was obtained using aggregated data over 1∘ square grid by month and vessel. In the
current assessment, we also had to use the LL CPUE standardized from aggregated data due
to it was available at a quarterly time step. Operational data at a yearly time step was also

40



IOTC-2024-WPTT26-11

available and tested in a sensitivity run. There are large differences between the current LL
CPUE time series and the ones used in 2021, especially for region 1 and after 1990. The main
difference between both standardization processes is the inclusion of region 1a, which used to
be excluded in previous standardizations.

Length composition data were revised but mainly the revision on LL length composition data
had an impact in the scale of stock spawning biomass and unfished biomass, where now the
revised mean lengths previous to the year 2000 are smaller. This had an impact also on the fit
to the longline length composition data and also on the selectivity where the model suggest that
LL catch smaller fish than in the base case of 2021.

The updated M-at-age value decreases with age following the Lorenzen curve, while in 2021
the M-at-age increased after age 10 quarter up to age 16 and decreased after that. However,
the revision of 2021 mentioned that the higher proportion of males at large size was probably
due to the differences in growth and, therefore, the WPTT adopted the Lorenzen curve for M.
The update in M implied a change in scale of stock spawning biomass with a higher unfished
biomass. The fit to the longline fleets were worst and the model starts to overestimate the catch
of large fish in the beginning of the time series.

The updated growth model estimated by Farley et al. (2023), estimates higher growth rate for
smaller fish than the growth estimated by Fonteneau (2008). In addition, the average maximum
length is also higher from 145 to 167 cm. This update had a significant impact in the model
and the stock spawning biomass changed downwards with a lower unfished biomass. Due to this
update the fits to the longline length composition data got worst and the model overestimates
the mean length of the catches in the beginning of the time series and underestimates the mean
length at the end of the time series.

All the selectivity estimates are based on age, except for the purse seine fisheries, which are
estimated assuming a length-based spline function. The fits to the FS were not good from
the beginning but with the update of growth the model overestimates the catches of large fish
because the model assume that FS fleet has full selectivity after 150 cm.

Due to the overestimated mean length of LL fleets and the differences in mean length for LL
fleets in region 1,2 and 4 by RM1, it was decided to add as another reference model a model
splitting the LL fleets (regions 1, 2, and 4) in two periods: previous to 2000 and after 2000. The
best model assumed double normal selectivity for LL in region 1 and region 4 and logistic for
both periods in region 2, where bigger fish are present. However, the LL CPUE selectivity is
linked to the LL fisheries therefore, another two options were considered about the selectivity of
the LL CPUE where the LL CPUE selectivity is linked to the selectivity of the first period (RM2)
and another where the LL CPUE selectivity follows the selectivity of LL fishery 2 periods, so
splitting the selectivity in two periods (RM3). RM3 is the model with the lowest virgin biomass
but lower depletion rate than RM2.

The lack of fit of tagging data as well as the possible bias of tagging data, due to the spa-
tial distribution of the tagging data as well as the possible issues about the mixing were also
discussed in previous WPTT, and still the model underestimate the reported tagging data of
purse seiners, therefore, the tagging data downweighted by 90% (lambda of 0.1) is presented
as another reference model RM4 for the working party. This model estimates higher unfished
biomass, and more optimistic status respect to 𝑆𝑆𝐵0 than the RM2 model.

An increase of effort creep of 0.5% per year was discussed during the data preparatory meeting.
This model estimates the highest depletion rate of the five proposed reference models, although
the trend is very similar to the RM2 model or the RM4 model.
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Another point of discussion during the 26th WPTT was the estimation of stock status. Due to
the remarkable trend in recruitment over time, we decided to rescale the stock status quantities
(𝑀𝑆𝑌 , 𝑆𝑆𝐵𝑀𝑆𝑌 ) to recent conditions. There is no standard way to do this, so we decided to
use the recruitment deviates estimated in the last 20 years to obtain a scaling factor, which was
used to rescale the 𝑀𝑆𝑌 and 𝑆𝑆𝐵𝑀𝑆𝑌 estimated by SS3. We acknowledge that this approach
needs to be further explored, and future studies could perform simulation analyses to investigate
different alternatives to rescale stock status when trend in recruitment is present.

Finally, the change in stock status between the 2021 and current assessment is remarkable. The
stock was assumed to be overfished and subject to overfishing in 2021, and currently it is assumed
not to be overfished and not subject to overfishing. There is some evidence that support this
conclusion. First, the catches from the longline fleet have increase during recent years, as well
as their CPUE. Second, the LS CPUE, although not used in the current assessment, displayed a
remarkable increasing trend from 2020. Third, the total catches have slightly decreased during
the last years, which may help with the recovery of the stock. Fourth, the strong modes of young
yellowfin found in the LS fishery during the last years. The management actions implemented
during the recent period could also be another factor that may be helping to improve the stock
status of this stock.

10 Reproducibility and transparency

A number of authors have recently advocated for a culture of open science and reproducible
research (i.e., a change in the transparency and reproducibility of science) (Hampton et al.,
2015; Hampton et al., 2013). Proponents of open science and reproducible research highlight a
number of benefits, including a more productive and responsible scientific culture, an ability to
address larger and more complex questions, as well as a more efficient workflow and ability to
reproduce one’s own work (Fomel and Claerbout, 2009). Reproducibility of the implementation
of stock assessment models has barely explored and published for tuna stocks, but some progress
has been made in other RFMOs (e.g., ICES) (Millar et al., 2023).

Magnusson et al. (2022) listed several advantages of make a stock assessment open and repro-
ducible:

• Easy to review the assessment process.
• Easy to pick up a stock assessment from a previous year and run an update, which is

particularly important when a new scientist is leading the assessment.
• Easy to modify data treatment or model settings and rerun the entire workflow, which

allows more analyses, exploration, and potential improvements.
• Improve traceability and credibility of the assessment process.

For the current assessment, we used Github to store the scripts to analyze and process the raw
data, prepare the inputs for SS3, run all the SS3 models in the stepwise implementation, and
produce summary figures and tables. The R scripts and instructions to rerun the entire as-
sessment process presented in this document can be found at: https://github.com/Fundacion-
AZTI/IOTC_YFT_2024_Assessment/tree/reproducible. In order to reproduce this assess-
ment, the user needs to have some knowledge on R programming, Github, and Stock Synthesis
and associated packages such as r4ss (Taylor et al., 2021). Future assessments may improve
transparency and reproducibility by developing interactive tools to analyze assessment results
(Regular et al., 2020), especially for people with no programming skills.
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12 Tables

Table 1: Nine fishery groups and codes used in the current assessment.
Fishery code Fishery group
GI Gillnet
HD Handline
LL Longline
OT Others
BB Baitboat
FS Purse seine, free school
LS Purse seine, log school
TR Troll
LF Longline (fresh tuna)
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Table 2: Fishery definition in the four-areas assessment configuration. The fishery label is de-
rived from the fishery group and the model region.

Fishery number Fishery label
1 GI_1a
2 HD_1a
3 LL_1a
4 OT_1a
5 BB_1b
6 FS_1b
7 LL_1b
8 LS_1b
9 TR_1b
10 LL_2
11 LL_3
12 GI_4
13 LL_4
14 OT_4
15 TR_4
16 FS_2
17 LS_2
18 TR_2
19 FS_4
20 LS_4
21 LF_4
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Table 3: Grid size categories in the original size dataset.
Grid category Resolution (latitude × longitude)
9 30∘ × 30∘

A 10∘ × 20∘

7 10∘ × 10∘

8 20∘ × 20∘

5 1∘ × 1∘

6 5∘ × 5∘

NJA_SYC Seychelles National Jurisdiction Area

Table 4: Features of provided LL CPUE time series. The column Regions shows the model area
combinations. The main LL CPUE time series used in the current assessment was
derived using aggregate data.

Regions Data source Time resolution
R1/R2/R3/R4 Operational Yearly
R1/R2/R3/R4 Aggregated Quarterly
R1+R2/R3+R4 Operational Yearly
R1+R2+R3/R4 Operational Yearly
R1+R2+R3/R4 Operational Quarterly
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Table 5: Model description during the stepwise implementation.
Run Description
1 Base case from the 2021 assessment.
2 Update catch.
3 Update LL CPUE indices.
4 Update length compositions.
5 Remove some warnings.
6 Natural mortality at age 4.07 years of 0.467.
7 Use growth curve from Farley et al. (2023).
8 Update age information in the tagging dataset using the new growth curve.
9 Update maturity from Zudaire et al. (2022).

10 Update purse seine selectivities.
11 Update some parameter boundaries.
12 Update recruitment deviates and bias correction period.
13 Use RQ as input sample size for length compositions.
14 Use length compositions from the cwp5x5 dataset. No RQ.
15 Use length compositions from the cwp5x5 dataset and RQ.
16 Free up second selectivity parameter for LL 3.
17 RM1: Apply bias correction ramp.
18 RM2: Splitted LL fisheries in regions 1, 2 and 4 (RM2). Double-normal parametrization

before 2000 and logistic after 2000.
19 RM3: Splitted LL CPUE selectivities following RM2.
20 RM4: Apply effort creep of 0.5% per year from RM2.
21 RM5: downweight tagging data by 90% (lambda of 0.1) from RM2.
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13 Figures

Figure 1: Model areas or regions used in the four-areas assessment configuration. The region 1
is divided into two sub-regions implicitly modelled in the assessment model using the
areas-as-fleets approach.
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Figure 2: Spatial distribution of yellowfin catches per fishery group. The pie radius represents
the aggregated catch from 2010 to 2023. Fishery group codes are described in Table 1.
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Figure 3: Size compositions per fishery included in the assessment model. Colored lines are size
compositions obtained using simple aggregation while black lines used the catch-raised
aggregation. Size compositions were aggregated over time.
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Figure 4: Total annual catch of yellowfin tuna by fishery group from 1950 to 2023. Fishery group
codes are described in Table 1.
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Figure 5: Spatial distribution of size compositions per fishery group. The size compositions were
aggregated over time from 2010 to 2023. Fishery group codes are described in Table 1.
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Figure 6: Example of grids in the cwp55 size dataset. The region assignment was done based on
the grid centroid.
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Figure 7: Comparison between the catch values used in the 2021 assessment and the current
(2024) values.
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Figure 8: Mean length per quarter per fishery. Colored lines used the simple aggregation while
black lines used the catch-raised aggregation.
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Figure 9: Example of grid categories in the original size dataset. The region assignment was
done based on the grid centroid.

Figure 10: Percentage of size observations by imputation level. Level 0 means perfect match, so
no imputation was required.
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Figure 11: The availability of size composition data from each fishery by quarter. The size of
the bubble indicates the input sample size calculated from reporting quality scores.
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Figure 12: Comparison between the aggregated size compositions per fishery used in the 2021
and the current (2024) assessment. Both used the simple aggregation approach.
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Figure 13: Comparison between the mean length per quarter per fishery group used in the 2021
and in the current (2024) assessment. Both used the simple aggregation approach.
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Figure 14: Annual catch (first row), number of fish sampled in the size data (second row), and
mean length (third row) by CPC before filtering for the HD 1a fishery. Only data
from 1990 is shown.
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Figure 15: Scaled LL CPUE time serie per region. The shaded area represents the 95% confi-
dence interval.
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Figure 16: Comparison between the scaled LL CPUE values used in the 2021 assessment and
the current (2024) values per region.
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Figure 17: Comparison between the scaled LL CPUE values using aggregated data (quarterly
time step) or operational data (yearly time step) for standardization.
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Figure 18: Purse seine free school (FS) and log school (LS) CPUE time series. Both series were
used for region 1b in the stock assessment model. The shaded area represents the
95% confidence interval.
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Figure 19: Time series of FS and LL CPUE in region 1b. Both series were rescaled to a mean
of 1 for comparison.

Figure 20: Number of sampled fish per year and fishery group in the age-length dataset from
the GERUNDIO project.
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Figure 21: Conditional age-at-length (CAAL) data included in the assessment model. The bub-
ble size represents the proportion of ages at a given length.
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Figure 22: Number of tag releases by year-quarter and age class (in quarters, upper panel), and
tag recoveries by year-quarter and fishery group (lower panel). Ages were assigned
based on length. Purse seine tag recoveries are not corrected for reporting rate.
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Figure 23: Locations of releases (red points) and recoveries (gray points) reported in the yellowfin
tuna RTTO-IO tag Program. The upper and lower panel shows the recoveries by all
fisheries and only by the purse seine fishery, respectively. The limits of regions in the
four-area configuration are also shown.
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Figure 24: Tag recoveries by year of recovery, region of release, and region of recovery. Regions
are defined by the four-area model configuration (see Figure 1).
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Figure 25: Temporal coverage of data types included in the candidate reference models. The
x-axis represents model years (i.e., quarters).
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Figure 26: Mean length-at-age calculated using the two-stage growth function in Farley et
al. (2023), and its approximation in SS3. The mean length-at-age from the growth
parametrization used in the 2021 assessment is also shown.
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Figure 27: Mean length-at-age by sex approximated in SS3 based on the two-stage growth func-
tion in Farley et al. (2023).
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Figure 28: Length-weight relationship used in the current assessment.
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Figure 29: Upper panel: Maturity-at-length specified in the current assessment, based on Zu-
daire et al. (2022). Lower panel: Comparison between maturity-at-age specified in
the 2021 and current assessment. For the current assessment, age-based maturity
was converted from length-based maturity.

77



IOTC-2024-WPTT26-11

Figure 30: Natural mortality at age used in the 2021 and current assessment.
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Figure 31: Movement parametrization in the current assessment model (four-areas configura-
tion).
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Figure 32: Annual catch (first row), number of fish sampled in the size data (second row), and
mean length (third row) by CPC after filtering for the LL 1b and LL 4 fisheries.

80



IOTC-2024-WPTT26-11

Figure 33: Plots of spawning stock biomass across iterative Stock Synthesis model runs. The red
line shows the estimates from the current model run listed, the black line shows the
estimates from the prior run, and the gray lines show the estimates from all previous
runs in the stepwise build of the reference case model.
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Figure 34: Spawning stock biomass relative to unfished biomass (𝑆𝑆𝐵/𝑆𝑆𝐵0) across iterative
model runs. The red line shows the estimates from the current model run listed,
the black line shows the estimates from the prior run, and the gray lines show the
estimates from all previous runs in the stepwise build of the reference case model.
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Figure 35: Observed (grey shadow) and predicted (green line) proportion of length compositions
for each fishery aggregated over time for the RM1 model.

83



IOTC-2024-WPTT26-11

Figure 36: Comparison of 𝑆𝑆𝐵/𝑆𝑆𝐵0 trajectories from the base case from 2021 versus the
alternative proposed reference models in 2024.
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Figure 37: Fit to the regional longline CPUE indices, 1975–2023 from RM2.
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Figure 38: Standardised residuals from the fits to the CPUE indices from RM2.
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Figure 39: Observed (grey shadow) and predicted (green line) proportion of length compositions
for each fishery aggregated over time for RM2.
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Figure 40: Observed (grey shadow) and predicted (green line) proportion of length compositions
for each fishery aggregated over time for RM2.

Figure 41: A comparison of the observed (grey points) and predicted (red points and line) av-
erage fish length (FL, cm) by fishery for RM2.
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Figure 42: Relative residuals from the fits to the length compositions for LL regions 1b, 2, 3,
and 4, for previous and after 2000 for RM2.

Figure 43: A comparison of the observed (grey points) and predicted (red points and line) av-
erage fish length (FL, cm) by fishery for RM1.
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Figure 44: Relative residuals from the fits to the length compositions for FS in regions 1b and
2, and LS fisheries in regions 1b and 2, for the RM2 model.

Figure 45: The grey bars show the number of tag recapture aggregated across tag groups with
time, and the line shows the prediction by RM2.
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Figure 46: The grey bars the number of tag recaptures by fleet with time and the line the
predicted by the RM2.
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Figure 47: Residuals for post-latency tag recaptures: (obs-exp)/sqrt(exp) by RM2.
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Figure 48: The estimated age-based selectivity functions (except for purse seine fisheries which
are length-based) by RM2.
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Figure 49: The estimated size based selectivity functions (except for purse seine fisheries which
are length-based) by RM2.
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Figure 50: Recruitment deviates from the SRR with 95% confidence interval from the RM2.
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Figure 51: Proportion of the total quarterly recruitment assigned to region 1 (red) and region 4
(blue).

Figure 52: Estimated age specific movement parameters for the RM2.
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Figure 53: Estimated spawning biomass trajectories for the individual model regions from the
RM2.
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Figure 54: Trends in annual fishing mortality by fleet and area.

Figure 55: Fishing mortality (quarterly, average) by age class and region estimated by the RM2.
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Figure 56: Jitter analysis from 30 runs the log-likelihood of 23 runs with convergency level
<0.001. The runs at the minimum log-likelihood converged with the same results.
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Figure 57: Retrospective analysis for SSB from RM2.
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Figure 58: Retrospective analysis for 𝐹/𝐹𝑀𝑆𝑌 from RM2.
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Figure 59: Analysis of the residual pattern of the fits to the LL CPUE by region of RM2 with
runs test.
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Figure 60: Hindcast analysis to evaluate the skills of the model to predict the CPUE in region
1 by season, by the RM2.

Figure 61: Profiling of steepness, unfished recruitment, recruitment variability, and asymptotic
length using RM2.
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Figure 62: Profiling of natural mortality (M) in RM2 model assuming different values of steep-
ness: 0.7, 0.8, and 0.9.

Figure 63: Sensitivity analysis assuming M=0.3: natural mortality at age, recruitment deviates,
biomass without fishing, and 𝐹/𝐹𝑀𝑆𝑌 .
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Figure 64: Sensitivity analysis assuming differences on natural mortality by gender (same M at
age values as in the 2021 assessment): natural mortality at age, recruitment deviates,
𝐹/𝐹𝑀𝑆𝑌 and spawning biomass by area.

Figure 65: Sensitivity analysis of the recruitment deviates of the last years. The left figure
shows the recruitment deviates after removing all the fleets length composition data
from 300 (year 2021) onwards but no Other fisheries fishing in regions 1 and 4. The
right figure shows the recruitment deviates when all the length composition data are
removed from 300 onwards.
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Figure 66: Sensitivity analysis of assuming variable CV based on the estimated values in the
standardization of the CPUE but assuming a mean CV of 0.2: the observed CPUE
LL, the 95% CI by region and the fits of the RM2.

Figure 67: Sensitivity analysis of assuming variable CV based on the estimated values in the
standardization but assuming a mean CV of 0.2: residuals by region, of the sensitivity
analysis considering LL CPUE with variable CV, of the RM2.
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Figure 68: Sensitivity analysis considering operational LL CPUE as index; the observed data
and the fits to the LL operational CPUE by region in the RM2.

Figure 69: Sensitivity analysis considering operational LL CPUE as index; the residuals to the
fits of LL operational CPUE by region in the RM2.
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Figure 70: Comparison of the estimated relative SSB time series introducing the 2021 LL CPUE
in the RM3 and running the model until 2021. This exploration was run and discussed
during the 26th WPTT.
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Figure 71: Comparison of the estimated relative SSB time series using RM3 (not included in the
final uncertainty grid) and the 6_SplitCPUE_tag01_EC0_h08 model (blue line).
Both series use the 2024 LL CPUE.
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Figure 72: Comparison of the estimated relative SSB time series using the RM3 (black
line), RM3 with the LL CPUE used in 2021 and estimation period termi-
nated in 2021 (purple line), 6_SplitCPUE_tag01_EC0_h08 (blue line), and
6_SplitCPUE_tag01_EC0_h08 using the 2021 CPUE and including catch and
length frequency data for the period 2021-2023 (green line).
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Figure 73: Comparison of the time series of the RM3 model (LL CPUE selectivity the same as
the splitted LL fishery) on 𝑆𝑆𝐵/𝑆𝑆𝐵0 with tagging data downweighted and applying
effort creep of 0.5% per year.

Figure 74: Sensitivity analysis including FS CPUE in region 1, assuming a constant CV of 0.3.
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Figure 75: Comparison of the time series of SSB of RM2 with the model including Indonesian
revised catches.
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Figure 76: Stock status for the final five candidate reference models.
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Figure 77: Impact plot from 6_SplitCPUE_tag01_EC0_h0.8. The coloured area repsents the
effect of removing each fishery group.
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Figure 78: Temporal series of relevant model estimates for all models in the uncertainty grid.
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Figure 79: Kobe plot. The colored symbols represent the estimated stock status (𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌
and 𝐹/𝐹𝑀𝑆𝑌 ) in 2023 for each model in the final uncertainty grid. The gray dots
represent the uncertainty in the stock status estimates. The probability of being in
each quadrant of the Kobe plot in 2023 is also shown.

116



IOTC-2024-WPTT26-11

Figure 80: Kobe plot. Decadal trajectory of stock status based on all models in the uncertainty
grid.
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Figure 81: Impacts of different scalars on projected recruitment (colored lines) for RM3. The
black continuous line is the estimated recruitment during the model period.
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Figure 82: Changes in stock status (𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌 ) over the years produced by different catch
levels expressed as multipliers of catch in 2023. These projections are developed
scaling MSY, 𝑆𝑆𝐵𝑀𝑆𝑌 , and recruitment to the recent 20 year average recruitment
deviates. The white and gray boxes represent the model and projection period,
respectively. Values are yearly averages.
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14 Appendix

14.1 Clustering of size compositions

Three-based methods are useful techniques for studying structure in different data types and
exploratory analyses, because minimal assumptions are made about the processes that gener-
ated the data. In fisheries science, these methods have been traditionally used for exploring
large-scale spatial CPUE patterns. The regression tree algorithm (Lennert-Cody et al., 2013,
2010) uses recursive partitioning to search for hierarchical binary decision rules that divide the
data into more homogeneous subgroups. The binary decision rules are selected to provide the
greatest decrease in the heterogeneity of length composition data, which is measured based on
the Kullback–Leibler divergence. The regression tree algorithm has become popular in stock
assessment for defining fleets based on size frequency patterns over time and space (e.g., Xu et
al. (2024)). Correa et al. (2024a) did an initial exploration of the IO yellowfin length frequency
data from the longline and purse seine fisheries using this method. Below, we present an up-
date of these analyses, which might be relevant for future revisions of the fleet structure used
in the current assessment model as suggested by the review panel in 2023 (M. Maunder et al.,
2023). These analyses were carried out using the FishFreqTree R package (Xu and Lennert-Cody,
2024).

We found seasonal patterns in the clustering analysis for the LS fishery (purse seine log school).
The size structure in quarter 3 and 4 was similar, with a main mode at ∼ 45 cm and a second
mode at ∼ 60 cm (Figure 83). In quarter 1, the mode was between 45 and 55 cm. In quarter
2, two clusters were identified, where one of them had a larger mode (∼ 60 cm) than the other
(∼ 45 cm). Spatially, we did not identified spatial differences in the length structure for quarter
1, 3, and 4 (Figure 84). In quarter 2, we found a break at 0∘, finding a smaller mode in the
northern area.

In the FS fishery (purse seine free school), two different bimodal size structures were identified
for quarter 1 and 2 (Figure 85), with larger fish in quarter 1. Two clusters were also identified
in quarter 3, which were also found in quarter 4. One of these clusters had a large dominance of
smaller fish with mode ∼ 45 cm. Spatially, no differences were found in quarter 1 and 2, but the
large dominance of smaller fish was found in northern areas in quarter 3 and 4 (Figure 86).

The cluster analysis for the LL fishery (longline) explained less than 10% of the variance in the
length frequency data (Figure 87). Two clusters were identified in quarter 1, which were also
found in quarter 4. These clusters were similar, with a mode ∼ 125 cm and lengths from 75 to
160 cm. In quarter 2 and 3, three clusters were identified in each of them. One of these clusters
had a dominant mode at ∼ 110 cm. A wide range of sizes were also observed for these quarters.
Spatially, there was a clear break at 55∘E (Figure 88).
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14.1.1 Figures

Figure 83: Clustering of length compositions for the LS fishery. Panels correspond to quarters.
Four clusters were identified (colors).
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Figure 84: Clustering of length compositions for the LS fishery shown over space. Panels corre-
spond to quarters.
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Figure 85: Clustering of length compositions for the FS fishery. Panels correspond to quarters.
Four clusters were identified (colors).
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Figure 86: Clustering of length compositions for the FS fishery shown over space. Panels corre-
spond to quarters.
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Figure 87: Clustering of length compositions for the LL fishery. Panels correspond to quarters.
Four clusters were identified (colors).
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Figure 88: Clustering of length compositions for the LL fishery shown over space. Panels corre-
spond to quarters.
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14.2 One-area model

The data inputs were generated following the steps described for the four-area model. These
models were implemented based on the assumptions of reference model 3, which models distinct
LL fishery selectivity before and after 2000 (see Section 6.1 for details). An unique LL CPUE
index was derived from the four LL indices after regional scaling, and then linked to the LL 1b
selectivity.

We always modelled a single area in SS3 but evaluated two types of data aggregation (Fig-
ure 89):

• Aggregated (agg): Information per fishery group was aggregated, except for the Arabian
sea (region 1a). The areas-as-fleets approach was implemented between region 1a and 1b.
We had 13 fisheries (Table 9) and two indices of abundance: LL CPUE before and after
2000.

• Areas-as-fleets (aaf ): Information per fishery group was kept separated as in the four-area
configuration. The areas-as-fleets approach was implemented in the entire assessment area
as shown in Figure 89. We had 24 fisheries (Table 10) and two indices of abundance: LL
CPUE before and after 2000.

We compared three model configurations regarding the data types:

• base: include catch, CPUE, and length compositions.
• addTag: same as base, but also include tagging data downweighted by 90% (i.e., lambda

of 0.1).
• addCAAL: same as addTag, but also include conditional age-at-length data.

14.2.1 Results

The time series of spawning biomass showed contrasting values among agg models, and were
higher than the SSB estimated by the four-area model (Figure 90). Models that included tagging
data tended to estimate lower SSB for the entire period, while models that included CAAL data
estimated larger values. The three models showed a dramatic increase in SSB during the last few
years. Regarding stock status (𝑆𝑆𝐵/𝑆𝑆𝐵𝑚𝑠𝑦), the three models showed similar trends, starting
at a value of ∼ 3.5 for the first model year, and ending at ∼ 1.45-1.75 for the last model year
(Figure 91). Recruitment deviates did not display remarkable temporal trend during the model
period; however, we did observe an increasing trend during the last decade (Figure 92).

The aaf models showed similar SSB time series before 2000; however, after 2000, the addCAAL
and addTag models showed larger and lower SSB, respectively (Figure 90). Moreover, SSB was
more similar but still higher than SSB estimates by the four-area model. Likewise, the time
series of stock status showed similar values before 2000, and large stock status for the addCAAL
model after 2000 (Figure 91). The stock status for the final model year ranged between 0.95 and
1.4. We noticed a temporal trend in recruitment deviates over the model period for the three
aaf models (Figure 92), similar to the four-area models.

14.2.2 Tables
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Table 9: Fishery definition in the one-area aggregated assessment configuration (agg).
Fishery number Fishery label
1 GI_1a
2 HD_1a
3 LL_1a
4 OT_1a
5 BB_1b
6 FS_1b
7 LL_1b_pre2000
8 LS_1b
9 TR_1b
10 GI_1b
11 OT_1b
12 LF_1b
13 LL_1b_post2000

Table 10: Fishery definition in the one-area areas-as-fleets assessment configuration (aaf).
Fishery number Fishery label
1 GI_1a
2 HD_1a
3 LL_1a
4 OT_1a
5 BB_1b
6 FS_1b
7 LL_1b_pre2000
8 LS_1b
9 TR_1b
10 LL_2_pre2000
11 LL_3
12 GI_4
13 LL_4_pre2000
14 OT_4
15 TR_4
16 FS_2
17 LS_2
18 TR_2
19 FS_4
20 LS_4
21 LF_4
22 LL_1b_post2000
23 LL_2_post2000
24 LL_4_post2000
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14.2.3 Figures

Figure 89: Types of aggregation explored for the one-area model configuration. The dashed line
delimit the subregions where the areas-as-fleets approach was modelled.
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Figure 90: Time series of SSB estimated by the one-area model configurations. Estimates from
the four-area configuration is shown in black.
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Figure 91: Time series of stock status (SSB/SSBmsy) estimated by the one-area model config-
urations. Estimates from the four-area configuration is shown in black.
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Figure 92: Time series of recruitment deviates estimated by the one-area model configurations.
The black line is the smooth trend.
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14.3 Two-area model

The data inputs were generated following the steps described for the four-area model. These
models were implemented based on the assumptions of reference model 3, which models distinct
LL fishery selectivity before and after 2000 (see Section 6.1 for details). Two LL CPUE indices
(𝐿𝐿1 and 𝐿𝐿2) were derived from the four LL indices after regional scaling: 𝐿𝐿1 was the sum of
LL 1 and LL 2 in the four-area model, and 𝐿𝐿2 was the sum of LL 3 and LL 4 in the four-area
model. 𝐿𝐿1 was linked to the selectivity of fishery LL 1b, while 𝐿𝐿2 was linked to the selectivity
of LL 2 or LL 4, depending on the data aggregation type (see below). Movement between area
1 and 2 was modelled as in the four-area model.

We always modelled two areas in SS3 but evaluated two types of data aggregation (Figure 93):

• Aggregated (agg): Information per fishery group was aggregated, except for the Arabian
sea (region 1a). The areas-as-fleets approach was implemented between region 1a and 1b.
We had 18 fisheries (Table 11) and four indices of abundance: 𝐿𝐿1 and 𝐿𝐿2 CPUE before
and after 2000.

• Areas-as-fleets (aaf ): Information per fishery group was kept separated as in the four-area
configuration. The areas-as-fleets approach was implemented in the entire assessment area
as shown in Figure 93. We had 24 fisheries (Table 12) and four indices of abundance: 𝐿𝐿1
and 𝐿𝐿2 CPUE before and after 2000.

We compared three model configurations regarding the data types:

• base: include catch, CPUE, and length compositions.
• addTag: same as base, but also include tagging data downweighted by 90% (i.e., lambda

of 0.1).
• addCAAL: same as addTag, but also include conditional age-at-length data.

14.3.1 Results

For agg models, the time series of spawning biomass showed quite similar values between base
and addTag models, which were slightly higher than the SSB estimated by the four-area model
(Figure 94). Models that included CAAL data tended to estimate much larger SSB for the
entire period. The three models showed a dramatic increase in SSB from 2020. Regarding stock
status (𝑆𝑆𝐵/𝑆𝑆𝐵𝑚𝑠𝑦), the three models showed similar trends, starting at a value of ∼ 3.5
for the first model year, and ending at ∼ 1.65-1.8 for the last model year (Figure 95), which
was slightly higher than the four-area model. Recruitment deviates for base and addTag models
displayed a remarkable temporal trend during the model period; however, this trend was less
evident for the addCAAL model. The three models showed an increasing trend during the last
decade (Figure 96).

The aaf models showed similar SSB temporal trends. The addCAAL and addTag models showed
larger and lower SSB, respectively (Figure 94), and the three models displayed larger values than
the four-area model. Likewise, the time series of stock status showed similar trend and values.
The stock status for the final model year ranged between 1.6 and 1.8, which was slightly larger
than the four-area model (Figure 95). We noticed a temporal trend in recruitment deviates over
the model period for the three aaf models (Figure 96), similar to the four-area models, although
this trend was less pronounced for the addCAAL model.
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14.3.2 Tables

Table 11: Fishery definition in the two-area aggregated assessment configuration (agg).
Fishery number Fishery label
1 GI_1a
2 HD_1a
3 LL_1a
4 OT_1a
5 BB_1b
6 FS_1b
7 LL_1b_pre2000
8 LS_1b
9 TR_1b
10 LL_2_pre2000
11 GI_2
12 OT_2
13 TR_2
14 FS_2
15 LS_2
16 LF_2
17 LL_1b_post2000
18 LL_2_post2000

Table 12: Fishery definition in the two-area areas-as-fleets assessment configuration (aaf).
Fishery number Fishery label
1 GI_1a
2 HD_1a
3 LL_1a
4 OT_1a
5 BB_1b
6 FS_1b
7 LL_1b_pre2000
8 LS_1b
9 TR_1b
10 LL_2_pre2000
11 LL_3
12 GI_4
13 LL_4_pre2000
14 OT_4
15 TR_4
16 FS_2
17 LS_2
18 TR_2
19 FS_4
20 LS_4
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Table 12: Fishery definition in the two-area areas-as-fleets assessment configuration (aaf).
Fishery number Fishery label
21 LF_4
22 LL_1b_post2000
23 LL_2_post2000
24 LL_4_post2000
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14.3.3 Figures

Figure 93: Types of aggregation explored for the two-area model configuration. The dashed line
delimit the subregions where the areas-as-fleets approach was modelled.
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Figure 94: Time series of SSB estimated by the two-area model configurations. Estimates from
the four-area configuration is shown in black.
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Figure 95: Time series of stock status (SSB/SSBmsy) estimated by the two-area model config-
urations. Estimates from the four-area configuration is shown in black.
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Figure 96: Time series of recruitment deviates estimated by the two-area model configurations.
The black line is the smooth trend.
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