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Abstract 

 
Purse seine fisheries play a crucial role in global tuna fishing, accounting for approximately 66% of the 
world's tropical tuna catch. However, accurately estimating the specific composition of these catches per 
set and in real-time remains challenging. To enhance traditional data collection methods like onboard 
observers and port sampling, all tuna Regional Fisheries Management Organizations (RFMOs) have 
established minimum standards for utilizing Electronic Monitoring (EM). EM was developed to improve 
data collection efficiency and traceability. Despite its advantages, EM faces challenges such as the time 
required to review all data and the difficulties in accurately distinguishing and estimating the specific 
composition of purse seine catches based on visual reviews. 
 
In response to these challenges, we are developing a pipeline to reduce the workload involved in reviewing 
EM footage. This pipeline utilizes video captured by the EM, along with several computer vision models. 
This setup enables the estimation of species composition of the catches with minimal human interaction. 
The target tuna species composition is estimated using standard 2D footage from the wells deck, where 
the fish are recorded on the conveyor belt before being stored in wells. 
 
This document highlights several key points identified during the pipeline's development. Some issues to 
consider while collecting data aboard the vessel include ensuring adequate lighting on the fishing deck 
and utilizing dedicated global shutter camera hardware. Other considerations pertain to the development 
of AI models, such as creating custom datasets and specific model architectures. Addressing these factors 
will enhance the accuracy and efficiency of species composition estimation, ultimately improving the 
overall effectiveness of EM systems in fisheries management. 

 
 
 

1. Background 
 

In the tropical tuna purse seine fishery, catches at sea typically include several target species, 
such as yellowfin tuna (Thunnus albacares, YFT) and skipjack tuna (Katsuwonus pelamis, SKJ), 
along with non-targeted but significantly caught bigeye tuna (Thunnus obesus, BET) and varying 
proportions of other secondary species. During a fishing operation, onboard catch handling is 
much faster compared to other fisheries. Retained catch is stored directly in freezing tanks 
(wells) in brine without prior sorting to avoid sanitary and food safety issues. Sorting occurs as 
needed when certain non-marketed species are discarded. Thus, the estimation of catch per 
species is determined either through visual assessments or subsampling.  

 
The species composition by set is recorded in the logbook; however, bias in logbooks has been 
evident since the inception of the tropical tuna purse seine fishery (Fonteneau 1976; Cayré 1984; 
Fonteneau 2007), primarily concerning small YFT and BET individuals. While the total weight can 
be accurately estimated since catches are weighed at landing, the species composition remains 
problematic (Lawson, 2009), preventing the use of these values as precise measures. Ruiz et al. 
(2021) concluded that, in many instances, acquiring accurate estimates of species composition 
per fishing operation may not be feasible due to three main causes: the inability to obtain an 
adequate minimum sample size, the challenges in ensuring random selection of this sample, and 
the added difficulty of distinguishing between juvenile YFT and BET. The accuracy of logbooks 
can vary, but despite the capacity and experience of the crew member completing them, 
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discrepancies between logbook entries and actual landings have been demonstrated. Therefore, 
to determine the specific composition of tropical tuna landings, some port sampling can be 
conducted during the landing process. A sampling and data processing strategy for estimating 
species and size composition of catches in the European and Seychellois purse seine fisheries 
was developed more than two decades ago and is routinely employed by scientists based in the 
primary landing ports (i.e., Seychelles) (Duparc, 2018). However, this method is intended for 
generating global estimates, which means it is not suitable for obtaining estimates per set, 
thereby making it unusable for quota control, for example. 

 
Technology (E-reporting, Vessel Monitoring Systems (VMS), Electronic Monitoring Systems 
(EMS)) has recently improved the monitoring of fishing activities. Several organizations, 
including tuna-RFMOs (Regional Fisheries Management Organizations), have promoted the use 
of EMS as a data collection tool. This could lead to greater and more efficient at-sea observation 
coverage and could complement (or even replace) some responsibilities and tasks traditionally 
associated with onboard human observers. The IOTC was one of the pioneering RFMOs when it 
adopted its minimum standards for the use of EMS in 2023 (IOTC Resolution 23/08), and now, 
several companies owning large purse seiners have voluntarily installed EM systems, presenting 
an opportunity to obtain species-specific catch estimates. From the footage captured on the 
conveyor belt in the bellow-deck area, a qualified operator could estimate the species 
composition of the catches. However, various pilot studies with EMS in purse seine fleets reveal 
that, besides being tedious and costly, EMS is not currently prepared to fulfil this function, and 
the target tuna catch estimates obtained by EM analysts are not accurate (Ruiz et al., 2015; 
Murua et al., 2021). The application of artificial vision techniques that could automate the 
identification of catches by species is seen to be the next step in automating EM data workflows, 
increasing the value of these electronic monitoring systems by enabling the collection of catch 
data in an objective and near real-time manner.  

 
Artificial vision has gained significant popularity in recent years, thanks to advancements in deep 
learning algorithms and the enhanced computing capabilities available today. This technique, 
when applied to fisheries, is already being tested in various case studies to automate the image 
review process through the automatic detection of events or species, both in tuna fisheries 
(Lekunberri et al., 2021) and other fisheries (Rizwan et al., 2022; Kay et al., 2021).   

 
The objective of this working document is to present the progress made by AZTI in this field (i.e. 
automatic identification of tropical tuna catches), as well as to propose a series of future 
recommendations that will pave the way to achieve this goal. 

 
 

2. Methods 
 

Figure 1 illustrates the complete pipeline, which begins with footage acquisition, proceeds to 
image annotation, and concludes with training and validation. The process consists of three 
independent models: the segmentation model, individual fish tracking, and species 
classification. Sections 2.1 to 2.5 detail each step within the pipeline.   
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Figure 1. General pipeline. The process starts with the data collection. Footage is organized according to its 
intended use: training, validation, or testing. The training and validation images are annotated. These annotated 
images are then used to train a segmentation model and to obtain the individual fish segments required for 
training a classification model. The real-world validation step is performed using unannotated test images, 
where the ground truth is known.  
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2.1. Generating the image training set: Data acquisition and preprocessing  
 

All images were captured with digital cameras on the conveyor belt in the well deck. Two 
different EMS systems were used, manufactured by Marine Instrument and Zunibal. Both 
systems feature different cameras, although they share similar technical characteristics (Vivotek 
FD-9366-HV model or similar). These are 2 MP, IP67 cameras that include enhanced Wide 
Dynamic Range technology. 
 
Additionally, independent stereoscopic cameras (Stereolabs ZED2 and ZED X models) were 
punctually installed during two fishing trips. These cameras provide a 3D view of the conveyor 
belt and come with enhanced features. They utilize a global shutter, unlike the rolling shutter 
found in most 2D cameras. The global shutter eliminates distortion in images of fast-moving 
objects, ensuring uniform exposure across the entire frame. This makes them preferable for our 
specific case, where precision and clarity are required for moving objects (fish) under artificial 
and variable poor lighting conditions. In all instances, images were captured at 30 fps. 
 
As the first step, preprocessing the images is crucial since they come from an uncontrolled 
environment. This ensures a set of images as homogeneous as possible, thereby facilitating 
subsequent automatic segmentation and classification. The preprocessing is carried out in two 
phases: perspective correction and contrast enhancement (Figure 2). In addition, it is important 
to take into account that when capturing images with a camera positioned above a conveyor 
belt, it's not unusual for the lens to gradually become soiled with water or blood droplets. Since 
dirt on a lens remains stationary while the region of interest is in constant motion, image 
dirtiness can be estimated by calculating the variance of each pixel over an entire fishing 
operation. A dirty region will have low variance, as the colour remains consistent, whereas a 
clear region will have higher variance. This method could be used to discard sets that do not 
reach a minimum image quality (Figure 2). 
  
For fishing operations without significant dirt, the region of interest (RoI) in the images was first 
selected. This RoI usually covered the area of the conveyor belt closest to the camera; however, 
each camera underwent a calibration to define its own RoI. 
 
Once the region of interest was identified, perspective correction was applied, discarding 
everything outside its boundaries. This correction was necessary because the cameras were not 
always positioned to capture a top-down view of the conveyor belt, causing fish size and shape 
to vary depending on their position along the belt. This correction aims to maintain uniform size 
throughout the image, facilitating segmentation and subsequent species classification. 
 
Finally, the image contrast was enhanced to better differentiate between specimens. The 
technique used is known as CLAHE (Contrast Limited Adaptive Histogram Equalization), 
described by Reza, A. M. (2004), which increases image contrast locally (by different regions), 
highlighting the fish contours more effectively. 
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Figure 2. Examples of image preprocessing: dirty and unusable image (a) versus clear and clean image (b). 
Original image (c) and perspective correction (d). Normal contrast (e) versus enhanced contrast(f). 

 
2.2. Generating the image training set: Image labelling 

 
Experienced onboard observers manually segmented and annotated images using the open-
source tool CVAT. This tool enables the upload of images to a shared repository, facilitating 
collaborative work among experts. All fishes were labelled according to species. In some cases, 
where it was not possible to reach the species level, the label “no-target” was used for all 
bycatch, including neritic tunas. Conversely, the label “target” was used for the targeted species. 
In instances where distinguishing between target and non-target species was not feasible, the 
label "fish" was utilized. Fishes with non-species labels are only used for the segmentation model 
or the first steps of the hierarchical classification model (see sections 2.3 and 2.5).   
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It is well known that the classification of YFT and BET is not easy, especially in their juvenile 
stage. Therefore, although at the beginning of the project this classification was based on the 
criterion of the land-based observers annotating the images, the current criterion is that an 
onboard observer validates the species: after identifying the specimens in situ (onboard), they 
place them in separate batches of BET and YFT in front of the camera for later annotation. This 
criterion was established after experts showed low species identification agreement when using 
only photographs in an ad hoc workshop. 
 
In 2022, AZTI conducted a test that revealed the visual identification of YFT and BET based on 
EM images is challenging and uncertain. Therefore, the YFT and BET specimens used in the 
annotation process have now been previously identified onboard by experienced observers 
before being placed in front of the camera. As part of the 2022 test, an exercise was organized 
for labelling YFT and BET specimens. Besides AZTI experts, eight external experts from the four 
tuna RFMOs were invited to participate, including CSIRO (Australia), SPC (South Pacific), 
University of Hawaii, IATTC (USA), Datafish (Spain), and IRD (France). They were provided with 
40 EM images that came from different vessels and fishing operations, all taken on the conveyor 
belt (Figure 3). The exercise focused exclusively on YFT and BET, where each expert selected only 
those individuals whose species identification was possible (decided individually by each expert). 
The photos varied in quality (dirty, blurry, etc.), representing a sample of what a set of images 
might show during a real fishing operation. Each identified fish was subsequently assigned a final 
label (YFT, BET, or UNK - unknown). To decide if a fish was truly BET or YFT, at least one-third of 
the experts (three out of nine) needed to identify the same fish, and at least 75% of the experts 
who identified it labelled it as the same species. Among all the experts, a total of 257 specimens 
of YFT or BET were identified. However, when comparing the species assigned by each expert, 
181 of these fish could not be confidently assigned to either species. 
 

 
Figure 3. Example of an image used in the expert labelling exercise. Original (left) and labelled (right). Each 
colour represents the individuals selected by each expert. 
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2.3. Segmentation model 
 
After annotating the frames, the segmentation and classification models (Section 2.5) were 
trained in parallel. Segmentation was addressed separately due to the morphological similarities 
among the three target species (BET, SKJ, and YFT). Consequently, all labels were combined into 
a single "FISH" super-label for segmentation, thereby reducing the complexity of the task. 
Previously labelled “target” and “fish” labels were also added to this new super-label. The model 
underwent validation using a repeated cross- validation strategy. 
 
A segmentation model based on neural networks, utilizing the Mask R- CNN structure (He et al., 
2017), was initially trained (see Lekunberri et al., 2022). This model is one of the most advanced 
in the field of machine learning for image segmentation. Starting from a model previously 
trained for general-purpose segmentation of everyday objects, our model was retrained to 
segment fish effectively. Mask R- CNN first analyses the image and detects up to 2000 areas that 
might contain objects (in this case, fish). It groups similar areas to form larger regions, identifying 
parts of the image where objects are likely to be found. 
 
The network then extracts features from these grouped regions and compares them to features 
it has learned previously. If a region contains an object of interest, such as a fish, the network 
labels it accurately. 
 
One challenge with this process is that it requires many labelled images and significant time for 
the model to learn how to separate different objects correctly. To reduce this cost, a technique 
called transfer learning is employed. This involves taking a neural network already trained for a 
specific task and adapting its knowledge to a new, similar task. In this instance, the "Mask R- 
CNN Inception ResNet V 2" model, trained with the ImageNet dataset, was modified to detect 
fish. Fish detection is achieved by changing the final layer of the network and partially retraining 
it. This approach allows the neural network to retain its ability to differentiate individual objects 
while becoming specialized in segmenting fish. 
 
Other segmentation approaches, such as a combination of YOLO (Redmon et al., 2016) and SAM 
2 (Ravi et al., 2024), are also being tested to identify the most accurate model for individual fish 
detection.  
 

2.4. Tracking algorithms 
 

Considering that the fish on the conveyor belt are moving, and each one will appear in different 
frames of the video, it is essential to identify each individual throughout the sequence of frames. 
The main objective is to avoid counting any fish more than once. Additionally, identifying each 
fish individually in various frames allows us to obtain a better estimate of the species, as the 
classification model will have multiple opportunities to make predictions from different angles, 
lighting, or occlusion. Therefore, the probability of a fish belonging to a specific species will be 
based on multiple predictions.  
 
As with the segmentation model, several algorithms have been tested. ByteTrack (Zhang et al., 
2022) has proven to be the approach that best fits our specific case.  We opted to implement 
ByteTrack for its consideration of both high and low confidence predictions, making it more 
robust to occlusions during tracking. As an added feature, optical flow was integrated into the 
ByteTrack pipeline to ensure tracking only occurs when the conveyor belt is moving in one 
direction and not the other (when the algorithm detects the conveyor belt moving backwards, 
the tracking stops). 
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2.5. Classification model 
 

A classification model was trained on data labelled for each targeted tuna species, namely 
skipjack tuna (SKJ), yellowfin tuna (YFT), and bigeye tuna (BET). For this task, various state-
of-the-art models were considered, with RegNet (Radosavovic et al., 2020) being chosen for 
its efficient extraction of fine image features. RegNet is an image classification model that 
is designed to automatically find the best way to analyze images for subtle details. This 
allows it to accurately distinguish between similar-looking objects in an image by focusing 
on fine visual differences between them making it ideal for distinguishing between tuna 
species with similar features. 

Initially, single-stage classification approach was considered: outputs from the 
segmentation model were directly classified into the three targeted tuna species. However, 
with the aim of improving the model’s performance, a hierarchical classification pipeline 
was adopted. Hierarchical classification works by breaking down the problem, allowing the 
model to learn specific features at each stage, and improve accuracy for similar classes. 
The classification took place in three stages. Firstly, the detections would be classified in 
target (tuna) vs non-target (bycatch) species. Then, the skipjack tuna, characterized by its 
distinct features, namely the dark stripes on its belly, was separated from other tuna 
species. Finally, having similar visual features, bigeye and yellowfin tuna were classified in 
the third stage of the classification. 

2.6. Size sampling and LWR 
 

We need the final estimates of the specific composition of the catch in terms of weight by 
species. Therefore, it will be necessary to determine the weight of each identified individual. 
Since we don't have an effective way to weigh the specimens, we'll accomplish this by 
measuring them and then converting those measurements to weight using the specific 
length-weight relationship (LWR). 
 
Once the image perspective has been corrected, estimating sizes becomes straightforward 
since the dimensions of each individual remain consistent throughout the image. For the 
most accurate approximation, it's crucial to measure only those individuals where occlusion 
is insignificant. These are individuals that are fully visible from head to tail (Figure 4). One way 
to check if an individual is overlapped is to measure the ratio between its major and minor 
axes, i.e., horizontal and vertical length. A complete individual will have a higher ratio, while 
overlapped ones will have a lower ratio. This ratio can be specified by species, or a generic 
one can be used if the differences between tuna species are minimal. 
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Figure 4. Non-occluded fish selected for measurement (green), and incomplete fish not selected for the size 
sample (red) 

Then, with the selected individuals, the measurements are performed. To simplify this, we 
use the width of the conveyor belt, which remains constant throughout its length, both in 
the image and in reality. Knowing the width of the belt both in centimetres and in pixels, we 
only need to calculate the pixel distance from end to end of the major axis of each individual 
and apply a proportion to approximate its real size.  

 
3. Results and validation 

 
The pipeline tuning tasks are still ongoing, so the results presented in this document should be 
considered preliminary. The training image set continues to grow, as do the tests with different 
models in various phases (segmentation and classification). 
 
Currently, we have 12,703 individual segments derived from 1278 independent annotated 
images. Table 1 below shows the number of segments by label. Keep in mind that labels referring 
to species were merged into the corresponding super-labels for each of the hierarchical 
classification models. 

 

Segments by label 

TARGET NO_TARGET FISH 

6204 1114 4928 

SKJ BET or YFT 

3590 

2614 

BET YFT 

303 2274 

IOTC-2025-WGEMS-05



IOTC-2025-WGEMS05-DocXX 

Table 1. The segmented images and the total number of segments used for model training are categorized 
hierarchically. The top-level labels are TARGET and NO_TARGET, representing species targeted by the fishery 
(BET, SKJ, and YFT) and non-target species (all others). Based on morphological similarities, target species are 
further divided into SKJ and BET_YFT. Finally, BET_YFT is split into the respective species 

 
All our models were validated using a robust 5-fold stratified cross-validation. Figure 5 shows 
the confusion matrices for each of the classification steps. Results show that for the first two 
levels, an acceptable level of accuracy is achieved, while for the third and final level, the results 
have a large margin for improvement. At the initial level, a substantial proportion of the 
individuals belonging to the target species (BET, SKJ, and YFT) are accurately identified, with a 
99% accuracy rate. 18% of the bycatch that is erroneously identified as tuna is added to this 
group of fish that passes to the next step. It is worth noting that this 18% refers only to the 
bycatch, not the total catch. Considering that bycatch accounts for a small proportion of the 
total catch, this 18% does not represent a significant error in the final estimates. Each stage of 
the hierarchical classification system has been trained exclusively with its respective labels. No 
analyses have been conducted to assess the impact of misclassified individuals as they progress 
to the next stage. The second level, where skipjack is differentiated from the other two species, 
performs even better, with an accuracy of 99% for SKJ identifications and 97% for BET and YFT. 
As previously mentioned, the distinction based on visual characteristics of these species 
facilitates classification. However, the final stage of the classification exhibits a large margin for 
improvement, as only 72% of the BET and 87% of the YFT are correctly classified. While these 
percentages might be considered high for other applications, they are below the minimum 
acceptable threshold before using them both for science and compliance purposes. 

 
 
Figure 5: Confusion matrices for each of the steps in our hierarchical classification. Top left for the 
first step (target or no-target), top right for the second step (SKJ or others) and third step in the 
bottom (BET or YFT)  
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The second phase of validation is currently underway. This involves comparing our model's 
automatic estimates against the ground truth. Obtaining accurate data on the specific 
composition of a commercial fishing operation (i.e, ground truth) is challenging, mainly because 
the minimum sample size required is often unattainable. To address this difficulty and determine 
the ground truth, two onboard scientists from AZTI randomly selected a sample of 1.5 to 2 tons 
of fish from several commercial sets in the Indian Ocean. They measured (FL lower cm) and 
identified the species of each fish. Once the catch was stowed, this sample was randomly placed 
on the conveyor belt and filmed using the EM system. This comparison will not only allow us to 
assess the model's performance but also to study potential sources of bias, such as the 
implications of identifying/measuring only individuals from the surface layer on the conveyor 
belt or only whole individuals (without significant occlusion). 

 
 
 

4. Recommendations and future developments 
 

The work is ongoing, and new results will be presented at future IOTC meetings. However, the 
work done so far has allowed us to identify several strengths and weaknesses in the automatic 
identification of species on the conveyor belt in tropical tuna purse seine vessels. 

 

• Strengths  
 

o Larger Sample size: This method allows for inferring the catch composition 
based on a much larger sample compared to what could be done by onboard 
personnel (whether an observer or a crew member). In small samples of 300 
to 500 fish on the conveyor belt, the system successfully segments (samples) 
between 72% and 93% of the fish. However, in a commercial fishing set, 
where the belt contains multiple layers of fish, this percentage would 
significantly decrease 
 

o A catch composition estimation method based on AI would mean having a 
standardized method among CPCs that implemented EM in their purse seine 
fleets.   

 
o Near real-time data: Obtaining real-time or near real-time data would be of 

great help to complete the logbooks automatically, or at least for the 
captains to have another source of information beyond the sampling 
prepared by the crew. 
 

 

• Weaknesses and or challenges 
 

o Poor light conditions and movement: The training and detection images are 
captured on the vessel's lower deck in low-light conditions. This poor lighting 
forces the camera to use longer exposure times. While this isn't an issue for 
still objects, the rapid movement of fish on the conveyor belt during these 
longer exposures causes significant blur in the resulting images, negatively 
impacting their quality. 
 

o Inconsistency among installations: Due to the unique characteristics of each 
boat, the images of the well deck can vary significantly from one boat to 
another. The position and angle of the cameras, as well as the lighting 
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conditions, are unique for each boat. This variability poses a substantial 
challenge for AI models, as it can be difficult to learn the characteristic 
patterns of each species. 
 

o Occlusion: The bulk delivery of tuna onto the conveyor belt often leads to 
significant occlusion, meaning parts of the fish cannot be seen in the image. 
This poses a considerable challenge, particularly when only a small portion 
like the tail is visible, rendering the accurate classification of the species 
difficult for experienced observers annotating the data, let alone a trained 
AI-model. 

 
o Unbalanced and small training set: Compared to the other two target tuna 

species, bigeye tuna is caught in significantly lower numbers. This disparity 
in catch rates directly impacts the training data, creating an imbalance. This 
data bias is particularly problematic for distinguishing bigeye from yellowfin 
tuna, as they share many visual similarities, leading to frequent 
misclassifications of bigeye as yellowfin. 
 

o Dirty lenses: Since the cameras used are placed very close to the conveyor, 
the fish themselves splash them as they pass through the conveyor. These 
contaminants are made up of blood, scales, water, and any other type of 
debris that the fish bring with them. If the camera lenses are not cleaned 
regularly, they become clogged to the point of being useless. 

 
 

Future work:  

o 3D camera: Besides the improved image quality from the 3D camera's 
global shutter, it also captures depth information, generating a 3D 
representation of the scene. By measuring the 3D distance across a 
reference object of known length within this 3D data (e.g. width of the 
conveyor belt), a real-world scale is established. This scale then allows 
for accurate measurement of the 3D distance between the fish's fork 
length end points, enabling precise calculation of its actual length (in cm) 
and, therefore, its weight. 
 

o Other models: To potentially enhance the segmentation performance, 
preliminary experiments are currently being trialled. Real-time YOLO 
bounding box detection followed by SAM2 segmentation is being 
compared against the performance of the current method that uses 
Mask R-CNN. This approach leverages YOLO’'s speed for initial object 
detection, feeding those results to SAM2 for instance segmentation, 
aiming for improved accuracy without significantly increasing the overall 
duration required to perform the detections. 
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