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SUMMARY 

In 2023, a 1-component GAMM model to standardize SKJ catch per FOB set of the Indian Ocean 

EU purse-seine fleet for the period 1991-2021 was presented (Kaplan et al. 2023a). This paper 

updates that model to include data for the period 2022-2023 for the SKJ management strategy 

evaluation (MSE) process. Results indicate a downward trend in SKJ catch per set since 2018. 
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1. Introduction 

In 2023, both a short (2010-2021; Kaplan et al. 2023b) and long (1991-2021; Kaplan et al. 2023a) time series 

standardized CPUE for skipjack tuna (SKJ) were produced based on data from the European purse-seine fishery on 

tropical tunas in the Indian Ocean. The long time series was the principal abundance index used for the stock 

assessment. It was requested that the same long time series model (Kaplan et al. 2023a) be rerun including more 

recent data (i.e., 2022-2023 for a total time series of 1991-2023) as part of the management strategy evaluation for 

SKJ. This analysis is performed here. For completeness, the same figures and text are included as in the 2023 paper, 

with any differences noted as needed. 

2. Methods 

2.1 Catch-effort dataset 

The catch-effort data in this study consisted of French and Spanish FOB sets over the period 1991-2023. The initial 

data consisted of 139,879 FOB sets corresponding to 137,672 fishing activity entries in the data set. The data was 

filtered to remove the following data entries (numbers of sets indicated are not exclusive): 

• Null sets (27 sets) 
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• Fishing activities corresponding to multiple fishing sets (4,108 sets). Such multi-set fishing activities are 

concentrated in the early part of the time series, but never exceed 15% of all FOB sets in a given year. 

• Sets by vessels in the bottom 5% of vessels in terms of number of positive sets or that were active less than 

3 years or whose activities spanned less than 5 years (19 vessels corresponding to 2,430 sets) 

After applying all of these filters, the final dataset used for building the CPUE standardization model consisted of 

133,397 sets. 

In addition to including data from 2022-2023, this dataset differs from that presented in 2023 (Kaplan et al. 2023a) 

in that improved SKJ catch estimates for the year 2020 have been used. 

 

Figure 1: Number and fraction of FOB sets per year that are recorded in multi-set fishing activities. 

2.2 Predictor variables 

The predictor variables consisted of the the standard temporal, spatial, fleet and vessel identifier predictor variables 

included in previous standardization efforts (Guéry et al. 2021, Akia et al. 2022, Kaplan et al. 2023a): 

• lon,lat spatial variables 

• year, month temporal variables 

• quarter for stratifying spatial smooths and prediction grids 

• vessel country, capacity and year of initiation of activity 

• vessel unique identifier 

2.3 Modeling approach 

Only a 1-part GAMM model was evaluated for this long time series CPUE. 
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2.3.1 1-part GAMM model 

 

Figure 2: Histograms of SKJ catch data in model training dataset before (a) and afer (b) log transformation. 

A single-component general additive mixed-effects model (GAMM) was also run with 𝑙𝑜𝑔(𝑆𝐾𝐽 + 𝐶) as the variable 

to be predicted, where 𝑆𝐾𝐽 is the T3-corrected (Pianet et al. 2000) catch of skipjack per purse seine FOB set. As for 

a small number of sets (3,078 sets) zero SKJ catch was reported, a small constant, 𝐶, was added to SKJ catch before 

taking the log. This constant 𝐶 was chosen to be 1 tonne as this amount is generally used as the limit between null 

and non-null sets and was observed to produce a response variable that was reasonably close to normally distributed 

before running the model (Figure 2) and the resulting GAMM had reasonably good model diagnostics (see Results 

below). 

Predictor variables for the GAMM model were longitude and latitude as a tensor product smooth by quarter, year 

and month as a tensor product smooth cyclic in the month dimension, vessel capacity and years of service at the time 

of fishing as individual smooths and vessel country as a categorical predictor. Vessel identifier was included as a 

categorical random effect. The precise command used to general the GAMM model was: 

gm = gamm(logskj~te(lon,lat,by=quarter,k=13) + 
te(year,month,k=c(20,11),bs=c("cr","cc")) +  

            s(yr_serv,k=10) + s(capacity,k=10) + country, 

          data=data,random=list(vessel_id=~1)) 

The model was verified using the gam.check function of the mgcv package to assure that the numbers of splines 

used for each smooth (i.e., k) were sufficient. 

2.4 Prediction/standardization approaches 

CPUE standardization is based on predicting models on a standard spatio-temporal grid, fixing fishing-efficiency- 

and catchability-related variables at standardized values, and then averaging over space (and potentially other 

predictors) to obtain a standardized estimation of abundance. We implemented two different approaches to this 

spatial averaging process. The first is the approach that has traditionally been used based on predicting catch in each 

1∘ × 1∘-month strata occupied by the fishery and then averaging (or summing) over 1∘ × 1∘ grid cells. This spatial 

averaging is based on the assumption that set size is a true predictor of abundance in each strata. Though spatial 
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thinning is generally used to remove cells with very low fishing effort from the prediction step, this method still has 

the disadvantage that it combines results from grid cells with potentially highly varying sampling effort (i.e., 

numbers of fishing sets). Furthermore, catch per set is only partially satisfactory as an estimator of abundance as it 

implicitly assumes that the number of FOB fish schools is constant over space (so that abundance is entirely 

reflected in set size), an assumption that is unlikely to be globally valid. 

Due to these limitations, we also implement a second approach to developing a spatially-averaged standardized 

CPUE. In this approach, the predictions in each 1∘ × 1∘-month strata are weighted by the total number of fishing 

sets carried out in that grid cell and the corresponding quarter (i.e., the weightings are stratified by quarter) over the 

entire time series of the data. As the number of sets times the average catch per set is the total catch, this approach is 

akin to using total catch as an indicator of abundance, except that the spatial distribution of fishing effort is 

standardized over time. This method will place more weight on core fishing areas where most fishing effort occurs 

relative to the previously described methodology. 

Before implementing both standardization approaches, the spatial area to be used for predictions was thinned to 

remove 1∘ × 1∘ grid cells with little fishing effort. Predictions were only made for grid cells that collectively 

represent the smallest number of grid cells accounting for at least 95% of the FOB fishing sets in each quarter 

included in the model training data. The resulting modeling domains for each of the four quarters are shown in 

Figure 3. 

Variables related to fishing efficiency and catchability were fixed at their median values from the training data set. 

Specifically, when calculating standardized CPUEs, vessel capacity was fixed at 1850 and vessel initial year of 

activity was fixed at 1996. Predictions were made for all levels of categorical predictor variable vessel country and 

then averaged across levels, weighting the resulting predictions by the overall prevalence of each level in the model 

training data (e.g., fraction of Spanish versus French sets). 

Predictions from the log-normal GAMM model were converted back to absolute catch using the standard formula 

for estimating the expected value of a log-normal distribution (Fletcher 2008): 

𝜇𝑌 = 𝑒𝑥𝑝 (𝜇𝑋 +
𝜎𝑋
2

2
) (1) 

where 𝜇𝑋 is the expected value predicted by the GAMM model, 𝜎𝑋
2 is the residual variance of the GAMM model 

(i.e., the scale parameter of the model outputs) and 𝜇𝑌 is the final predicted catch. 

When averaging GAMM model predictions to obtain annual standardized CPUEs, standard errors were combined 

via simple addition, equivalent to assuming that all uncertainties in model predictions are correlated. Though 

undoubtedly inexact, this assumption will lead to conservative estimates of uncertainty (i.e., larger than reality). This 

issue can be corrected to obtain more exact uncertainty estimates using a bootstrap approach based on the Cholesky 

trick (Andersen 2022). 
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Figure 3: The 1∘ × 1∘ grid cells used for model prediction for each quarter. The quarter number is indicated at the 

top of each panel. 

3. Results 

3.1 Model diagnostics and significance of predictor variables 

GAMM models are actually implemented as the combination of a linear mixed-effects (LME) model for estimating 

the random effect and a GAM model for estimating the final model with smooths after removing the variance 

explained by the random effect. Both of these components provide standard diagnostic plots, including a residuals 

versus fitted plot for the LME model (Figure 4) and a QQ-plot for the GAM (Figure 5). Both of these plots indicate 

an adequate fit of the data to the model assumptions. 

All predictors included in the model, including smoothed, direct and random effects, had a significant impact on 

SKJ catch per FOB set except year of initiation of activity (see model summaries below and Table 1). 
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Figure 4: Fitted values versus residuals for LME part (i.e., random part) of GAMM. 

 

Figure 5: QQ-plot of GAM part (i.e., non-random part) of GAMM. 

ANOVA table for LME component of GAMM model (i.e., model for estimating random effect): 
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  numDF  denDF F-value p-value 

X    17 133309 2292.65  <.0001 

Summary output from GAM part of GAMM model (i.e., non-random part of model): 

 

Family: gaussian  

Link function: identity  

 

Formula: 

logskj ~ te(lon, lat, by = quarter, k = 13) + te(year, month,  

    k = c(20, 11), bs = c("cr", "cc")) + s(yr_serv, k = 10) +  

    s(capacity, k = 10) + country 

 

Parametric coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)   2.67809    0.02289 117.004   <2e-16 *** 

countryspain  0.07668    0.03096   2.477   0.0133 *   

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
Approximate significance of smooth terms: 

                        edf Ref.df      F  p-value     

te(lon,lat):quarter1  47.82  47.82 25.294  < 2e-16 *** 

te(lon,lat):quarter2  32.56  32.56 13.118  < 2e-16 *** 

te(lon,lat):quarter3  37.26  37.26 44.776  < 2e-16 *** 

te(lon,lat):quarter4  44.06  44.07 24.923  < 2e-16 *** 

te(year,month)       182.86 182.86 35.248  < 2e-16 *** 

s(yr_serv)             1.00   1.00  2.834   0.0923 .   

s(capacity)            1.00   1.00 25.248 5.14e-07 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 
R-sq.(adj) =  0.119    

  Scale est. = 0.87034   n = 133397 

 

(a) Parametric terms 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.678 0.023 117.004 0.000 

countryspain 0.077 0.031 2.477 0.013 
  

Table 1: Summary statistics and p-values for fixed and smooth terms included in the non-random part of the GAMM 

model. 
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3.2 Marginal effects of predictor variables 

 

Figure 6: Marginal effect of lon,lat on log SKJ catch per FOB set for each of the four quarters. 
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Figure 7: Marginal effect of year,month on log SKJ catch per FOB set. 

 

Figure 8: Marginal effects of individual smooths on log SKJ catch per FOB set. The red horizontal bars on the 

panels indicate the central 95% of the data of the corresponding predictor variable in the model training data set. 
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Vessel carrying capacity had a linearly increasing impact on log SKJ catch per set, whereas the effect of year of 

entry into the fishery was insignificant. The impacts of spatial (Figure 6) and temporal (Figure 7) predictors on log 

SKJ catch are more difficult to interpret. 

3.3 Standardized CPUEs 

Table 2: Annual spatially weighted and unweighted standardized CPUEs and nominal CPUEs for SKJ catch per 

FOB set in the Indian Ocean European purse seine fleet. Values are in units of tonnes per set. 

Ye

ar 

Unweighted, 

Mean 

Unweighted, 

2.5% 

Unweighted, 

97.5% 

Weighted, 

Mean 

Weighted, 

2.5% 

Weighted, 

97.5% 

19

91 

27.93 23.61 33.09 27.78 23.79 32.47 

19

92 

26.95 23.76 30.56 27.49 24.54 30.80 

19

93 

27.18 23.90 30.89 27.85 24.80 31.27 

19

94 

27.53 24.32 31.17 27.69 24.79 30.91 

19

95 

23.97 21.33 26.94 23.86 21.53 26.44 

19

96 

19.23 17.00 21.75 19.19 17.19 21.41 

19

97 

17.60 15.67 19.75 17.63 15.91 19.52 

19

98 

19.38 17.09 21.96 19.55 17.45 21.90 

19

99 

23.71 21.03 26.73 24.17 21.74 26.86 

20

00 

26.09 23.20 29.33 26.53 23.93 29.41 

20

01 

26.29 23.16 29.84 26.57 23.74 29.73 

20

02 

28.83 25.72 32.31 29.35 26.57 32.41 

20

03 

29.77 26.31 33.68 30.32 27.15 33.84 

20

04 

25.95 23.00 29.28 25.95 23.31 28.88 

20

05 

23.19 20.60 26.10 23.15 20.87 25.69 

20

06 

21.82 19.40 24.54 22.03 19.87 24.42 

20

07 

18.86 16.88 21.08 18.77 17.05 20.67 

20

08 

18.43 16.34 20.79 18.18 16.34 20.23 

20

09 

22.49 20.10 25.17 22.55 20.43 24.89 

20 23.00 20.55 25.73 22.90 20.75 25.28 
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10 

20

11 

18.58 16.50 20.90 17.92 16.13 19.90 

20

12 

16.58 14.80 18.55 15.92 14.41 17.58 

20

13 

16.91 15.01 19.05 16.44 14.79 18.28 

20

14 

17.42 15.57 19.49 17.08 15.48 18.84 

20

15 

17.77 15.85 19.93 17.57 15.89 19.43 

20

16 

18.55 16.59 20.73 18.50 16.79 20.38 

20

17 

21.83 19.66 24.25 21.71 19.83 23.77 

20

18 

24.65 22.12 27.46 24.46 22.25 26.90 

20

19 

22.51 20.27 24.99 22.62 20.65 24.78 

20

20 

20.94 18.78 23.35 21.31 19.36 23.45 

20

21 

21.81 19.53 24.36 22.11 20.06 24.36 

20

22 

21.09 18.89 23.54 20.95 19.02 23.07 

20

23 

19.01 16.79 21.51 18.27 16.31 20.46 
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Figure 9: Yearly standardized CPUE predictions from the single-component GAMM model. CPUEs are in units of 

tonnes of SKJ catch per PS FOB set in the Indian Ocean. Solid curves indicate mean tendencies, whereas dashed 

curves indicate the upper and lower limits of the 95% confidence interval. Red curves correspond to the spatially 

unweighted approach to averaging predictions over space, whereas green curves correspond to the spatially 

weighted approach to spatial averaging. Black and gray curves indicate the nominal CPUE derived from the 

original, unfiltered data and the filtered data used for training the GAMM model, respectively. 

Nominal and standardized annual CPUE curves are shown in Figure 9 and Table 2. The weighted and unweighted 

standardized CPUE curves are generally similar to each other and similar to the nominal CPUE curves. The most 

notable differences between nominal and standardized CPUEs occur in 4 specific periods: (a) 1991-1997: 

standardized CPUEs are consistently above nominal CPUEs, perhaps due to the balancing of catch between the 

different fleets; (b) 2000-2007: standardized CPUEs are consistently below nominal CPUEs, perhaps related to the 

effect of the “golden years”; (c) 2007-2012: this period corresponding to the most important impacts of Somali 

piracy is also characterized by standardized CPUEs being somewhat superiod to nominal CPUEs; and (c) 2018-

2023: standardized CPUEs are generally equally or inferior to nominal CPUEs over this period characterized by 

YFT TAC limits. Nominal CPUEs based on the original, unfiltered data and the filtered data used for GAMM model 

training are generally quite close. 

The standardized time series is generally quite close to that presented in 2023 (Kaplan et al. 2023a) except for 2020 

which has changed due to the use of revised data. Since 2018, there is a downward trend SKJ catch per set. 

3.4 Access to standarized time series 

The annual standardized CPUE time series can be download at: https://drive.ird.fr/s/6WFyyFCeAt6c4me 

The quarterly standardized CPUE time series can be downloaded at: https://drive.ird.fr/s/5mWFZzbFnysoo6L 

https://drive.ird.fr/s/6WFyyFCeAt6c4me
https://drive.ird.fr/s/5mWFZzbFnysoo6L
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4. Discussion 

Results for 2022-2023 suggest a downward trend in SKJ catch per set. 
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