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Abstract

Drifting fish aggregating devices (FADs), equipped with echosounder buoys, are highly effective tools that
significantly enhance tuna catchability for purse seine vessels. However, FADs are also responsible for
various ecological impacts - some well established, others still debated within the scientific community.
These ecological impacts highlight the need to develop strategies aimed at reducing FAD numbers. In this
study, we explore the potential of buoy information sharing among vessels as a means to reduce FAD
numbers while maintaining purse seine fleets profitability. By developing an Individual-Based Model, built
upon a pelagic species behavioral model, we demonstrate that FAD numbers in the Indian Ocean could
be reduced by 75 % through coordinated information sharing. This reduction not only improves vessel
profitability by cutting private costs and increasing revenue, but also strongly decreases social costs, such
as carbon emissions and FAD stranding. However, this approach also highlights trade-offs, as it leads to
a slight increase in silky shark bycatch. Therefore, careful consideration will be required to balance these
outcomes and guide future FAD management strategies.
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1 Introduction

Purse seine (PS) fisheries targeting tropical tuna started to deploy drifting Fish Aggregating Devices (FADs),
and to attach radio buoys to them in the 1980s, to facilitate the search and capture of tunas (Ariz et al., 1999;
Hall, 1992; Hallier and Parajua, 1999; Marsac, Fonteneau, and Michaud, 2014). Since then, the use of FADs
sharply increased (Dagorn et al., 2013; Gershman et al., 2015; Maufroy et al., 2017). A recent study estimated
the number of FADs deployed yearly at the global scale to be between 116,000 and 140,000 per year since
2015 (Schiller et al., 2025). This would represent a total of around 1.41 million FADs deployed between 2007
and 2021.

FADs are highly efficient fishing tools that increase tuna catchability, leading PS fleets to extend their fishing
zones and preferentially targeting schools associated to floating objects (Fonteneau et al., 2015; Lennert-Cody
etal.,, 2018; Lopez et al., 2014; M Tolotti et al., 2022). In 2017-2021, more than 40 % of global purse seine catch
of tuna came from associated schools (ISSF, 2023). During the last two decades, echosounder buoys have re-
placed radio buoys that were initially associated with FADs. These echosounder buoys transmit GPS data and
rough estimates of aggregated biomass under FADs directly to fishing vessels via satellite, significantly lower-
ing search costs and increasing harvest efficiency (Lopez et al., 2014; Tidd, Floc'h, et al., 2023; Wain et al., 2021).

The massive increase in the use of FADs since the 1980s has several potential ecological impacts, which
can be decomposed into three main categories. First, a lot of FADs are left adrift and end up stranding on
coastal reefs or beaches, causing damage to coastal habitats (Escalle, Mourot, et al., 2023; Escalle, Phillips, et
al., 2019; Imzilen, Lett, Chassot, and Kaplan, 2021; Imzilen, Lett, Chassot, Maufroy, et al., 2022). Then, FADs can
also impact non-targeted pelagic species, either through ghost fishing (via the entanglement in the nets that
constitute their structure) and/or bycatch (Filmalter et al., 2013; Gilman, 2011). Finally, FADs can impact target
species, tropical tuna, either by increasing fishing efficiency - potentially leading to overfishing - or by altering
their habitat through their presence at the ocean surface (Dupaix, 2023). There is no scientific consensus on
some of these impacts, and even for those that are generally agreed upon, their extent remains uncertain. For
example, although it was demonstrated that FADs significantly modify the habitat of pelagic species (Dupaix,
Capello, et al., 2021; Dupaix, Dagorn, et al., 2024), the fact that these modifications could attract and/or retain
tuna in areas that are detrimental to them (the ecological trap hypothesis) is still very much debated (Dupaix,
Ménard, et al., 2024; Marsac, Fonteneau, and Ménard, 2000).

Although FAD impacts and their extent remain subject to debate, solutions are necessary if we aim to
reduce their use. This study is based on the premise that we want to reduce the number of FADs, therefore
reducing their potential and actual ecological impacts. Hence, we assess how the number of FADs can be
reduced without impacting those using these tools, i.e. without impacting the economic results of purse seine
fleets. We investigate vessel cooperation as a strategy to reduce the number of FADs and their environmental
impacts. This cooperation is based on information sharing, specifically as we analyze the effects of sharing
data from echosounder buoys associated to FADs. Developing an Individual-Based Model of a purse seine
fleet, built upon a behavioral model of tuna around FADs, we design multiple scenarios to evaluate the effects
of information sharing on purse seine fleets’ private and social costs.

2 Material and methods

2.1 Individual based model

A spatial Individual-Based Model (IBM) was constructed to simulate the fishing behavior of purse seine
(PS) vessels in an array of Fish Aggregating Devices. In the model, purse seine vessels are considered to fish
only on FAD-associated schools. FADs are distributed randomly in space and each of them is equipped with an



active echosounder buoy, giving information on FAD position and tuna presence/absence at FAD to the vessels
that follow the buoy. In real PS fleets, vessels deploy their FADs equipped with echosounder buoys, which
are previously activated i.e., satellite connections are established, allowing the buoy to remotely transmit
its position and the associated biomass indices detected nearby the FAD. These echosounder buoys can be
deactivated remotely i.e., satellite communications can be remotely interrupted and no more information
is transmitted to the vessels. In the Indian Ocean, it was shown that for an average of 10,700 active buoys
followed on a daily basis in 2020-2023, around 25,000 FADs were deployed (IOTC, 2024). Hence, it is important
to note that, although they are closely linked, the set of active buoys in our model does not correspond to the
total number of FADs at sea nor to the total number of FADs deployed, but to the daily number of active
echosounder buoys.

2.1.1 FAD occupancy by tuna

Each FAD can be either occupied by tuna (F},) or empty (F.) and its occupancy is randomly picked at the
initialization. Then, it alternates periods of continuous occupancy (aggregation Continuous Residence Times,
aCRTs) and continuous emptiness (aggregation Continuous Absence Times, aCATs; Baidai et al., 2020a). To
obtain aCRT and aCAT values, acoustic data collected by Marine Instruments M3l buoys, in 2020-2021 in the In-
dian Ocean, were translated into presence/absence of a tuna aggregation, using a machine learning algorithm
(Baidai et al., 2020b). This algorithm was shown to provide good accuracy (85 %) in the Indian Ocean. In M3
buoys data, the first sections of presence or absence occurring at the beginning of the FAD trajectories were
excluded from the analysis. These sections may result from the colonization period of the FAD during which
the FAD-tuna system is not yet at equilibrium, or potentially from classification errors related to the operation
on the buoy (Baidai et al., 2020b). Presence/absence data was used to obtain aCRT and aCAT distributions.
To account for the impact of FAD density on FAD occupancy, we used the non-social model from Capello et al.,
2022. We calibrated this model using data from Govinden et al., 2021 and Dupaix, Dagorn, et al., 2024, al-
lowing to determine the relationship between FAD density and average aCAT, aCRT and aggregation size (m)
values (see Supplementary S1). For each simulation, aCAT and aCRT distributions were estimated to set the
average value to the one obtained from the model (Figure S1). For the system to reach equilibrium before the
simulations, vessels were released in the system 100 days after initialization (Figure S2).

2.1.2 Vessel behavior

We note F the set of all the echosounder buoys distributed randomly in the model (F' = [1;n], with n
the number of elements in F'). We consider that each vessel receives information from a given set of buoys
(followed FADs, noted F'). For each vessel 4, the set of all the echosounder buoys present in the system can
be divided as follows:

F=F;UF., UF.;UF!, (1)

where F(if are the FADs occupied by tuna and followed by vessel i, Fgu the FADs occupied by tuna and not
followed by vessel ¢, I, ; the FADs not occupied by tuna followed by vessel ¢, and F¢ ,, the FADs not occupied
by tuna and not followed by vessel 7. With this definition, the intersections of the four above-mentioned
subsets of F are empty (eg. . ; N F, , = 9).

Each vessel can be in 4 different states: (1) traveling, (2) fishing, (3) resting and (4) idle (Figure 1). When a vessel
is traveling, it goes at a constant speed in a straight line towards the closest FAD that is occupied by tuna and
for which it has the information of tuna presence. This information can be obtained by the vessel in two ways:
either the vessel receives the buoy information from the FAD or the FAD is at less than a given detection radius
(R), allowing the vessel to detect tuna presence using a bird radar. Hence, the aim FAD (the FAD towards which

the vessel orients itself) of vessel 7 is the FAD j such that:



jeFy with Fj=F. U{keF,, withd(i,k) <R} 2
d(zhj) = minlequ d(Z7 l)

where d(i, [) is the distance between vessel i and FAD [ and F'} the set of all the FADs available to be fished by
vessel 7. Notice that the second term in Eq. 2 implies that if multiple FADs are available to the vessel, it heads
towards the closest one. When the vessel reaches the aim FAD, if it's the day it starts fishing, if it's the night it
waits for the following day to start fishing (resting state). Day and night duration were considered to last 12 h
each.

When fishing, the vessel stays at the FAD for a given duration. This duration corresponds to the duration of a
fishing set (¢5) and was obtained using data from observers onboard French purse seine vessels in the Indian
Ocean, in 2018-2022. For each set performed by French purse seine vessels on a FAD, this dataset contains
the starting and ending times allowing to have a corresponding set duration. Each time a vessel is fishing in
the IBM, ¢ is randomly picked from the obtained distribution of set duration. Each time a FAD is fished, a colo-
nization time ¢, is randomly picked, during which the FAD is empty. Colonization time values were generated
randomly based on the daily FAD colonization rate (1/t. with ¢, = 40.41 days) calculated using echosounder
buoys data in the Indian Ocean by Baidai et al., 2020a.

A fourth vessel state was introduced (id/e), to handle the vessel's behavior at low FAD numbers. When very
few FADs are available, sometimes vessels do not have any occupied FAD available, i.e. Fi = @. In that case,
the vessel switches to idle state, where it stops moving and waits for a new FAD to be available.

The detailed choice diagram used to simulate one vessel is provided in Figure 1. When several vessels target
the same FAD, the first to arrive is the one performing the fishing set. If the vessels arrive at the same time-
step on a FAD, the one performing the fishing set is picked randomly.

2.2 Simulations

Simulations were performed in square areas of side length L = 1,200 km, with a time-step At = 1 h. Fleets
of V' =40 vessels were simulated during T' = 360 days. To test the influence of the number of FADs and buoy
information sharing on the vessels’ results, several scenarios were developed. Scenarios were obtained with
n ranging from 2,000 to 12,000. The values of L, V' and the maximum n (12,000) were chosen to be similar to
the real situation in the western Indian Ocean, were 43 purse seine vessels operate1 , with a current limit of 300
operational buoys at any one time (I0TC, 2019, 2023a), and a maximum FAD density of around 8 x 10~3 km
(Dupaix, Dagorn, et al., 2024).

We define the sharing coefficient (noted s) as the proportion of the total number of FADs from which each
individual vessel receives buoy information. For each value of n, scenarios were designed with s in {4%; %;
L. L1111}, For example, with n = 2,000 and s = 1/40, each vessel receives the information from ny =
50 FADs. With n =2,000 and s = % vessels share their FADs by groups of 4 and hence receive information
from ny =200 FADs. Atotal of 56 scenarios were simulated - one per combination of n and s values - and 100
simulations were performed for each scenario (Table 1). Each scenario considered identical vessels, traveling
atthe same speed (v =19.5 km.h™", corresponding to the average speed of the cruising state in Walker and Bez,
2010), having the same detection radius (R = 12.95 km, the detection range of a bird radar, Assali et al., 2020),
spending the same average time to perform a set (average t; = 2.59 h) and having access to the information
from the same number of buoys.
For each simulated vessel, we recorded the number of sets performed (Ng) and the total distance traveled

(D).

TQuery performed on https:/iotc.org/oqs, 14 Feb. 2024, for year 2020, on Fishing Craft Table, of industrial purse seine vessels of EU,
Seychelles and Mauritius fleets.
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2.3 Profitability calculation

For each vessel in the simulations, the total distance traveled and the number of fishing sets performed
were used to calculate operating costs and revenue, allowing the calculation of vessel profitability. A correction
was applied to the traveled distance and the number of fishing sets to account for the fact that in the IBM,
vessels are directly released in the fishing area, do not need to go back to port to unload their catch and
fish for a duration of 360 days over the year. To apply this correction, we used logbook data from French
purse seine vessels in the Indian Ocean, in 2019-2023. We determined the average number of days that PS
vessels are active per year (noted 7,) and the proportion of each fishing trip spent traveling to the fishing zone
(noted t4,qver)- The time spent traveling to the fishing zone was determined as the duration between vessel
departure from port and its first fishing set plus the duration between the last fishing set and vessel arrival at
port. Hence, we determined the corrected distance traveled (D’) and the corrected total number of sets (Ng)
as follow:

Ty
D/ =D x ?(1 - ttravel)

Ty
Név = Ng X ?(1 - ttravel)

2.3.1 Operating costs

Three costs categories were considered: (1) fuel costs, (2) FAD costs and (3) fixed and other variable costs.

All the following costs provided in € were converted to USD using the 2019-2023 average conversion factor
from INSEE (1 € = 1.1376 USD, French National Institute of Statistics and Economic Studies, https://www.inse
e.fr/fr/statistiques/2381462, accessed 2024-05-07).
Using the corrected distance travelled by vessels in the simulations, we calculated the total fuel consumption
of the vessels (C, in metric tons), considering an average consumption of ¢ = 30 kg.km™ (C' = ¢D’ x 1073;
Basurko et al., 2022; Granado et al., 2024). Fuel costs were calculated based on C and using the average fuel
cost (noted cy, in USD.tons™") over 2019-2023, obtained from the Singapore bunker prices (https://shipandb
unker.com/prices/apac/sea/sg-sin-singapore#MGO, accessed 2024-05-07). Hence, total fuel costs over the
simulation period can be expressed as follow:

Cuel = Ccy = CD/Cf x 1073 (3)

FAD costs included the costs associated with the buying and construction of FADs, the cost of the associated
echosounder buoys and the daily cost of information transmission (subscription to the supplier). It also in-
cluded the costs associated with supply vessels (SV). We estimated the FAD and echosounder buying costs to
be of 1,500 € (cpuy). However, in the WIO, for an average of 10,700 active buoys in 2020-2023, 25,000 new

buoys are activated yearly (I0TC, 2024). Hence, as we consider the number of active buoys in our simulations,
250
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buoys over a year and the average number of active buoys). The buoy information subscription cost (c;,.) was

a correction factor ¢ was applied to ¢y, (with ¢ = = 2.3, the ratio between the number of deployed
estimated to be 0.76 €.day”' (M.Capello, pers. information), equally shared among the purse seine vessels
sharing the buoy. Then, supply vessel costs were estimated using SV data provided by the Indian Ocean Tuna
Commission (https://iotc.org/vessels/supply). It allowed the estimation of the average number of SV supplying
each purse seine vessel between 2019 and 2023. If a SV was supplying several vessels, its cost was divided
equally among the supplied purse seiners. This average number was then multiplied by a daily operational
cost of 3,400 € per SV. Hence, the FAD costs can be expressed as follow:

ny

mn nsy
CFADs = % Sy + TuTCSV (4)

with n the total number of FADs, V' the total number of vessels, ¢ the ratio between the number of deployed
and active buoys in the 10 (I0TC, 2024), ¢y, the individual costs of the acquisition of a FAD and the associated

Chuy + Ta


https://www.insee.fr/fr/statistiques/2381462
https://www.insee.fr/fr/statistiques/2381462
https://shipandbunker.com/prices/apac/sea/sg-sin-singapore#MGO
https://shipandbunker.com/prices/apac/sea/sg-sin-singapore#MGO
https://iotc.org/vessels/supply

buoy (USD), T,, the number of days of activity of PS vessels per year (days), ny the number of followed FADs
by the vessel, s the sharing coefficient, ¢, the daily cost of buoy information transmission (USD.day™"), ngv
the total number of SV (from IOTC data) and cgy the daily operational cost of a SV (USD.day™).

Finally, fixed and other variable costs (cfizcq) Were estimated to be of 17,000 € per day. These costs include
vessel and material reparation, fishermen’ salary and transportation to the Indian Ocean.

2.3.2 Revenue

Revenue were calculated estimating catch of the three main commercial categories of tropical tuna (Guil-
lotreau et al., 2024): large yellowfin > 10 kg (noted YFT), skipjack tuna of all size (SKJ) and mixed tunas which
are a mixture of albacore, frigate tuna, bigeye tuna and juvenile yellowfin tunas < 10 kg (MIX). Compared to
categories used in Guillotreau et al., 2024, frigate tuna was added to the MIX category as the amount of catch
of this species by PS strongly increased since 2018 (average yearly catch of 1,940 metric tons in 2019-2022,
IOTC data).

Logbook data from French purse seine vessels in the Indian Ocean, from 2019-2023, was used to calculate
the average catch-per-set of each of the above categories. In order to improve the accuracy of the estimated
catches, FOB-associated catch-per-set reported in vessel logbooks was corrected using a dedicated procedure
referred to as levels 1 and 2 of the T3 processing (Duparc et al., 2020). Level 1 adjusts the catch-per-set values
declared in vessel logbooks using landing notes, to improve the accuracy of catch estimates provided by skip-
pers. Level 2 estimates the species and size compositions of FOB sets based on port sampling data. Similarly
to aCAT and aCRT values (see Section 2.1.1), catch-per-set values were corrected using the model of tuna be-
havior adapted from Capello et al., 2022 (Figure S1). The total amout of YFT and BET of all size caught in the
simulations was recorded, to compare it with corresponding quotas in the 10 (quota for the EU, MUS and SYC
fleets: 113,432 t YFT, IOTC Res 21/01 and 20,861 t BET, IOTC Res 23/04).

Average sale prices of the three categories (SKJ, YFT and MIX) over 2019-2023 were extracted from tuna sale
prices in Bangkok market (http://www.customs.go.th/statistic_report.php, SKJ] HS-Code: 03034300000, YFT
HS-Code: 03034200000, accessed 2024-04-29). The sale price of MIX was estimated to be equal to the SK] sale
price. The revenue for each vessel can be expressed as follow:

r= (pyftYFT + psr; SKJ + pmmMIX) N; (5)

where py i, Pskj and ppie are the sale prices of yellowfin, skipjack and mixed tuna respectively (in usD.t™),
YFT, SKJ and MIX the average catch-per-set of yellowfin, skipjack and mixed tuna (in tons) and N/ the
corrected number of sets performed by the simulated PS vessel over a year.

2.3.3 Profitability

The profitability (7, in USD) of each vessel was calculated as follows, using costs and revenue estimations
from Eq. 3,4 and 5:

T =71 —TuCfized — Cfuel — CFADs (6)

Based on the revenue calculated for each vessel, Gini indices (G) were calculated for each simulation, based
on the following equation:

11 Vv v
G:%WZZVZ‘—TJ“ (7)

i=1 j=1
where 7 is the average vessel revenue in the simulation, r; is the revenue of vessel ¢ and V is the number of
vessels (V' = 40). Here, the Gini index is an index of revenue dispersion among vessels. G = 0 would repre-
sent perfectly distributed revenue, when G = 1 would mean that one vessel gets all the generated revenue.
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2.4 Social costs

2.4.1 Silky shark bycatch

Because no aCAT nor aCRT are available for silky sharks, we considered every fished FAD to be occupied
by an average number of SLK (m g x). The calculation of this average value is detailed in Supplementary S1.
Based on this average number of silky shark caught per set, the total amount of bycatch was then determined
for every scenario.

Purse seine vessels discard bycaught silky sharks, so to quantify the induced economic damage one needs
to account for the commercial, recreational and conservation values of sharks (M Tolotti et al., 2022). Based on
M Tolotti et al., 2022's work, the cost of catching an individual SLK was quantified as the forgone consumptive
value of sharks. This value included the value of shark fins and that of fresh meat, corresponding to a cost
of 3.98 USD per kg of bycaught SLK. Bycaight sharks were considered to weight an average of 12.1 kg per
individual (M Tolotti et al., 2022).

2.4.2 FAD stranding

To determine the external costs associated with FAD stranding, we first determined the number of FADs
per vessel expected to strand for every scenario. For a vessel i this number (noted ngr (7)) can be expressed
as follows:

nstr(i) = %pSTR (8)
where n is the total number of active buoys, V' the number of vessels (V' = 40) and ¢ is the ratio between the
number of deployed buoys over a year and the average number of active buoys (p = % = 2.3, Section 2.3)
(I0TC, 2024). psr is the proportion of deployed FADs that end up stranding. This proportion was estimated
at 17.5 % of the number of deployed FADs in the Indian Ocean, using only active buoys (Imzilen, Lett, Chassot,
and Kaplan, 2021). Later, using data from deactivated buoys in the Indian Ocean, it was determined that this
percentage was underestimated by 23.7 % (Lau-Medrano, Gaertner, Marsac, Guéry, et al., 2024). Hence, we
use psrr = 0.175 x 1.237 = 0.216, i.e. 21.6 % of deployed FADs strand.

A literature review was then performed to assess the average FAD weight when recovered on a beach and
the costs associated with beach clean-ups (Table 2). Few articles estimated the wet weight of FADs when
recovered and both estimations were above 1 ton. Costs associated with beach clean-ups varied from 323
to 29,104 USD per ton of litter. In the analysis, we considered a conservative estimation of FAD stranding
external costs, considering an average wet-weight of 1.22 tons per FAD (Burt et al., 2020) and a clean-up cost
of 1,138 USD per ton of litter (Cruz et al., 2020).

3 Results

3.1 Simulation outputs

The average simulated number of sets per day ranged between 0.45 and 2.69 depending on the scenario,
with a median value of 0.87 (Figure 2A). This corresponded to an average catch per day ranging between
13.3 and 79.5 t of tuna, with a median value of 27 metric tons. The average number of sets per day reached
its maximum value for the scenario with maximum values of n and s. When n = 2,000, the number of sets
per day first decreased with increasing s values, then increased again, above s = 0.1. When n > 3,000, the
number of sets per day displayed an increasing trend with increasing values of s. Traveled distance per day
ranged between 84 km and 397 km, corresponding to a total fuel consumption over a year of 666 tand 3,152 t
respectively. The fuel consumption displayed inverted trends compared to the number of sets per day (Figure
2B). Vessels spent time in idle state in six scenarios (n = 2,000 and s € {0.025,0.05,0.1,0.125} and n = 3,000
and s € {0.025,0.05}) but this time only reached a maximum of 2.1 % when n = 2,000 and s = 0.025. This



result suggest that the number of available FADs was a limitation only in scenarios with small n and s values
(Figure 2C). Fishing vessels fished mainly on followed FADs, for all scenarios, with the percentage of fishing
sets performed on non-followed FADs varying between 0 and 16.1 %. This percentage was highest for small s
values and decreased with the increase of n (Figure 2D).

3.2 Profitability and equity among vessels

Average profitability per scenario varied between -3.4 and 25.9 million USD per vessel, with positive average
7 attained in most scenarios (47 out of 56 scenarios, Figure 3). The highest profitability was reached for highest
n and s values, while the lowest was reached for highest n and lowest s values. At a fixed value of n, except
when n = 2,000, increasing the sharing coefficient increased the average profitability of the vessels. In the
scenarios with 7 values above 6.9 million USD, the total amount of BET caught or both the amount of YFT and
BET exceeded the quotas existing in the Indian Ocean, setting an upper limit to the increase of .

Average Gini index (G) varied between 9.05x 1073 and 1.09x 10" (Figure 4). For fixed values of n, when n <
3,000, increasing information sharing increased revenue inequity and the variability of G between simulations
(Figure 4). However, when n. > 4,000, increasing information sharing induced a decreasing trend of G -i.e. a
increase in equity among vessels. This result implies that, when the total number of active buoys present in
the system is low, increasing the sharing of buoy information will increase the competition between vessels
and therefore the inequality. However, this is true only when the number of active buoys is strictly below
4,000, so at a point much lower than the current situation in the Western Indian Ocean.

3.3 Private and social costs

Asmaller number of FADs with a larger spread of information reduced the costs associated with FAD fishing,
when considering all the costs together (Figure 5). Diminishing the total number of active buoys n lowered
both private costs (fuel and FAD operating costs) and social costs associated with FAD stranding. Sharing buoy
communications on a larger scale allowed to reduce fuel costs but did not influence FAD stranding nor FAD
operating costs. Fuel costs varied between 0.5 and 2.2 USD million per vessel, the minimum value being found
for n=12,000 and s = 1 and the maximum for n = 12,000 and s = 0.025. FAD costs varied between 1.3 USDM
(n =12,000) and 0.2 USDM (n = 2,000). Stranding costs were the highest costs (average value of 4.8 USDM
across all scenarios) but they sharply decreased if the total number of active buoys fell, from 9.0 USDM (n
=12,000) to 1.5 USDM (n = 2,000). Depending on the scenario, silky shark bycatch varied between 0.45 and
1.95 tons per year per vessel. For a fixed total number of active buoys, it increased with shared information.
When the sharing rate was low (s < 0.1), reducing the number of FADs n amplified SLK bycatch. If s > 0.1,
the relationship between SLK bycatch and n was non-linear, bycatch being maximal for intermediate n values
(between 3,000 and 6,000). Social costs associated with silky shark bycatch were deemed low, varying between
0.04 USDM and 0.31 USDM. However, they were the only costs that increased with shared knowledge.

4 Discussion

Purse seine (PS) fleets in the Indian Ocean are a canonical example of a highly efficient fleet facing catch
limits and which presents endogenous overcapacity (Tidd, Dagorn, et al., 2025). Technical change, specifically
the introduction of echosounder buoys in the early 2010s, enhanced dramatically the fishing efficiency of PS
fleets (Tidd, Floc'h, et al., 2023; Wain et al., 2021). This higher efficiency, combined with the absence of quotas
on tropical tunas until 2017 resulted in a 'race to fish’, and a substantial overcapacity of the fleet. For example,
the tonnage of fish caught by French purse seiners in the 10 could be captured with 21 % less vessels utilized
at their full capacity (Tidd, Dagorn, et al., 2025). The current regulation addressing this problem lies in the
adoption of catch limits, since 2017 and 2024 for yellowfin (YFT) and bigeye (BET) tuna respectively. Catch
limits may prove efficient to manage target species populations (Hoshino et al., 2020), and even to reduce



some negative externalities of fishing - e.g. a reduction of fishing effort can also lead to a reduction of carbon
emissions (Waldo et al., 2016). But many ecological impacts are not accounted for by such simple measures
and single-species management often results in new types of negative externalities (Martinet and Blanchard,
2009; M Tolotti et al., 2022).

Through the development of an Individual-Based Model, we demonstrate that knowledge sharing can al-
low the reduction of FAD numbers, reducing several impacts of FADs without reducing PS fleets’ economic
profitability. First, due to the current state of overcapacity, reducing the total number of FADs would enhance
individual vessels' profitability by lowering costs without impacting revenues, while addressing additional ex-
ternality issues (lower carbon emissions due to shorter traveled distance and avoidance of FAD stranding). An
optimum number of FADs can be found with a reduction by a factor 4 although a further step in the reduc-
tion process would intensify competition between vessels. A shared access to satellite buoy communications
would not only contribute to save search costs (e.g. the use of supply vessels) for private benefits, they would
also reduce the social costs of air and water pollution (CO2, SO2 and NOx emissions, FAD sinking or stranding,
degradation of marine habitats, etc) to a significant extent. By upgrading the efficiency of the fleet, moving
towards a fully shared knowledge between vessels is likely to exceed YFT and BET quotas allocated to PS fleets
in the 10, amplifying the current overcapacity problem. Consequently, such a shift should be complemented
by a limitation of the fishing effort or of the fleet capacity (Tidd, Dagorn, et al., 2025).

The models developed in this study rely on a number of simplifications that may influence the obtained re-
sults. First, the model used to determine tuna and silky shark dynamics at FADs (adapted from the NS scenario
in Capello et al., 2022) does not account for the social behavior of these species. Capello et al., 2022 developed
several social scenarios in their model and demonstrated that social behavior influences the way the fraction
of schools which are associated varies with FAD density. Hence, we could expect the implementation of tuna
and silky shark social behavior in our modeling framework to impact the obtained results. However, a sensi-
tivity analysis, using no behavioral model instead of the non-social model presented here showed very similar
results, suggesting that the impact of the marine species behavioral model is limited. Secondly, the behavior
of the PS vessels operating in our model was simplified, with vessels always targeting the closest occupied
FAD, and staying in idle state when no FAD was available. Also, we did not account for free-swimming school
fishing, as simulated vessels only fished on associated schools. These simplifications could bring uncertainty
on the obtained results. However, scenarios close to the current situation in the IO (n = 12,000 and s between
0.1 and 0.2) resulted in an average of 0.8 to 1.1 set per day, corresponding to 24 to 33 tons of tuna caught
daily, consistent with observed values (Lau-Medrano, Gaertner, Marsac, and Kaplan, 2025). Moreover, vessels
switched to idle state in very few scenarios and for a very small proportion of the simulated time (maximum
of 2.1 % in one scenario). These elements support the reliability of our results.

Given the current dynamics of entry and exit within the Indian Ocean PS fleet - marked by an increase in
vessel numbers among countries that opposed resolutions introducing catch limits (I0TC, 2021, 2023b) - the
practical implementation of knowledge-sharing mechanisms may prove challenging. A first approach could
strive to minimize coordination costs through an integrated organizational structure. Several pathways can
be envisioned. One option involves the establishment of a centralized entity responsible for managing FADs
at the ocean-wide level. This organization could be jointly financed by fishing companies and administered
either by a coalition of industry actors or directly by the Regional Fisheries Management Organization itself.
Such a joint-venture or eco-organization could also provide a FAD recovery service, aimed at mitigating water
pollution and coral reef degradation caused by abandoned gears (Imzilen, Lett, Chassot, and Kaplan, 2021).

Alternatively, fostering individual incentives for information sharing may encourage behavior aligned with
conservation objectives (Hilborn et al., 2005). For example, fishers could be granted preferential access to
quotas, reduced monitoring requirements, or eligibility for eco-certification schemes that enhance market
value in exchange for knowledge sharing. These incentives could be combined with an effort to go towards



participatory management. Participatory management which includes stakeholders in the decision process
has been shown to be essential for sustainable resource management (Kapoor, 2001; Quimby and Levine,
2018), as itincreases environmental learning (Fujitani et al., 2017), can allow to combine traditional ecological
knowledge with conventional science (Bay et al., 2023) and, increases stakeholders trust, acceptance of and
compliance with regulations (Alpizar, 2006; Delaney et al., 2023; Holm and Soma, 2016).
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7 Figures
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Figure 1. Choice diagram of the Individual-Based Model, applied to vessel i. ¢ is the current time in the
simulation, Ng the number of performed fishing sets, At the time-step duration, F4 the set of all the FADs

available to be fished by vessel i (see Eq 2), d,,, the distance between vessel 7 and the aim FAD, v the vessel
speed.
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costs are indicated in USD millions. Percentages on each radar chart indicate the area of the polygon divided
by the area of the biggest possible polygon. n is the total number of active buoys and s the sharing coefficient.
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8 Tables

Table 1. Summary of the performed scenarios. Each scenario was simulated 100 times. n: total number
of followed buoys, s: buoy sharing coefficient, V' total number of vessels, At: time-step, T': total simulation
duration, L: side length of the simulation square, v: vessel speed, R: detection radius.

Parameters Values

Varying parameters

n 2,000; 3,000; 4,000; 6,000; 8,000; 10,000; 12,000
s 1/40, 1/20, 1/10, 1/8, 1/5, 1/4,1/2, 1

Fixed parameters

V 40 vessels

At 1 hour

T 360 days

L 1,200 km

v 19.5 km.h"’

R 12.95 km
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Table 2. Estimations of beach clean-up individual costs and FAD wet weight from the literature.

Value Unit Year Location Reference

29,104 USD per ton of litter 2021 South Africa Jain et al., 2021

1,784 USD per ton of litter 2022 Grenada Raes et al., 2022b

323 USD per ton of litter 2022 Saint Lucia Raes et al., 2022a
3,678 USD per ton of litter 2022 Antigua and Barbuda Mittempergher et al., 2022
8,737 USD per ton of litter 2020 Seychelles Burt et al., 2020

7,354 to 22,0632 USD per ton of litter 2017 Indonesia Lindstrand and Thunell, 2017
1,138 USD per ton of litter 2020 Spain Cruz et al., 2020

721 USD per ton of litter 2010 South Korea Han et al.,, 2010

1,322 USD per ton of litter 2021 Spain Sanabria Garcia and Raes, 2021
1.22 FAD wet weight in tons 2020 Seychelles Burt et al., 2020

1.5 FAD wet weight in tons 2021 WCPO Purves et al., 2021

@ Depending on the daily salary considered (from 47 to 142 euros)
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S1 Supplementary Materials - Behavioral model

We build from the non-social (NS) model in Capello et al., 2022, but instead of working with numbers, we
consider densities. Hence, we consider the total simulation area (1.2) and introduce the density of FADs noted
pn, the density of FADs occupied by an aggregation of size s noted p,, the density of associated schools noted
pe and the density of free-swimming schools noted px. We also consider the following variables:

+ f the proportion of occupied FADs
+ m the average biomass under an occupied FAD

* n the total number of FADs. Note that p,, = %

_FS
= I3

+ F, the number of FADs with an aggregation of size s. Note that p,

+ X the number of free-swimming schools of unitary size. As we consider the non-social model, X; also

corresponds to the free-swimming population. Note that px = %

+ N the total tuna population
+ X, the associated tuna population. Note that p, = %
+ uthe area covered by a tuna school per unit of time (in km?.day™).

+ 0 the probability to leave a FAD (in day™).

S1.1 Relationship between the number of FADs and the associated population (X,)

The time evolution of the density of FADs with an associated aggregation of size s can be expressed as:

1 dXs Fle Fs+1 Fs—le Fs
2~ M t 73 O(s+1)+p i fﬁ&s (S1)

and, the variations of the density of free-swimming schools through time as

N
1LdX,  nX F,
- ==, -s 2
zar - M +;‘39L2 52

dX, _ dXy

We consider that the system is at equilibrium, so we have <= = <51 = (0. Hence

0L & 0L?
X1 =— sky = —X,
pr s=1 K

Moreover, we have conservation of the population (N = X, + X3). So

L2
N = x, (14 2
un
un
X =N o 3

$1.2 Relationship between the number of FADs and the fraction of FADs that are
occupied by tuna (f)

We have

_TL*FO
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and
N
n=Fy+ Z F,
s=1

$1.2.1 Determination of F

At equilibrium, we want to demonstrate that

1. Expression of F}
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2. Expression of F»
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3. Expression of F 14
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Hence, we have
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$1.2.2 Determination of f

From Eqg. S5 and S6, we have
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So

Moreover
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$1.3 Relationship between the number of FADs and the average biomass under an
occupied FAD (m)

We have
_ Pa _ Xa
pnf nf
Hence
Np
S9
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S1.4 Relationship between the number of FADs and the aggregation Continuous Ab-
sence and Residence Times (aCAT and aCRT)

We have
1 L2 OL>
aCAT = _ _ pnt (510)
ppx  pXa pON
Also
aCRT
f= === (s11)
aCAT + aCRT
< f(aCAT 4 aCRT) = aCRT
< faCAT = aCRT(1 — f)
< aCRT = aCAT% (512)

S$1.5 Implementing the relationships in the model

S$1.5.1 aCRT, aCAT and m values determination for tuna

First, using Eq. S11 and aCAT and aCRT values from Baidai et al., 2020b algorithm (see Section 2.1.1 in main
manuscript), we determined the current f value in the western Indian Ocean. We found f = 0.272. Then,
using Eq. S8, we determined the value of N such that f = 0.272. Other parameter values were determined
as follow:

+ n =12,000, the total number of FADs in the simulations and L = 1,200 km, both chosen to correspond
to the maximum observed DFAD density in the western Indian Ocean in Dupaix, Dagorn, et al., 2024
(density of 8.3 x 1073 km™),

« pu=24.14 km?.day™.
We consider X (¢ = 0) the density of tuna schools leaving a FAD at ¢t = 0 and X (¢) the density of schools
that left a FAD at ¢ = 0 and are still free-swimming at time ¢. We consider z(t) = XM then

— X(0)
() — _ X ()k(t).

We consider k to be constant and proportional to the surface explored by a tuna during a day (u, in
km?.day™) and to the density of FADs (%, in km2).

Then z(t) = e~ " with k = 7.

k is the rate at which tuna schools associate, which is the inverse of the average time between two as-

sociations, meaning that k = ==

CAT*
Hence, we have
_ _L?
H = Lcat

From Dupaix, Dagorn, etal., 2024, the average CAT value for YFT in the western Indian Ocean is CAT =4.97 days.

+ 6§ = 0.15 day™". From Govinden et al., 2021, the average CRT value for YFT in the western Indian Ocean

is CRT = 6.64 days. Hence, § = o = 0.15 day™".

From these parameter values, we determined f (Eq. S8), m (Eq. S9), aCAT (Eg. S10) and aCRT (Eq. S12)
values for n values tested in the simulations (Figure S1).
$1.5.2 m values determination for silky sharks

Using Eq. S9, we determined mg x as a function of the number of FADs n, with the following parameter
values:
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+ n = 12,000, the total number of FADs in the simulations and L = 1,200 km, both chosen to correspond
to the maximum observed DFAD density in the western Indian Ocean in Dupaix, Dagorn, et al., 2024
(density of 8.3 x 1073 km™),

* Ngri = 403,920 metric tons, from the preliminary stock assessment performed in the Indian Ocean
(Ortiz de Urbina et al., 2018).

* USLK = ﬁ = 59.41 km?.day”’, with the average CAT of silky shark in the Western Indian Ocean
CATsr ik = 2.02 days (MT Tolotti et al., 2020).

» Osrx = 0.17 day™, with the average CRT value for silky shark in the Indian Ocean of CRT = 5.90 days
(MT Tolotti et al., 2020).

« f =1, inthe absence of aCRT and aCAT values, and considering Eq S8.

The obtained values, expressed in number of schools of silky sharks, were multiplied by the ratio of the
average number of silky sharks caught per set in the Western Indian Ocean (mgsrx = 8.26) (M Tolotti et al.,
2022) and of the value obtained with n. = 12,000 (Figure S3).
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Figure S1. Modelling tuna associative behavior. (A) Fraction of occupied FADs f as a function of the number
of FADs n (B) Average biomass under occupied FADs m in metric tons, corresponding to the average catch-
per-set (C) Average aggregation Continuous Absence Time (aCAT) in days, defined as the period between
two consecutive detections of tuna aggregations at the same FAD, and (D Average aggregation Continuous
Residence Time (aCRT) in days, defined as the time span within which a tuna aggregation is continuously
detected at a FAD without a day scale (>24 h) absence. Relationships were obtained considering a non-social
scenario and using a random forest algorithm and echosounder buoys data for calibration methods; Baidai
et al.,, 2020a,b; Capello et al., 2022.
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Figure S2. Proportion of FADs occupied by tuna in the model (noted f). Values were obtained simulating
a FAD array of 1000 FADs, during 500 days with no fishing vessel.
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Figure S3. Variations of silky shark catch-per-set as a function of the number of FADs n (in numbers).
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