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Abstract 

Catch-per-unit-of-effort (CPUE) as index of abundance can serve as a valuable indicator of 

trends in stock biomass, particularly for calibrating the stock assessment. However, obtaining 

a reliable index becomes challenging in fisheries interacted with fish aggregating devices 

(FADs), as effort is no longer easily defined. FADs are designed to maintain catchability, 

thereby violating the assumption that CPUE is proportional to stocks size. To address this, a 

simple alternative approach is proposed that estimates stock abundance using the ratio of 

catches between target and reference species. The catch-ratio estimator performs well when 

its assumptions are met, and including multiple reference species can improve estimation 

accuracy. In this case, yellowfin tuna, particularly when combined with skipjack tuna, appears 

to be a suitable predictor for eastern little tuna. However, further research is needed before 

this method can be applied in formal stock assessments. 

 

Keywords: Catch-per-unit-of-effort, data-limited fisheries, purse seine fisheries, stock 

assessment. 

 

1. Introduction 

Indonesia is recognized as a prominent global producer of tuna, accounting for up to 15% of 

the worldwide tuna catch (Miyake et al., 2010; Sunoko & Huang, 2014). The export volume of 

tropical, temperate and neritic tuna reached nearly one billion USD in 2022 (Pusat Data, 

Statistik dan Informasi, 2022), with Japan being the primary destination (Chodrijah et al., 

2016). Notably, the Indonesian fleet accounted for about one- third (~210,000 tons) of the total 

neritic tuna catch in the Indian Ocean (IOTC-WPNT13, 2023). Despite the significance of 

these tuna species for local industries and household consumption, there is limited knowledge 
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regarding their current dynamics and stock status, particularly at a regional level (Zhou et al., 

2019). 

 

Uncertainty in catch and effort data, particularly from small and medium-scale tuna fisheries, 

poses a significant challenge to fish stock assessment at a regional scale, including Indonesia 

(Yuniarta et al., 2017). This issue has become a bottleneck in fisheries management within 

the country. The government’s annual historical data has often been criticized by various 

stakeholders (Duggan & Kochen, 2016; IOTC-WPDCS14, 2018) due to its inconsistency and 

uncertainty. Many organizations, including NGOs, have been collecting similar data, driven by 

a lack of trust in the validity of existing data. However, most of these alternative data sources 

have not been considered when estimating national catch statistics. While some of these data 

sources could potentially be valuable for determining fish abundance from time series of catch 

and effort, further investigation is required, particularly when dealing with species like the 

neritic tuna group (Novianto et al., 2019). 

 

Fish aggregating devices (FADs) are floating objects utilized by fishermen to attract and 

capture pelagic fish, including tunas, thereby increasing their fishing yield (Moreno et al., 

2016). FADs come in two types: drifting FADs (DFAD), primarily utilized by European fleets in 

the western region of the Indian Ocean, and anchored FADs (hereafter: AFADs), which are 

equipped with attractors (such as coconut leaves) and secured to the sea floor with concrete 

blocks. Coastal countries in the eastern part of the Indian Ocean, notably Indonesia, 

extensively employ AFADs. In most cases, AFADs are used by surface fisheries, for which 

selectivity bias means that catch-per-unit-of-effort (CPUE) is not proportional to abundance 

(Bannerot & Austin, 1983). However, changes in catch-rates do not always accurately reflect 

true changes in the fisheries resource (Walters, 2003), and may therefore lead to poor fishery 

management (Quirijns et al., 2008). Most fisheries scientists have tried to overcome the issue 

by removing the impact on catch rates of factors other than abundance and adjusting for 

changes over time in the composition of effort. This process is referred to as CPUE 

standardization. 

 

Several approaches have been proposed to standardize the CPUE from FADs associated 

purse seine fleet, such as: the use of the Associative Behaviour-Based abundance Index 

(ABBI) (Baidai et al., 2024) as an alternative to conventional indices, applying spatio-temporal 

analysis (Akia et al., 2022; Kaplan et al., 2024), and inclusion of drifting Fish Aggregating 

Devices (dFAD) density as a predictor (Akia et al., 2022; Kaplan et al., 2023). However, such 

methods can only be applied in data-rich environments where all essential data, such as 

echosounder readings and drifting Fish Aggregating Device (dFAD) positions, are 



IOTC-2025-WPNT15-15 

3 
 

systematically recorded and maintained. In contrast, many coastal nations lack this level of 

data availability. One way to address this issue is using Robin Hood approach (Punt et al., 

2011), by borrowing information from data-rich species assessments.  

 

This paper develops and tests a simple multispecies catch-ratio approach that uses historical 

catch data to infer a time series of relative abundance (the fraction of target stock abundance 

relative to reference abundance) for a data-poor species, given stock assessments from 

multiple data-rich reference species. We extend the single-reference species approach 

originally proposed by Maunder & Hoyle (Maunder & Hoyle, 2007) to a multiple-reference 

species framework. To evaluate its performance, we test both approaches on high-quality and 

limited-quality data. We then estimate the relative abundance of eastern little tuna (Euthynnus 

affinis) in the Indian Ocean based on purse-seine catch ratios. For reference abundance 

indices, we use the most reliable estimators derived from data-rich stock assessments of 

bigeye tuna (Thunnus obesus), yellowfin tuna (Thunnus albacares), and skipjack tuna 

(Katsuwonus pelamis). 

 

2. Materials and Methods 

2.1. Catch data 

For reproducibility, we used purse seine catch data obtained from the Indian Ocean Tuna 

Commission (IOTC). Two types of data were analysed in this study. The first dataset 

comprises georeferenced monthly catch data from the European Union (EU) purse seine fleet 

(Spanish, French, and Mayotte) from 1991 to 2020, representing high-quality data. The 

second dataset consists of Indonesia’s best scientific estimate of yearly historical purse seine 

catch from 1991 to 2020, representing a data-limited scenario. Both datasets are publicly 

available on the IOTC website (https://iotc.org/data/browser) under the "CE-CA" and "NC-SCI" 

sections, respectively. 

 

2.2. Relative abundance references 

All reference relative abundances (IOTC-WPTT24, 2022; IOTC-WPTT25, 2023; IOTC-

WPTT26, 2024) (henceforth referred as reference abundance) were obtained from recent 

data-rich stock assessments using the Stock Synthesis model (Fu, 2023; Fu et al., 2022; 

Urtizberea et al., 2024) for three main tropical tuna species, namely skipjack tuna (SKJ) 

(Kaplan et al., 2023), bigeye tuna (BET) (Akia et al., 2022), and yellowfin tuna (YFT) (Kaplan 

et al., 2024) from purse seine associated fleets (Table 1). It is assumed that all standardised 

CPUEs are proportional to the true abundance of each species, since the effects of floating 

object densities, spatio-temporal diversities, and all other fishing powers were considered. All 

reference abundance data were provided in a quarterly format. Therefore, to align with the 

https://iotc.org/data/browser
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Indonesian historical catch data, which were originally in an annual format, we calculated 

means for each year. 

 

Table 1.  List of reference relative abundance indices derived from IOTC data-rich 

assessments. 

Species Time range Source Remarks 

Bigeye tuna (BET) 2010-2020 (Akia et al., 

2022) 

Under floating objects, with 

emphasis on small bigeye tuna 

(<10 kg). Used as a sensitivity 

analysis in the stock assessment. 

Yellowfin tuna (YFT) 1991-2020 (Kaplan et al., 

2024) 

Un-associated floating objects / 

free schooling, mostly large 

yellowfin tuna above 10 kg. Used 

as a sensitivity analysis in the 

stock assessment. 

Skipjack tuna (SKJ) 1991-2020 (Kaplan et al., 

2023) 

All sizes under floating objects and 

used in the stock assessment 

model ensemble. 

 

2.3. Assumption 

Let x = (𝑥1, 𝑥2, … , 𝑥𝑛) be the catches of 𝑛 species, and y = (𝑦1, 𝑦2, … , 𝑦𝑛) be the abundance. 

Assume that for each pair of species 𝑖, 𝑗, the ratio of catches is proportional to the ratio of 

abundance: 

𝒙𝒊

𝒙𝒋
= 𝒄𝒊𝒋

𝒚𝒊

𝒚𝒋
 , 

for some positive 𝑐𝑖𝑗. Suppose that we have assessments of 𝑦2, 𝑦3, … , 𝑦𝑛 and want to estimate 

𝑦1. Maunder & Hoyle (Maunder & Hoyle, 2007) suggest using a single reference abundance 

𝑦2 and 

𝑦1 =
1

𝑐12

𝑥1

𝑥2
𝑦2 . (1) 

The constant 𝑐12 is not generally known, so we have an estimate of 𝑦1 up to a multiplicative 

constant. 

 

2.4. Multiple-species approach 

We can extend Equation 1 to a multiple-species approach, as at least three reference relative 

abundance indices derived from data-rich assessments are available from purse seine 
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fisheries within the Indian Ocean Tuna Commission (IOTC) area of competence (Table 1). 

Therefore,  

log 𝑦1 = −log 𝑐12 + log 𝑥1 − log 𝑥2 + log 𝑦2, 

 log 𝑦1 = −log 𝑐13 + log 𝑥1 − log 𝑥3 + log 𝑦3, 

⋮ 

log 𝑦1 = − log 𝑐1𝑛 + log 𝑥1 − log 𝑥𝑛 + log 𝑦𝑛 . (2) 

Adding the rows of Equation 2, and dividing by 𝑛 − 1, we obtain the estimator 

log 𝑦1̂ = −
1

𝑛 − 1
∑ log 𝑐1𝑖

n

i=2

+ log 𝑥1 −
1

n − 1
∑ log 𝑥𝑖

n

i=2

+
1

n − 1
∑ log 𝑦𝑖

n

i=2

. (3) 

Then exponentiating, 

𝑦1̂ = 𝐶𝑥1

gm(𝑦2, 𝑦3, … , 𝑦𝑛)

gm(𝑥2, 𝑥3, … , 𝑥𝑛)
, 

where gm() denotes the geometric mean, and 𝐶 is an unknown constant. 

 

2.5. Testing and application to real world datasets 

Prior to applying the method, we need to investigate the robustness of the Maunder & Hoyle 

method (Maunder & Hoyle, 2007) and functions as expected to the real world data. To do so, 

we tested Equation 1 (single species approach) and Equation 3 (multiple species approach) 

under high quality and limited quality data. The best model is when the slope of log-log 

regression between estimated and reference value is equal to 1 with low standard deviation. 

We selected the best estimators from the models to estimate the relative abundance of eastern 

little tuna (E. affinis) using Indonesian historical purse seine catch data from 1991 to 2020.  

 

3. Results 

3.1. Testing and model performances 

The predictive performance of both single-species and multi-species approaches was 
generally satisfactory when model assumptions were met. Although predicted abundance 
estimates exhibited consistent positive associations with reference abundance values across 
all three tuna species, this did not directly translate into high predictive accuracy. In both cases 
(i.e., high quality and limited quality data), the abundance of yellowfin tuna proved difficult to 
predict using bigeye or skipjack as sole or combined predictors (Figure 1). Similarly, bigeye 
and skipjack were not reliable predictors of each other, with log–log regression coefficients 
way below or above 1 ( 
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Table 2), indicating weak predictive relationships. In contrast, yellowfin tuna performed 

notably better as a predictor species. When used alone or in combination with skipjack, 
yellowfin yielded stronger predictions for both bigeye and skipjack abundance, with log–log 
regression coefficients ranging from 0.82 to 1.38 ( 
 

 

 
 
 
 
 
Table 2).  

 

 

Figure 1. Comparison between target and reference abundance for bigeye (BET), skipjack 

(SKJ), and yellowfin (YFT) tuna using single-species and multi-species predictors on 

European Union (upper panel) and Indonesian (lower panel) purse seine fishery. Each panel 
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represents estimated abundance (y-axis) versus reference abundance (x-axis) for one focal 

species. Coloured symbols and lines denote the predictor combinations, whereas orange 

triangles represent combined species predictors.  

 

 
 
 
 
 
 
 
Table 2. Model performances of log-log regression between estimated and reference 

abundance values on European Union and Indonesia data. Numbers in bold indicate strong 

predictive relationship (i.e., regression coefficients closer to 1). 

Target Predictor 
European Union Indonesia 

Estimate Std. Error  Estimate Std. Error 

Bigeye Skipjack 0.29 0.27 0.75 0.47 

Bigeye Yellowfin 1.35 0.34 1.34 1.07 

Skipjack Bigeye 0.55 0.66 1.89 0.84 

Skipjack Yellowfin 1.38 0.46 1.20 0.59 

Yellowfin Bigeye 0.49 0.09 0.02 0.16 

Yellowfin Skipjack 0.37 0.05 0.19 0.06 

Bigeye Skipjack & Yellowfin 0.82 0.34 1.04 0.69 

Skipjack Bigeye & Yellowfin -0.58 0.65 -0.63 0.77 

Yellowfin Bigeye & Skipjack 0.42 0.05 0.08 0.13 

 

3.2. Model selection and its application on eastern little tuna (E. affinis) 

The estimated abundance trends of eastern little tuna (E. affinis) from 1990 to 2020 based on 

different predictors were relatively consistent across models. However, starting from 2011, the 

predicted trends began to diverge. Models using yellowfin tuna alone, and in combination with 

skipjack and bigeye tuna, showed similar trends. Predictions based on bigeye tuna alone 

diverged from the others toward the end of the time series. Predictions using skipjack tuna 

remained relatively flat with low contrast throughout the period. Overall, the findings 

underscore the robustness of yellowfin-based predictors, particularly in combination, while 

highlighting limitations in using skipjack or bigeye tuna alone in recent years. 
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Figure 2.  Application of single-species and multiple-species approaches to eastern little tuna 

(E. affinis) from western and southern parts of Indonesian water. 
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