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SUMMARY 

Indian Ocean EU purse seine floating object (FOB) school catches of big-eye tuna (BET; Thunnus 

obesus) per fishing set for the period 1991-2023 were standardized with two geostatistical 

spatiotemporal modelling approaches using the sdmTMB R package. One approach considered 

only the recent time period 2010-2023, but included detailed covariates describing intensity and 

use patterns of drifting fish aggregating devices (dFADs) by the fleet. The second approach 

considered the full time period 1991-2023, but was limited to standardization for vessel size, 

identifier and mixed layer depth. In both cases, a generalized Gamma model was chosen for 

modeling catches as this distribution family had the lowest AIC. Predictions were made on an 

extrapolation area for every time step (year-quarter). To calculate the standardized CPUE index, 

we aggregated the spatial predictions based on an area-weighting approach. We also presented 

influence plots to explore the impacts of the model components on the standardized CPUE index. 

The FOB index from this study showed a long-term negative temporal trend, though over the most 

recent period (>2010), estimated abundance is more or less stable with a noticeable increase in 

abundance over the period 2021-2022. The index provided here can be incorporated into the 2025 

bigeye stock assessment model to inform changes in biomass of juvenile BET. 
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1. Introduction 

An abundance index is a key data input in stock assessment models that can inform fluctuations in population 

abundance or biomass (Magnusson and Hilborn, 2007). Typically, an abundance index is obtained from fishery-

independent (e.g., scientific surveys) and dependent sources. For highly migratory and large pelagic fishes (e.g., 

tunas), performing a scientific survey is impractical given the large extent of their distribution. Therefore, fishery-

dependent abundance indices such as catch per unit effort (CPUE) are primarily used (Hoyle et al., 2024). Using 

nominal CPUE is inappropriate since it is normally biased due to the spatial heterogeneity of fish populations, 

environmental factors, the behavior of fishers, and features of fishing vessels (Wilberg et al., 2009). These factors 

may produce a disparity between the nominal CPUE and true population abundance trends. For this reason, a CPUE 
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standardization process needs to be performed in order to remove the impact of external factors that can influence 

catch rates (Maunder and Punt, 2004). 

The European (EU) tropical tuna purse seine fishery in the Indian Ocean has operated since the 1980’s and has high 

quality, species-specific catch-effort data since 1991. The fleet has experienced significant technological 

developments in recent years, which have increased its efficiency in locating and catching tunas (Torres-Irineo et al., 

2014; Wain et al., 2021). The EU purse seine fleet primarily uses two fishing modes: 1) targeting free-swimming 

schools, and 2) fishing on schools associated with floating objects (FOBs). The latter category initially used natural 

objects (e.g., logs) that occurred naturally in the ocean; however, they now use artificial buoys known as fishing 

aggregating devices (a.k.a. FADs) with incorporated technology (e.g., satellite tracks, echo-sounders) (Lopez et al., 

2014). The EU purse seine fleet principally targets three tropical tuna species: yellowfin (Thunnus albacares), 

bigeye (Thunnus obesus), and skipjack (Katsuwonus pelamis). 

Bigeye tuna (BET; Thunnus obesus) is widely distributed in the tropical and subtropical Indian Ocean from Ireland 

to South Africa in the east and from southern Canada to northern Argentina in the west (Fonteneau et al., 2005; 

Kaplan et al., 2014). BET remains within the surface layer (50 m) during the night and can dive to depths of 500 m 

at sunrise (Brill et al., 2005). Spawning takes place in tropical waters when the environment is favorable. From 

nursery areas in tropical waters, juvenile fish tend to diffuse into temperate waters as they grow. Small bigeye tuna 

are caught using purse seine gear operating on FOBs in the warm equatorial surface waters, whereas most adults are 

caught by longliners, indicating vertical stratification in which adult bigeye tuna schools remain at greater depths 

than do juvenile bigeye tuna schools (Fonteneau and Pallares, 2005). Lan et al. (2018) showed that the depth of the 

20∘C isotherm, sea surface temperature, and sea height deviation are climate variables significantly related to bigeye 

abundance in the Atlantic Ocean. Mixed layer depth (MLD) has also been generally shown to impact catchability of 

tropical tunas by its impact on the vertical distribution of tunas (Kaplan et al., 2024; Lopez et al., 2017). The size of 

BET caught varies among fisheries: medium to large fish for the longline fishery and purse seine free school sets, 

small to large for subtropical baitboat fisheries, and small for tropical baitboat, western handline and purse seine 

FOB fisheries. 

The Stock Synthesis assessment platform was used in the 2022 BET assessment (Fu et al., 2022). There were four 

axes of uncertainty in the final uncertainty grid, which included growth, natural mortality, selectivity, and steepness 

assumptions. The results of the assessment show that, in 2021, the Indian BET stock was most likely overfished and 

subject to overfishing. The main index of abundance used in the 2022 BET assessment was derived from the catch 

and effort data from the longline fishery. A quarterly BET catch per purse-seine FOB set index covering the period 

2010-2021 and built using the VAST R package (Thorson, 2019a) was also employed in sensitivity runs (Akia et al., 

2022). 

In this study, we present two new (juvenile) BET abundance indices using data from the EU tropical tuna purse-

seine fishery operating on FOBs, one covering the time period 1991-2023 and the other covering the recent time 

period 2010-2023. The reason for this separation into two indices is that for the recent time period we have access to 

detailed information on dFAD use that was not available before 2010. Both indices are derived from geostatistical 

spatiotemporal models built using the sdmTMB R package (Anderson et al., 2022). These indices can inform 

juvenile BET abundance in the assessment process and help to improve the stock assessment model estimates. 

2. Methods 

2.1 Data 

We used logbook data from the EU purse seine fleet (Spain and France) targeting tropical tunas and operating on 

floating objects in the Indian Ocean from 1991 to 2023. The logbook data sets are managed by the Tuna 

Observatory (Ob7) and the Spanish Institute of Oceanography (IEO) for the French and Spanish fleets, respectively. 

The raw logbook data (Level 0) produced by the skippers were corrected in terms of total catch (t) per set to account 

for the difference between reported catch at sea and landed catch. Likewise, the species composition per set was 

corrected based on port size sampling and the T3 methodology (Pallarés and Hallier, 1997) to generate a Level 1 

logbook data set. 



Filtering of the dataset differed somewhat for the two time periods considered in this study due primarily to 

differences in the variables used for the standardization process and the need to characterize core fishing effort areas 

over quite different time periods. 

2.1.1 2010-2023 

For data limited to the time period 2010-2023, we applied the following filters to our initial dataset: 

• We excluded null sets (i.e., sets with zero catch of tropical tunas). 

• We excluded observations from vessels with less than 5 years of activity in the study period. This filter 

removed information from 7 vessels (out of 38 vessels), which corresponded to 1781 observations (5.49%). 

• We removed observations with missing information for any of the used variables, as well as duplicated 

rows. This filter excluded 412 rows (< 1%). 

• We removed data in areas east of 67.9∘E to avoid a large hole in the distribution due to the closure of the 

Chagos Archipelago to fishing in 2010. This filter excluded 411 rows (< 1%). 

• We removed data in areas north of 15∘N and south of 15∘S. This filter excluded 3985 rows (∼ 6%). 

• Observations from fishing sets that operated in areas (1∘ × 1∘) that were not fished for less than four years 

during the studied period were excluded in order to retain areas constantly sampled. This filter removed 

316 rows (< 1%). 

After applying these filters, we retained 63,823 observations. 

2.1.2 1991-2023 

For the full dataset (1991-2023), we applied the following filters to our initial dataset: 

• We excluded null sets (i.e., sets with zero catch of tropical tunas). 

• We limited data to minimum set of vessels representing at least 95% of all FOB fishing sets over the time 

period. After this filter, the dataset consisted of 133267 FOB fishing sets by 64 distinct fishing vessels, 

each representing between 677 and 5527 FOB fishing sets. 

• Data was then limited to areas west of the Chagos Archipelago (67.9∘E) to avoid a large hole in the spatio-

temporal distribution of fishing effort due to the closure of the Chagos Archipelago to fishing in 2010, and 

to areas between 15∘N and 15∘S. This filter excluded 10,124 fishing sets (8.2%). 

• The resulting dataset was limited to 1∘ × 1∘ cells where FOB fishing occurred over at least 10 different 

years between 1991 and 2023. This filter eliminated 1786 fishing sets (1.5%). 

• Finally, we removed any sets outside the spatial zone for which environmental data is available. This filter 

eliminated 15 fishing sets (0.01%). 

The final 1991-2023 dataset consisted of 121342 fishing sets. 

2.2 Spatial indicators 

Using the observed data, we calculated six indicators to summarize the spatial behavior of the fleet during the 

studied periods. Diverse spatial indicators have previously been used for fishery-dependent (Kaplan et al., 2021; 

Russo et al., 2013; Sosa-López and Manzo-Monroy, 2002) and independent (Woillez et al., 2009; Woillez et al., 

2007) sources to increase the chance of picking up changes in critical fleet-related factors over time. We calculated 

the following spatial indicators, which were calculated by year-quarter: 

1. Clark-Evans: It is an index of point spatial aggregation (Clark and Evans, 1954), here represented by 

fishing sets, and provides information on how spatially clustered the fishing sets were. Smaller values 

indicate higher spatial clustering of fishing sets. 

2. Covered area (𝑘𝑚2): Represents the spatial extent of the fishing sets. It was calculated assuming that each 

fishing set has an area of influence of 1 𝑘𝑚2, and then calculating the spatial union of those areas. 

3. Center of gravity (lon): Indicates the longitude where the BET catches per set were centered. 

4. Center of gravity (lat): Indicates the latitude where the BET catches per set were centered. 



5. Moran’s autocorrelation coefficient: Measure of spatial autocorrelation of the BET catch per set (Gittleman 

and Kot, 1990). 

6. Gini coefficient: It is a measure of inequality (Cowell, 2011) among BET catch per set values. 

2.3 Spatiotemporal model 

We used a geostatistical spatiotemporal approach to perform the CPUE standardization. Geostatistical 

spatiotemporal models (a.k.a. spatiotemporal generalized linear mixed models-GLMM) can account for unmeasured 

variables (e.g., population biomass) that cause observations (e.g., catch) to be correlated over space and time 

through random effects (Anderson et al., 2022). A Gaussian random field (GRF) is a multidimensional spatial 

process where the random effects that describe the spatial pattern follow a multinomial distribution with mean 𝜇 =
[𝜇(𝑠1), . . . , 𝜇(𝑠𝑛)] and spatially structured covariance matrix 𝛴 (Blangiardo and Cameletti, 2015). 

The sdmTMB R package (Anderson et al., 2022) can implement spatiotemporal GLMMs in TMB (Kristensen et al., 

2016) for model fitting. sdmTMB approximates the GRF by relying on the Stochastic Partial Differential Equation 

(SPDE) approach using the Integrated Nested Laplace Approximation in R-INLA (Bakka et al., 2018) to reduce 

computational costs. The first step in using the SPDE approach is to construct the mesh, which is composed of 

triangles covering the studied area with a minimum allowed triangle edge length (cutoff) of 1.5 degrees. Following 

Anderson et al. (2022), our model can be mathematically represented as: 

𝔼[𝑦𝑠] = 𝜇𝑠 = 𝑔−1(𝜂𝑠) 

𝜂𝑠 = 𝐗𝐬𝛃 + 𝜈𝑣 + 𝜔𝑠 + 𝜀𝑠,𝑦  (1) 

Where the expected value 𝔼[. ] of an observation 𝑦 (BET catch per set) at coordinates in space 𝑠 is equal to mean 𝜇𝑠, 
which is the result of an inverse link function 𝑔−1 applied to a linear predictor 𝜂𝑠. 𝛽 is the vector of coefficients of 

fixed effects, 𝜈𝑣 is the vessel effect (numbat) treated as random effects, and 𝐗 is the model matrix. 𝜔𝑠 is the spatial 

random field, which is constant across time and represents the effect of latent spatial variables that are not otherwise 

accounted for in the model: 

𝜔 ∼ 𝑀𝑉𝑁(0, 𝛴𝜔) 

Where 𝛴 is the covariance matrix of the multivariate normal (MVN) distribution and is constrained by a Matérn 

function and the spatiotemporal random fields 𝜀𝑠𝑦 represent latent variables causing spatial correlation that changes 

with each time step (i.e., year). 𝜀𝑠𝑦 was assumed to be iid (i.e., independent at each year): 

𝜀𝑦 ∼ 𝑀𝑉𝑁(0, 𝛴𝜀) 

There is evidence that large BET may perform seasonal migrations for spawning (Cayre et al., 1991), which may 

impact the spatial pattern of 𝜔𝑠 within a year. Although migrations of small bigeye have not been thoroughly 

documented yet, a similar behavior might be found. Therefore, we allowed the spatial random field 𝜔𝑠 to vary by 

quarter 𝑞 (𝜔𝑠𝑞) to approximate this behavior. 

Since we had a very low number of sets with BET catch equal to zero that remained roughly constant over time 

(Figure 1), we replaced the zero values with the minimum BET catch value found in our dataset (0.08 t). Then, we 

tested four probability distributions for the response variable: lognormal, gamma, Tweedie (Shono, 2008), and 

generalized gamma (Dunic et al., 2025), which were then compared through AIC. We selected the family with the 

lowest AIC. For the long time series model (1991-2023), the Tweedie model did not converge within a reasonable 

amount of time so it was discarded as an option for that model. 

2.4 Covariates 

Table 1 shows all the covariates explored in this study. The source for potential sea surface temperature (∘𝐶) and 

mixing layer depth (𝑚) data was the Copernicus-Global Ocean Physics Reanalysis based on the current available 

real-time global forecasting CMEMS system, having a 0.083∘ × 0.083∘ spatial resolution and monthly temporal 

resolution. Depth-integrated (0-100 m) net primary production (𝑚𝑔/𝑚3/𝑑𝑎𝑦) was downloaded from Copernicus-



PICES biogeochemical global hindcast with a 0.25∘ × 0.25∘ spatial resolution and monthly temporal resolution. 

Depth of the 20∘C isotherm (𝑚) was downloaded from the NCEP Global Ocean Data Assimilation System with a 

0.33∘ × 1∘ spatial resolution and monthly temporal resolution. Covariates associated with the buoy features were 

calculated from Vessel Monitoring System (VMS) information and labelled position data from acoustic drifting 

buoys, including vessel and company names, as well as acoustic buoy specifications. 

Climatologies and anomalies for environmental variables were calculated by averaging monthly environmental 

variable maps across years for the entire time series of data available (1993-2023 for SST, MLD and NPPV; 1990-

2023 for depth of the 20∘C isotherm) and then subtracting that climatology from the time varying maps. These 

separate variables were used for long time series models due to the fact that Copernicus environmental variables are 

not available for the period 1991-1992, making the climatology the best available estimate of environmental 

conditions for these years. 

Thorson (2019b) distinguishes between ‘catchability’ and ‘density’ covariates: both are included in the linear 

predictor to explain catch-and-effort data, but only density (and not catchability) covariates are conditioned upon 

when predicting densities across space (see more details in Section 2.6). This distinction controls for the effect of 

catchability covariates (i.e., filters out these components of covariation) and conditions upon the effect of habitat 

covariates (i.e., uses information about habitat covariates to improve performance when predicting population 

density). We consider that all the oceanographic variables were density covariates except for MLD and MLD 

anomaly as MLD is known to impact catchability (Kaplan et al., 2024; Lopez et al., 2017). Variables associated with 

the number of buoys and the buoy’s echosounder capacity were considered catchability covariates (see Table 1). 

Due to large differences in scale among covariates and in order to avoid convergence issues in the model, for the 

short time series model, we standardized continuous catchability and density covariates to a mean of 0 and standard 

deviation of 1 (z-score standardization), whereas for the long time series model we divided environmental covariates 

into climatology and anomaly. Also, we calculated variance inflation factors (VIF) from a simple linear regression 

model to explore multicollinearity among the candidate covariates. We removed covariates with a VIF larger than 5 

from our analysis. 

2.5 Model selection 

To choose the distribution families for model residuals, we first ran simple models with just year and quarter 

(yr_qtr) as an explanatory variable (in addition to a quarterly-varying spatial random field and a yearly 

spatiotemporal random field), one such model for each potential distribution family and time series (long and short). 

The AIC of these models was calculated and the model with the lowest AIC was chosen for all future modeling 

work. 

We next ran a full configuration model, which included all the covariates assuming a linear relationship with the 

response variable. We did not explore nonlinear relationships since an exploratory analysis did not show evident 

nonlinear associations between the response variable and the continuous covariates. Then, we identified those 

covariates that did not have a significant effect (p-value > 0.05) and removed them from the model. Then, the model 

was run again only including the significant covariates. The interaction between year and quarter (yr_qtr) was the 

only explanatory variable that was never removed. 

Once the final model was identified, we then used the DHARMa R package (Hartig, 2022) to evaluate the model 

residuals. Standard raw residuals are not always appropriate when using generalized linear models, and other types 

of residuals are commonly used instead. DHARMa uses a simulation-based approach to create readily interpretable 

scaled (quantile) residuals for generalized linear mixed models. We analyzed two plots produced by DHARMa: 1) 

the QQ plot residuals, which detects overall deviations from the expected distribution, and 2) the residual 

vs. predicted plot, which detects trends in residuals along model predictions and simulation outliers. We also 

evaluated significant spatial autocorrelation of MCMC-based randomized quantile residuals using the Moran’s I 

statistic (Moran, 1950). 



2.6 Standardized CPUE calculation 

Previous index standardization methods have typically involved fitting a regression model including a year intercept 

and covariates, and then treating the year intercept as the abundance index. This approach implicitly treated all 

covariates as “catchability covariates”, even when these variables were likely associated with increases in local 

population density (Thorson, 2019b). In this study, we calculated the standardized CPUE index by year-quarter 

using the “predict-then-aggregate” approach (Hoyle et al., 2024). This approach consists of making predictions over 

an extrapolation area composed of 1∘ × 1∘ grids, which was kept constant for every time step. For catchability 

covariates, we fixed continuous covariates at their mean values (0 in the case of standardized values and for MLD 

anomaly), while discrete covariates were fixed at the level with the largest sample size. For density covariates, we 

assigned values at every grid centroid across the modeled spatial (i.e., extrapolation area) and temporal domain. 

Then, we aggregated the predicted values 𝐶𝑃𝑈�̂�𝑦,𝑞,𝑎 (𝑎 corresponds to grids in the extrapolation area) over space 

using an area-weighted approach: 

𝐶𝑃𝑈�̂�𝑦,𝑞 =∑𝐴𝑎
𝑎

× 𝐶𝑃𝑈�̂�𝑦,𝑞,𝑎  (2) 

Where 𝐴𝑎 is the ocean area (𝑘𝑚2) of grid 𝑎. For the short time series, indices were scaled to mean 1, whereas for the 

long time series indices were scaled so that they represent catch in tonnes per set. 

2.7 Influence analysis 

We used influence plots to understand how the covariates and their values affect the calculated CPUE index. 

Bentley et al. (2012) initially proposed these exploratory plots for CPUE standardizations using generalized linear 

models. Then, Hsu et al. (2022) adapted these plots to explore the influence of the spatial (𝜔) and spatiotemporal (𝜖) 

terms in geostatistical spatiotemporal models. For the spatial term, we first calculated the normalized coefficient 

(𝜌𝜔): 

𝜌𝜔 =
∑ 𝜔𝑖𝑖

𝑛
  (3) 

Where 𝜔𝑖 is the estimated spatial term value corresponding to observation 𝑖 and 𝑛 is the number of observations. 

Then, the mean difference between the coefficients corresponding to all observations in year 𝑦 was calculated: 

𝛿𝜔𝑦
=
∑ (𝜔𝑖 − 𝜌𝜔)
𝑛𝑦
𝑖=1

𝑛𝑦
  (4) 

Where 𝑛𝑦 is the number of observations in year 𝑦. Then, since the log-link function was used, the annual influence 

value in year 𝑦 can be calculated: 𝐼𝜔𝑦
= 𝑒𝑥𝑝 (𝛿𝜔𝑦

). These influence metrics can also be calculated over space. 

However, since there were > 200 knots in the used mesh, calculating a coefficient by knot would be impractical. For 

that reason, we identified 8 knot groups with similar 𝜔 quarter-1 values using a partitioning around medoids 

clustering (Hennig and Liao, 2013), which considered spatial proximity. Then, the normalized coefficient and 

influence for 𝜔 per knot group 𝑘 (𝜌𝜔 and 𝐼𝜔𝑘
) were calculated using the steps described above. A similar procedure 

was followed to calculate the influence of the spatiotemporal term. 

In order to evaluate the influence of catchability and density covariates, we plotted the changes in the CPUE index 

produced by the inclusion of each significant covariate (‘step plot’). Whereas for the short time series, all covariates 

were included in this stepwise process, including the vessel random effect and spatial and spatiotemporal random 

fields, for the long time series, only fixed model covariates (i.e., country, vessel capacity and environmental 

covariates) were included due to the long run times needed for this model. 



3. Results 

The number of sets per quarter included in our models increased from 1991 to ~2017, but has stabilized somewhat 

in recent years (Figure 1; results for the short time series, not shown, were similar). The values of BET catch per set 

were skewed to the left, with values generally smaller than 15 tons and rarely above 30 tonnes (Figure 2). In the log 

scale, we noticed that the BET catch per set values remained roughly stable over the years, with somewhat larger 

values in the 1990’s and since 2020. When comparing among quarters, we noticed that quarter 1 generally had 

larger catch per set values (Figure 2). The proportion of sets with BET catch equal to zero remained below 1%, 

except for the first year of the time series (1991) and a few exceptional quarters over the 33 year time series 

(Figure 2). 

The fishing sets occur primarily around the equator, between 5∘S and 5∘N (Figure 3 & Figure 4). We did not observe 

a clear spatial pattern in average BET catch per set values, although they were generally larger in areas far from the 

coast (Figure 5 & Figure 6). We did not observe a clear spatial pattern in the proportion of null sets (Figure 7 & 

Figure 8). 

3.1 Spatial indicators 

The covered area (within the core purse-seine fishing area considered for this standardization) expanded 

progressively over the years up to ~2018, as is to be expected given the increase in the number of FOB sets per year 

over time (Figure 9; indices for the short time series, not shown, showed similar patterns for the overlap between the 

two series). The Clark-Evans indices suggest that the clustering of fishing sets decreased (larger Clark-Evans index) 

up until about 2010, after which time it stabilized (Figure 9). The center of gravity (longitude) has moved notably 

eastward since ~2010 (Figure 9). In terms of latitude, the center of gravity for quarters 1 and 2 has moved steadily 

northwards since ~2010, but remained stable for quarters 3 and 4 (Figure 9). The Moran index indicated that the 

BET catch per set values did not largely change their spatial autocorrelation over the years except for a few 

exceptional quarters 1 and 2 in the early 2000’s (Figure 9), potentially driven by small-scale targetting during the 

“golden years” (Fonteneau et al., 2008). Finally, the Gini index indicated that the heterogeneity of BET catch per set 

values remained roughly stable over time except for a few exceptional values, particularly for quarter 2, before 2005 

(Figure 9). 

3.2 Spatiotemporal model 

3.2.1 Short time series (2010-2023) 

When including all the candidate covariates in a simple linear model for the short time series (2010-2023), we found 

that the variance inflation factors associated with each of them were not larger than 5, which suggests that 

multicollinearity was not an issue (Figure 10). However, we found that the total net primary production (nppv) and 

sea surface temperature were highly correlated (Figure 11), therefore, we did not use nppv in the model selection 

process. The nodes of the defined mesh for the spatiotemporal model are shown in Figure 12, which covered the 

entire distribution of the observations. When comparing the AIC among different statistical families, we found that 

the generalized gamma family had the best performance (Table 2). 

We found that all the tested variables had a significant, although small, effect on the response variable (Table 3). 

The variable with the largest effect was the set time from sunrise (t_sunrise), which was negative and suggests that 

catch rates are higher when fishing closer to sunrise. Also, the country variable had a relatively important effect, 

indicating that catch rates are higher for the Spanish fleet. 

Although the KS and dispersion tests were not passed, the pattern of simulation residuals did not show large 

deviations from the expected distribution (Figure 13). Simulation outliers were not observed. Using randomized 

quantile residuals, the Moran’s I p-values suggest that there was no spatial autocorrelation in residuals (Figure 14). 

The spatial term showed larger values in zones far from coast and negative values in northern areas and south of the 

equator closer to coast, a pattern that was present for all the quarters (Figure 15). This pattern was similar among 



quarters. The spatiotemporal term is shown in Figure 16 and generally showed, like the spatial term, negative values 

in northern areas and larger values in areas far from coast. 

The extrapolation area is shown in Figure 17. We predicted CPUE values for every grid in this area and quarter by 

fixing the catchability covariates. Generally, the predicted CPUE shows larger values in areas far from coast in the 

southern hemisphere (Figure 18). We aggregated these spatial predictions to obtain a quarterly index of abundance. 

The CPUE index did not show a trend over the years (Figure 19 and Table 4) and with standardized values very 

similar to the nominal CPUE. There were years with particularly high values, such as 2010-Q1, 2011-Q1, or 2021-

Q1. Generally, we noticed that the first quarter produced larger values compared to quarters 2-4. 

When evaluating the influence of the spatial and spatiotemporal terms on the model, we found that the spatial term 

for knot groups 2 and 3 (Figure 20, which coincided with those areas with generally higher predicted CPUE) had a 

positive influence on predicted values. Conversely, knot group 5 (northern area) had a negative influence on 

predicted values. Over the years, we only found a large influence coefficient for the spatiotemporal term for 2010-

2011 (Figure 20). The step plot helped us to understand the impacts of each covariate on the quarterly CPUE index. 

Overall, we did not find very large impacts of any covariate (Figure 21). Also, we noticed that the inclusion of the 

spatial and spatiotemporal terms slightly impacted the predicted CPUE index for some quarters. 

3.2.2 Long time series (1991-2023) 

When including all candidate covariates in a simple linear model for the long time series (1991-2023), we found that 

the variance inflation factors associated with each of them were not larger than 5, which suggests that 

multicollinearity was not an issue (Figure 23). However, as with the short time series, we found that the total net 

primary production (nppv) and sea surface temperature were highly correlated (Figure 24), therefore, we did not use 

nppv in the model selection process. We also found that the depth of the 20∘C isotherm had important correlations 

with the other environmental variables (Figure 24). Given these correlations and the relatively long run times 

required for the long time series model, we decided not to include the depth of the 20∘C isotherm in long time series 

models. 

The nodes of the defined mesh for the spatiotemporal model are shown in Figure 25, which covered the entire 

distribution of the observations. When comparing the AIC among different statistical families, we found that the 

generalized gamma family had the best performance (Table 5). Note that the long time series model based on the 

Tweedie distribution did not converge in a practical amount of time, so this distribution was not considered for our 

analysis. 

As with the short time series model, we found that all the tested variables had a significant effect on the response 

variable (Table 6). Although the KS and dispersion tests were not passed, the pattern of simulation residuals did not 

show large deviations from the expected distribution (Figure 26). Simulation outliers were not observed. Using 

randomized quantile residuals, the Moran’s I p-values suggest that there was no spatial autocorrelation in residuals 

(Figure 27). 

The spatial term showed similar patterns to those of the short time series model, with larger values in zones far from 

coast and in the center of the domain, and negative values in northern areas and south of the equator closer to coast 

(Figure 28). This pattern was similar among quarters. The spatiotemporal term is shown in Figure 29 and generally 

showed, like the spatial term, negative values in northern areas and larger values in areas far from coast. 

The extrapolation area for the long time series model is shown in Figure 30. We predicted CPUE values for every 

grid in this area and quarter by fixing the catchability covariates. We aggregated these spatial predictions to obtain a 

quarterly index of abundance. The CPUE index showed a long-term decreasing trend over the years (Figure 31, 

Figure 32 and Table 7), though as with the short time series, the index is roughly stable over the most recent 13 

years. Values are similar to the nominal CPUE, though there are some important corrections 1995-2003. The long 

and short times series indices are very close over the years that they overlap (Figure 33). 

When evaluating the influence of the spatial and spatiotemporal terms on the model, we found little strong trend in 

the influence of the spatial term for the different knot groups (Figure 34). Knot groups 3 and 4, corresponding to the 

northern extremes of the model domain, are relatively poorly represented in the early parts of the time series. The 

influence of the spatiotemporal terms has varied over the years, but appears to have a long term tendency towards 



smaller values (Figure 34). Overall, we did not find very large impacts of any covariate on the index (Figure 35, 

Figure 36 and Figure 37). 

3.2.3 Online availability of indices 

The short and long time series indices presented in this paper can be downloaded at: 

• Quarterly short time series index: https://drive.ird.fr/s/MaKtm4kDEDPmozY 

• Quarterly long time series index: https://drive.ird.fr/s/3DX3xxpJZDwsHRc 

• Annual long time series index: https://drive.ird.fr/s/LnnD5soatW9cZNo 

4. Discussion 

In this study, we used a geostatistical spatiotemporal model to standardize the BET catch rates of the EU purse seine 

fleet operating on floating objects (FOB) in the Indian Ocean. There is evidence that spatiotemporal models like the 

one implemented here outperform alternative modelling strategies (Grüss et al., 2019), and their use has shown 

potential for CPUE standardization for tropical tunas using data from purse seine sets associated with FOBs (Xu and 

Lennert-Cody, 2022) and dolphins (Xu et al., 2019). We tested different model configurations and catchability and 

density covariates. Our final models showed good performance and produced indices with a long-term negative 

trend over the years since 1991, but approximate stability over the most recent 13 year period. These indices can 

help inform the abundance of juvenile BET in stock assessment models. 

We have produced two time series, one for the time period since 2010 that includes sophisticated covariates 

accounting for the use of dFADs by vessels, and another since 1991 for which these covariates are unfortunately not 

available. In our model, we included a covariate (follow) associated with the echosounder capacity of the buoys, 

which has been shown to increase the fishing power of this fleet (Wain et al., 2021). We found that dFAD use 

covariates generally had significant impacts on BET, but there impacts were often contradictory and quite small. 

One possible explanation for this is that while echosounder-equipped tracking buoys have been shown to increase 

dFAD catch per set, they have also been shown to favor increased catch of skipjack over other species (Wain et al., 

2021). Though the magnitude of this latter effect is small, BET is also the rarest of the three major tunas in FOB 

catches, perhaps explaining the equivocal impact of dFAD use on their catches. 

Regarding density covariates, SST was found to be the most important environmental explanatory variable for both 

the long and the short time series. Though temperature is known to impact the horizontal and vertical distributions of 

BET (Cai et al., 2020; Hino et al., 2019), the relatively minor impact of MLD is potentially linked to the 

confounding effects of set time of day, with even juvenile BET known to perform deep vertical migrations during 

daylight hours (Hino et al., 2019). 

One variable that might be included in future standardizations is the number of days at sea of the buoy on which the 

fishing set was performed. Previous studies have shown that tuna colonize dFADs during the first 16 days after 

release in the ocean (Baidai et al., 2020). Therefore, fishing on a dFAD that has been just released might produce 

lower catch rates, and the opposite effect might be expected when fishing on a fully-colonized dFAD. However, 

accurately calculating dFAD time at sea is currently quite difficult given that only dFAD tracking buoys, but not 

dFADs themselves, have a tracking system, and access to dFAD trajectory data remains limited. Furthermore, it is 

possible that the effect of time at sea for fished dFADs may have little impact given that purse-seine vessels only 

fish on floating objects at which tunas are present (i.e., the object is already colonized). 

Finally, we also compared the FOB index obtained in this study with the longline indices used in the 2022 BET 

stock assessment in areas 1N and 1S, which correspond to the western Indian Ocean (Figure 39). Overall, we 

noticed a similar trend between both indices (FOB and LL), especially the decrease from the late 1990s to mid 

2000s. Then, both indices showed an increase in CPUE values around 2010, and then a decrease until 2020 

approximately. 

https://drive.ird.fr/s/MaKtm4kDEDPmozY
https://drive.ird.fr/s/3DX3xxpJZDwsHRc
https://drive.ird.fr/s/LnnD5soatW9cZNo
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6. Tables 

Table 1: Code, description, class, and type of candidate explanatory variables. The time period series indicates 

which of the time series (long, short or both) for which the variable was considered. Catchability covariates were 

fixed at a specified value when predicting, while density covariates varied over space and time. 

Code Description Class 

Time 

series Type 

yr_qtr Year-Quarter interaction Factor (levels: 2010-1,…,2023-4) Both - 

country Fleet country Factor (levels: France, Spain) Both Catchabil

ity 

capacit

y 

Vessel capacity in cubic meters Numeric Long Catchabil

ity 

numbat Vessel identifier code Factor (levels meaningless) Short Catchabil

ity 

follow Followed a FAD with echosounder 

capacity? 

Factor (levels: No, Yes_No-Echo, 

Yes_Echo) 

Short Catchabil

ity 

n_buoy

s20 

Number of buoys within 20 nm Numeric Short Catchabil

ity 

n_buoy

s250 

Number of owned buoys within 250 

km 

Numeric Short Catchabil

ity 

t_sunris

e 

Set time since sunrise Numeric Short Catchabil

ity 

mld Mixing layer depth Numeric Short Catchabil

ity 

mld_cli

m 

Mixing layer depth climatology 

(1993-2023) 

Numeric Long Density 

mld_an

om 

Mixing layer depth anomaly Numeric Long Catchabil

ity 

sst Potential sea surface temperature Numeric Short Density 

sst_cli

m 

Potential sea surface temperature 

climatology (1993-2023) 

Numeric Long Density 

sst_ano

m 

Potential sea surface temperature 

anomaly 

Numeric Long Density 

nppv Total net primary production 0-100m 

depth 

Numeric Short Density 

nppv_c

lim 

Total net primary production 0-100m 

depth, climatology (1993-2023) 

Numeric Long Density 

nppv_a

nom 

Total net primary production 0-100m 

depth, anomaly 

Numeric Long Density 

iso20 Depth of 20C isotherm Numeric Short Density 

iso20_c

lim 

Depth of 20C isotherm, climatology 

(1990-2023) 

Numeric Long Density 

iso20_a

nom 

Depth of 20C isotherm, anomaly Numeric Long Density 

 

  



Table 2: AIC values for short time series (2010-2023) models assuming different probability distributions for the 

response variable. 

Family AIC 

Lognormal 206441.6 

Gamma 207312.7 

Generalized gamma 203761.9 

Tweedie 212077.8 
 

  



Table 3: Summary table of the final model (generalized gamma) for the short time series (2010-2023). Coefficients 

associated with the year-quarter interaction are not shown. 

term estimate std.error p_value 

countrySpain 0.14 0.04 <0.01 

followYes_No-echo -0.13 0.04 <0.01 

followYes_Echo 0.01 0.01 0.28 

n_buoys20 -0.02 0.00 <0.01 

n_buoys250 0.02 0.01 <0.01 

t_sunrise -0.17 0.00 <0.01 

sst -0.14 0.01 <0.01 

mld -0.05 0.01 <0.01 

iso20 -0.03 0.01 <0.01 
 

  



Table 4: Standardized CPUE index for the short time series (2010-2023) and 95% confidence interval obtained from 

the model using the quarter-specific spatial term configuration. 

year quarter est lwr upr cv 

2010 1 4.760 4.309 5.259 0.051 

2010 2 2.262 2.001 2.558 0.063 

2010 3 2.592 2.347 2.862 0.051 

2010 4 2.066 1.879 2.272 0.048 

2011 1 6.340 5.743 7.000 0.051 

2011 2 1.666 1.488 1.865 0.058 

2011 3 1.673 1.487 1.883 0.060 

2011 4 1.403 1.281 1.536 0.046 

2012 1 2.409 2.152 2.696 0.058 

2012 2 1.897 1.682 2.139 0.061 

2012 3 1.873 1.676 2.093 0.057 

2012 4 1.942 1.757 2.148 0.051 

2013 1 4.481 4.093 4.907 0.046 

2013 2 2.639 2.362 2.948 0.057 

2013 3 3.713 3.334 4.134 0.055 

2013 4 3.346 3.073 3.644 0.043 

2014 1 3.430 3.083 3.814 0.054 

2014 2 1.965 1.752 2.203 0.059 

2014 3 2.660 2.381 2.970 0.056 

2014 4 1.817 1.642 2.009 0.051 

2015 1 4.223 3.798 4.695 0.054 

2015 2 1.773 1.571 2.001 0.062 

2015 3 2.154 1.900 2.442 0.064 

2015 4 1.654 1.508 1.814 0.047 

2016 1 3.134 2.858 3.436 0.047 

2016 2 1.859 1.686 2.050 0.050 

2016 3 2.312 2.105 2.539 0.048 

2016 4 2.341 2.165 2.531 0.040 

2017 1 3.040 2.783 3.321 0.045 

2017 2 1.602 1.440 1.782 0.054 

2017 3 1.930 1.732 2.152 0.055 

2017 4 2.544 2.302 2.812 0.051 

2018 1 3.231 3.005 3.474 0.037 

2018 2 1.952 1.786 2.133 0.045 

2018 3 1.710 1.566 1.867 0.045 

2018 4 1.884 1.744 2.035 0.039 

2019 1 2.420 2.259 2.593 0.035 

2019 2 1.819 1.637 2.021 0.054 

2019 3 2.040 1.842 2.259 0.052 



2019 4 1.281 1.177 1.394 0.043 

2020 1 1.124 1.030 1.226 0.044 

2020 2 1.151 1.038 1.276 0.053 

2020 3 2.215 2.020 2.429 0.047 

2020 4 1.547 1.420 1.684 0.043 

2021 1 5.027 4.507 5.606 0.056 

2021 2 2.970 2.601 3.392 0.068 

2021 3 2.291 1.991 2.635 0.072 

2021 4 1.989 1.773 2.231 0.059 

2022 1 3.262 2.957 3.597 0.050 

2022 2 3.189 2.839 3.582 0.059 

2022 3 3.822 3.372 4.333 0.064 

2022 4 4.516 4.033 5.058 0.058 

2023 1 3.329 3.042 3.642 0.046 

2023 2 2.318 2.049 2.622 0.063 

2023 3 1.301 1.151 1.471 0.063 

2023 4 1.587 1.465 1.719 0.041 
 

  



Table 5: AIC values for long time series (1991-2023) models assuming different probability distributions for the 

response variable. 

Family AIC 

Lognormal 450054.8 

Gamma 461206.7 

Generalized gamma 444553.8 
 

  



Table 6: Summary table of the final model (generalized gamma) for the long time series (1991-2023). Coefficients 

associated with the year-quarter interaction are not shown. Note that coefficients have units of tonnes/UNIT, where 

UNIT is the unit of the corresponding predictor variable. 

term estimate std.error p_value 

countrySpain 0.15371 0.02830 0.00000 

capacity 0.00017 0.00002 0.00000 

sst_clim -0.11790 0.00822 0.00000 

sst_anom -0.12828 0.00989 0.00000 

mld_clim -0.00950 0.00083 0.00000 

mld_anom -0.00195 0.00078 0.01236 
 

  



Table 7: Annual standardized CPUE index for the long time series (1991-2023) and 95% confidence interval 

obtained from the model using the quarter-specific spatial term configuration. The index is in units of tonnes/set. 

year est lwr upr cv 

1991 4.82 4.18 5.58 0.07 

1992 3.50 3.11 3.97 0.06 

1993 2.83 2.52 3.20 0.06 

1994 3.53 3.18 3.95 0.06 

1995 5.33 4.79 5.95 0.06 

1996 4.79 4.36 5.27 0.05 

1997 6.83 6.22 7.53 0.05 

1998 4.25 3.81 4.77 0.06 

1999 5.47 5.05 5.94 0.04 

2000 4.29 3.96 4.67 0.04 

2001 4.38 3.99 4.82 0.05 

2002 4.88 4.52 5.28 0.04 

2003 3.09 2.84 3.38 0.04 

2004 3.85 3.55 4.20 0.04 

2005 2.54 2.36 2.75 0.04 

2006 2.60 2.44 2.78 0.03 

2007 2.61 2.46 2.79 0.03 

2008 3.47 3.20 3.78 0.04 

2009 3.76 3.51 4.06 0.04 

2010 2.75 2.57 2.97 0.04 

2011 2.64 2.46 2.85 0.04 

2012 1.92 1.79 2.07 0.04 

2013 3.43 3.22 3.66 0.03 

2014 2.35 2.17 2.56 0.04 

2015 2.22 2.06 2.41 0.04 

2016 2.22 2.09 2.39 0.03 

2017 2.09 1.94 2.26 0.04 

2018 2.07 1.96 2.20 0.03 

2019 1.86 1.74 2.00 0.04 

2020 1.41 1.31 1.54 0.04 

2021 2.87 2.57 3.21 0.06 

2022 3.42 3.12 3.76 0.05 

2023 2.01 1.87 2.18 0.04 
 

  



7. Figures 

 

Figure 1: Number of non-null FOB sets in the data (top) and proportion of sets with BET catch equal to zero 

(bottom) by year and quarter for the long series (1991-2023). 

  



 

Figure 2: Distribution of BET catch per set, original (top) and log-transformed (bottom), by year and quarter for the 

long time series (1991-2023). 

  



 

Figure 3: Number of FOB fishing sets (effort) per 1∘ × 1∘ grid cell and year for the short time series (2010-2023). 

  



 

Figure 4: Number of FOB fishing sets (effort) per 1∘ × 1∘ grid cell and 3-year time period for the long time series 

(1991-2023). 

  



 

Figure 5: Observed average catch per 1∘ × 1∘ grid cell and year for the short time series (2010-2023). 

  



 

Figure 6: Average catch per set (CPUE) per 1∘ × 1∘ grid cell and 3-year time period for the long time series (1991-

2023). 

  



 

Figure 7: Observed proportion of sets with zero BET catch per 1∘ × 1∘ grid cell and year in the short time series 

(2010-2023). 

  



 

Figure 8: Observed proportion of sets with zero BET catch per 1∘ × 1∘ grid cell and 3-year time period for the long 

time series (1991-2023). 

  



 

Figure 9: Spatial indicators calculated by quarter for the long time series (1991-2023). 

  



 

Figure 10: Variance inflation factors (VIF) by covariate obtained when fitting a simple linear model with short time 

series data (2010-202#). 

  



 

Figure 11: Correlation matrix among environmental covariates for the short time series (2010-2023). 

  



 

Figure 12: Mesh nodes (black dots) used in the spatiotemporal model and observations (gray dots) for the short time 

series (2010-2023). 

  



 

Figure 13: Simulation-based randomized-quantile residuals for the short time series model (2010-2023). QQ-plot 

(left) detects overall deviations from the expected distribution, by default with added tests for correct distribution 

(KS test), dispersion and outliers. Residual plot (right) shows the residuals against the predicted value. 

  



 

Figure 14: Moran I’s p-value of the randomized quantile residuals for standardization model of short time series 

(2010-2023). Blue points represent years with significant spatial autocorrelation in residuals. 

  



 

Figure 15: Quarter-specific spatial term for short time series model (2010-2023). 

  



 

Figure 16: Spatiotemporal term for short time series model (2010-2023). To reduce the number of panels, the 

spatiotemporal term has been averaged over periods of three years. 

  



 

Figure 17: Extrapolation area composed by 1∘ × 1∘ grids. This area was used when predicting CPUE values over 

space and time for the short times series (2010-2023). 

  



 

Figure 18: CPUE predictions per quarter over the extrapolation grid for the short time series (2010-2023). 

  



 

Figure 19: Standardized CPUE index for the short time series (2010-2023). Gray area represents the 95% confidence 

interval. Red dots represent the nominal CPUE. The index was rescaled to a mean of 1. 

  



 

Figure 20: Coefficient-distribution-influence plot for the short times series (2010-2023). Figure A shows the 

coefficient by knot group for the spatial (black triangles, each triangle represents a quarter) and spatiotemporal (red 

dots, each dot represents a year) term. The knot groups are shown in Figure C. Figure B shows the number of 

observations per year and knot group. Figure D shows the influence coefficient per year for the spatial and 

spatiotemporal term. 

  



 

Figure 21: Step plot to evaluate the effect of adding a new covariate on the CPUE index for the short time series 

(2010-2023). The numbers indicate the steps, and the formula indicates the covariate that was added. The black line 

represents the CPUE index at that step, the red line is the CPUE index from the previous step, and the gray lines 

indicate all the previous CPUE indices. 

  



 

Figure 22: Temporal trends in oceanographic conditions. Boxplots are composed of environmental information per 

grid of the extrapolation area for the short itme series (2010-2023). 

  



 

Figure 23: Variance inflation factors (VIF) by covariate obtained when fitting a simple linear model with long time 

series data (1991-2023). 

  



 



Figure 24: Correlation matrix among environmental covariates for the long time series (1991-2023). The top panel 

shows original environmental covariates before decomposition into climatology and anomaly, whereas the bottom 

panel shows the climatology and anomaly variables that were used in long time series models. 

  



 

Figure 25: Mesh nodes (black dots) used in the spatiotemporal model and observations (gray dots) for the long time 

series (1991-2023). 

  



 

Figure 26: Simulation-based randomized-quantile residuals for the long time series model (1991-2023). QQ-plot 

(left) detects overall deviations from the expected distribution, by default with added tests for correct distribution 

(KS test), dispersion and outliers. Residual plot (right) shows the residuals against the predicted value. 

  



 

Figure 27: Moran I’s p-value of the randomized quantile residuals for standardization model of long time series 

(1991-2023). Blue points represent years with significant spatial autocorrelation in residuals. 

  



 

Figure 28: Quarter-specific spatial term for long time series model (1991-2023). 

  



 

Figure 29: Spatiotemporal term for long time series model (1991-2023). Values have been meaned over each 3-year 

time period. 



  



 

Figure 30: Extrapolation area composed by 1∘ × 1∘ grids. This area was used when predicting CPUE values over 

space and time for the long times series (1991-2023). 

  



 

Figure 31: Annual standardized CPUE index for the long time series (1991-2023). Gray area represents the 95% 

confidence interval. Red dots represent the nominal CPUE. 

  



 

Figure 32: Quarterly standardized CPUE index for the long time series (1991-2023). Gray area represents the 95% 

confidence interval. Red dots represent the nominal CPUE. 

  



 

Figure 33: Quarterly standardized CPUE index for the long and short time series superposed. 

  



 

Figure 34: Coefficient-distribution-influence plot for the long times series (1991-2023). Figure A shows the 

coefficient by knot group for the spatial (black triangles, each triangle represents a quarter) and spatiotemporal (red 

dots, each dot represents a year) term. The knot groups are shown in Figure C. Figure B shows the number of 

observations per year and knot group. Figure D shows the influence coefficient per year for the spatial and 

spatiotemporal term. 

  



 

Figure 35: Step plot to evaluate the effect of adding a new covariate on the annual standardized CPUE index for the 

long time series (1991-2023). The numbers indicate the steps, and variable name indicates the covariate that was 

added at that step. The black line represents the CPUE index at that step, the dashed red line is the CPUE index from 

the previous step, and the gray lines indicate all the CPUE indices from all steps. Note that year-quarter, vessel 

random effect ((1|numbat)), spatial (𝜔𝑠𝑞) and spatio-temporal (𝜖𝑠𝑡) terms were included in all models. 

  



 

Figure 36: Change in annual standardized CPUE index for the long time series (1991-2023) due to adding a new 

covariate to the model formula. Color indicates which covariate was added to the formula and the covariates are 

presented in the legend in the order they were added to the model. Note that year-quarter, vessel random effect 

((1|vessel)), spatial (𝜔𝑠𝑞) and spatio-temporal (𝜖𝑠𝑡) terms were included in all models. 

  



 

Figure 37: Change in quarterly standardized CPUE index for the long time series (1991-2023) due to adding a new 

covariate to the model formula. Color indicates which covariate was added to the formula and the covariates are 

presented in the legend in the order they were added to the model. Note that year-quarter, vessel random effect 

((1|vessel)), spatial (𝜔𝑠𝑞) and spatio-temporal (𝜖𝑠𝑡) terms were included in all models. 

  



 

Figure 38: Temporal trends in oceanographic conditions. Boxplots are composed of environmental information per 

grid of the extrapolation area for the long time series (1991-2023). 

  



 

Figure 39: Comparison between the long FOB index (PSLS) obtained in this study with the longline indices for 

areas 1N and 1S used in the 2022 BET stock assessment. 

 


