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Abstract 

This report provides preliminary results for standardized Catch per Unit Effort indices based on catches of 
the large pelagic longline fishery to track abundance of two pelagic shark stocks off South Africa: blue 
shark (Prionace glauca) and mako sharks (Isurus oxyrinchus). Given the spatio-temporal nature of the 
data, the standardized index of abundance was generated based on a model that takes advantage of this 
information to learn about the long-term trend in the abundance of modelled stock, accounting both for 
catchability and abundance covariates. Data from both indicator vessels (former shark longline vessels that 
continue to catch a significant proportion of sharks) and from the entire large pelagic longline fleet were 
considered. This fleet targets multiple tuna species, thus, to account for changes in targeting, a multivariate 
index of species composition of the catch was included in the model. A spatio-temporal Generalized Linear 
Mixed Effect Model (GLMM) was applied, accounting both for catchability and abundance covariates. 
Multiple models were fitted of which the best model was selected based on information theoretic approach 
using the AIC. The standardized indices of abundance for both mako and blue sharks were then calculated 
from the best model. 

1. Background 

Indices of abundance derived from standardized fisheries Catch per Unit Effort (CPUE) data are an 
important input in the assessment of the two pelagic sharks, blue and mako sharks, caught by the South 
African pelagic longline fishery operating in the south Atlantic- and Indian ocean, across the boundary of 
ICCAT and IOTC. The previous approaches used to generate indices of abundance for blue and mako 
sharks considered models that range in complexity on how they handled 1) the spatial component; 2) 
targeting; 3) temporal components. For example (Fernández-Costa et al., 2023) and (Coelho et al., 2023) 
modelled the potential effects of targeting as what they termed as ratio (ratio of sword fish catch to the sum 
of sword and blue shark catch); they incorporated spatial effects at much broader scales (Areas 6 to 11) 
both as main and interaction effects. For temporal effects year and quarter effects were included as a 
factor. In the ICCAT report by Kai (2023) a more complex spatio-temporal model was implemented in the R 
package VAST (Thorson, 2019). Specifically, they applied delta-negative binomial models with the 
probability of occurrence modelled as binomial model (although fixed at a constant due to high percentage 



of positive catches > 91%), and a positive component modelled as negative binomial. Spatial and spatio-
temporal components were modelled as random fields. In addition the model also included vessel as a 
random effect and numbers of hooks as measure of fishing effort. In this report we applied a similar 
approach to that in Kai (2023), but instead of using the implementation of the spatio-temporal GLMM model 
in VAST we used a similar (and recommended Anderson et al. (2024)) implementation in the R package 
sdmTMB (Anderson et al., 2024). In this report, preliminary results from the spatio-temporal Generalized 
Linear Mixed Effect Model is presented. 

2. Methods 

A map of the study region, the southern Atlantic and Indian ocean of South Africa, is shown in Figure 1. 

  

Figure 1: Map of the South Africa showing the typical fishing region in the south Atlantic and Indian ocean. Points represent 
fishing locations from indicator vessels. Brown lines represent the boundary of the prediction grid for model based on data from 
indicator vessels. 

 

Before the application of any data filtration/exclusion the total numbers of records for the indicator vessels 
and that for entire pelagic long-line was 3380 and 45259 respectively. 

Prior to the modelling fitting process, multiple data filtration/exclusions were undertaken so as to retain only 
reliable sets of catch records: 



 1௦௧ step filtering: 
o exclude records with missing coordinates 
o exclude records with negative/zero effort (hooks used) 
o exclude records with missing catch for species for either mako or blue sharks 
o exclude records from years earlier than 2000 (due to paucity records) 
o exclude fishing sets/outing that are far outside the common fishing ground in the south 

Atlantic and Indian oceans (east of 5௢𝐸𝑎𝑠𝑡 and north of −45௢𝑆𝑜𝑢𝑡ℎ) resulting in loss of 
about (∼ 0.7% the records when using all the data. 

Addition data filtration were also undertaken: 

 2௡ௗ step filtering: 
o exclude sets that fall outside the predictions grid (generated for main fishing grounds) 
o exclude records with zero total catch (sum of catch of all tuna and/or sharks) 

After the application of the above-described data filtration/exclusion steps the numbers of records 
remaining in the indicator vessel and entire pelagic longline fishery were 3378 and 42739 respectively. 

 

2.1 Fleet dynamics of South African Pelagic longline fishery 

Domestic commercial longlining for tuna has been documented from the early 1960s, when the fishery 
landed approximately 2 000 t of tuna. The tuna longline fishery declined rapidly in the mid-1960s due to an 
insufficient market for low quality bluefin and albacore tuna which constituted the bulk of the catch. 
However, in 1995 an interest in this fishery was expressed when profits were made by a joint venture with a 
Japanese longlining vessel that targeted tuna and swordfish within South African waters. Consequently, 31 
experimental longline permits were issued in 1997 and the first commercial long-term rights were allocated 
in 2005, expiring and reverting back to the State on 31 December 2015. The allocation policy stipulated that 
the TAE be set at 20 swordfish-directed vessels and 30 tuna-directed vessels to avoid depleting local 
swordfish resources. In the allocation process 18 Rights were issued for the swordfish-directed fishery and 
26 for the tuna-directed fishery (1 Right = 1 vessel). A Precautionary Upper Catch Limit (PUCL) of 2 000 t 
dressed weight of all sharks was set. If this limit was reached within a given season, the large-pelagic 
fishery would be closed. The PUCL was calculated as the highest fishing level which could be considered 
under the guise of meeting the 2005 policy objective (50 rights holders targeting tuna and swordfish with no 
10% bycatch limit in place). 

The pelagic shark longline sector, which operated under exemption from 2005, was absorbed into the large 
pelagic (tuna and swordfish) longline fishery in 2011. This increased the total number of Large Pelagic 
Longline Rights to 50, with a split of 21 swordfish-directed and 29 tuna-directed Rights. Joint venture 
(foreign-flagged vessels) was prohibited from landing more than 10% sharks of total dressed weight of tuna 
species per season. 

In 2013, pelagic sharks were designated as bycatch in the policy for this fishery. In 2015 a decision was 
made to manage the fishery collectively as the Large Pelagic Longline fishery, with no distinction between 
tuna-directed and swordfish-directed vessels or permits. Sixty-three commercial fishing Rights were 
allocated in January 2017 , expiring and reverting back to the State on 31 January 2032. . 



When the PUCL was first proposed within DFFE, the intention was to reduce the PUCL to 370 t over a 5-
year period. This amount was calculated based on the maximum extrapolated catch of this fishery 
operating under the 10% by-catch limit. The PUCL remained at 2 000 t and was never decreased. In 2013, 
wire traces were prohibited for the original tuna and swordfish fleet . As of 2015, the use of wire traces has 
been banned in the South African Large Pelagic Longline sector, as is the use of stainless-steel hooks. 
Furthermore, shark fins must be naturally attached to the body or tethered when landed. As of 2015, the 
targeting of sharks (defined as 50% or more sharks per fishing season by mass) was prohibited and if 
quarterly landings exceeded 60% shark, the vessel was required to have 100% observer coverage for the 
next quarter. As of 2013, South Africa banned the retention of specific shark species: thresher sharks 
(2017) (genus Alopias), hammerhead sharks (genus Sphyrna) (2017), oceanic whitetip sharks (2014) 
(Carcharhinus longimanus), porbeagle sharks (Lamna nasus) (2014), silky sharks (Carcharhinus 
falciformis) (2014), and dusky sharks (Carcharhinus obscurus) (2014), often misidentified as silky sharks. 

 

Results from initial exploration of blue and mako sharks catch over the entire time series, to summarise the 
overall spatial pattern in the catch location, are shown in Figure 2 before processing the data, and the 
corresponding pattern after processing the data are shown in Figure 3. 

  

Figure 2: Distribution of raw catches of blue and mako sharks caught in the southern Indian and Atlantic oceans. A) data from all 
vessels B) data from indicator vessels. Brown lines denote the boundary of the prediction grid. Red dashed lines denote ICCA-
IOTC boundary off South Africa. 



  

Figure 3: Distribution of processed catches of blue and mako sharks caught in the southern Indian and Atlantic oceans. A) data 
from all vessels B) data from indicator vessels. Brown lines denote the boundary of the prediction grid. Red dashed lines denote 
ICCAT-IOTC boundary off South Africa. 

 

The prediction grid used to generate the indices of abundance for both blue and mako sharks when using 
data from all vessels and indicator vessels is shown in Figure 4. 



 

Figure 4: Plot of the prediction grid used to generate index of abundance for blue and mako sharks. A) when using all the data, 
B) when using data from indicator vessels. 

 

2.2 Modelling the effect of targeting 

There are multiple approaches used when developing standardizing cpue from fisheries dependent data. 
As noted above some of the previous work on blue shark attempted to address the issue of targeting by 
incorporating what is termed as ratio (ratio of catch of blue sharks to total catch), this raises some issues 
including potential confounding from having the response on both side of the equation. Previous works on 
the multispecies linefishery off South Africa has shown the utility of multi-species measure of species 
composition, the axis scores from one or multiple principal components in accounting for switch in targeting 
(Winker et al., 2014). In the context of this study a similar approach was adopted. Result from the PCA 
analysis is shown Figure 5. 



  

Figure 5: Bi-plot from PCA on double-square root transformed species composition data. The length and direction of vector plot 
shows the strength and the direction of association of the species with the first and second principal components. The colors 
denote the membership of axis score to the optimal clusters identified. A) when using all the data, B) when using data from 
indicator vessels. 

 

2.3 CPUE standardization 

Given the spatio-temporal nature of the data, any potential method to be used to generate a standardized 
index of abundance needs to account for the effect of location of the catches and how these catch locations 
vary over time. In addition, the relative influence of additional covariates, e.g month, fishing depth, and 
other relevant variables needs to be included in the model. Although there are multiple modelling 
frameworks that can be used, for the purpose of this report a spatio-temporal GLMM implemented in the R 
package sdmTMB (Anderson et al., 2024) was used. Although sdmTMB, as the name suggests species 
distribution model implemented in TMB, was initially intended to be used for modelling species distribution, 
it has since been extended to be used in a range context including generation of indices of abundance both 
from fisheries dependent and independent sources (Anderson et al., 2024). To model the spatial process 
the coordinates (longitude and latitude) were projected to UTM zone 34, the zone in which most 
observations fall (spatial processes are modeled with respect to distance). The standard GLMM with 
covariate effects and spatial and spatio-temporal component takes the form: 



𝔼ൣ𝑦௦,௧൧ = 𝜇௦,௧

𝜇௦,௧ = 𝑓ିଵ൫𝐗𝐬,𝐭𝛃 + 𝜔௦ + 𝜖௦,௧൯
 

where 𝔼ൣ𝑦௦,௧൧ is the expected value of the observation, in this case catch at location 𝑠 and time 𝑡; 𝐗𝐬,𝐭 is 
the design matrix for the main effect (e.g. covariates, fixed effect of year); 𝛃 is the vector of coefficients for 
the main effects; 𝜇௦,௧ the mean of the observation, here catch, at location 𝑠, and 𝑡; 𝑓ିଵ is the link function 
linking the mean response to the predictors (it allows to model response in multiple space: logit, log, 
inverse,and identity). 

𝜔௦ ∼ 𝐌𝐕𝐍(𝟎, 𝚺𝛚) 

𝜖௦,௧ ∼ 𝐌𝐕𝐍(𝟎, 𝚺𝛜) 

where 𝜔௦ is the spatial random effect, and 𝛴ఠ is the covariance of the spatial random field; 𝜖௦,௧ is the 
spatio-temporal random field and 𝛴ఢೞ,೟ is the covariance of the spatio-temporal random field. 

The six models considered for each species and the two data sets are shown below. For each of the 
models two variants were considered with and without anisotropy. In addition two distribution family were 
considered (tweedie and delta-Gamma). Thus in total 48 models were considered for each species or a 
total of 96 models. 

Model formula
𝑀𝑜𝑑𝑒𝑙ଵ 𝑐𝑎𝑡𝑐ℎ ∼ 𝑌𝑒𝑎𝑟 + 𝑠(𝑑𝑒𝑝𝑡ℎ) + 𝑚𝑜𝑛𝑡ℎ + 𝑠(𝑃𝐶1) + (|𝑣𝑒𝑠𝑠𝑒𝑙) + 𝑠(𝑠𝑙𝑜𝑝𝑒) + 𝑜𝑓𝑓𝑠𝑒𝑡൫𝑙𝑜𝑔(𝐻𝑜𝑜𝑘𝑠)൯

𝑀𝑜𝑑𝑒𝑙ଶ 𝑐𝑎𝑡𝑐ℎ ∼ 𝑌𝑒𝑎𝑟 + 𝑠(𝑑𝑒𝑝𝑡ℎ) + 𝑚𝑜𝑛𝑡ℎ + 𝑠(𝑃𝐶1) + (|𝑣𝑒𝑠𝑠𝑒𝑙) + 𝑜𝑓𝑓𝑠𝑒𝑡൫𝑙𝑜𝑔(𝐻𝑜𝑜𝑘𝑠)൯

𝑀𝑜𝑑𝑒𝑙ଷ 𝑐𝑎𝑡𝑐ℎ ∼ 𝑌𝑒𝑎𝑟 + 𝑚𝑜𝑛𝑡ℎ + 𝑠(𝑃𝐶1) + (|𝑣𝑒𝑠𝑠𝑒𝑙) + 𝑜𝑓𝑓𝑠𝑒𝑡൫𝑙𝑜𝑔(𝐻𝑜𝑜𝑘𝑠)൯

𝑀𝑜𝑑𝑒𝑙ସ 𝑐𝑎𝑡𝑐ℎ ∼ 𝑌𝑒𝑎𝑟 + 𝑚𝑜𝑛𝑡ℎ + 𝑠(𝑃𝐶1) + 𝑜𝑓𝑓𝑠𝑒𝑡൫𝑙𝑜𝑔(𝐻𝑜𝑜𝑘𝑠)൯

𝑀𝑜𝑑𝑒𝑙ହ 𝑐𝑎𝑡𝑐ℎ ∼ 𝑌𝑒𝑎𝑟 + 𝑚𝑜𝑛𝑡ℎ + 𝑜𝑓𝑓𝑠𝑒𝑡൫𝑙𝑜𝑔(𝐻𝑜𝑜𝑘𝑠)൯

𝑀𝑜𝑑𝑒𝑙଺ 𝑐𝑎𝑡𝑐ℎ ∼ 𝑌𝑒𝑎𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡൫𝑙𝑜𝑔(𝐻𝑜𝑜𝑘𝑠)൯

 

The proportion of zero values over the entire time series and for the data from all vessels was 50% for 
blue shark ∼ 44% for mako shark. The proportion of zeros for data from the indicator vessels was 21% 
for blue shark and 17% for mako sharks. Although not specifically a major issue for the data from indicator 
vessels, given that it is not zero dominated, when one is dealing with observations that have substantial 
amount of zeros, the most commonly followed approaches are either to use hurdle model, where two sub-
models are fitted to the data (modelling probability of encounter/occurrence and modelling positive 
observations) and combine them, or to use Tweedie distribution. In the current release of sdmTMB, multiple 
types of hurdle models are implemented including delta-lognormal and delta-gamma. 

Spatio-temporal GLMMs with spatial and spatio-temporal random effects can account for unmeasured 
variable(s), leading to observations to be correlated in space and space-time. The most common approach 
to model these spatial and spatio-temporal random effects is to use Gaussian Random Fields (GRF), 
where the spatial random effects describing the spatial pattern are drawn from a multivariate normal 
distribution constrained by spatial covariance functions (e.g exponential, spherical or in the current 
implementation in sdmTMB from Matern family), but these models are computationally demanding and can 
be difficult to fit for big data. Multiple workarounds were proposed to deal with computation difficulties such 
as the stochastic partial differential equation spde approximation to GRF implemented in the R package 



INLA (R-INLA) that is also implemented in TMB, making it accessible to sdmTMB. Implementation of the 
spatio-temporal GLMM requires construction of a mesh containing triangulation and projection matrices that 
are needed for the spde approach. 

The meshes used to model the spatial random fields for the data from all vessels and that from indicator 
vessels are shown in Figure 6 and Figure 7 respectively. 

 

Figure 6: Plot of the mesh used to model the spatial random fields for the model based on data from all the vessels in pelagic 
longline fishery. A) for mako shark B) for blue shark. 



  

Figure 7: Plot of the mesh used to model the spatial random fields for the model based on indicator vessels in the pelagic 
longline fishery. A) for mako shark B) for blue shark. 

All the analysis, visualisation and report generation were conducted in R (R Core Team, 2024). Multiple R 
packages were utilised for data processing, visualization, analysis and summary of results including (Allaire 
et al., 2024; Anderson et al., 2024; Letaw, 2015; Maechler et al., 2024; Pebesma, 2024; Raiche and Magis, 
2022; Robinson et al., 2024; Spinu et al., 2024; Wickham et al., 2023, 2024; Wickham and Henry, 2023; 
Wood, 2023; Xie, 2024). 

 

3. Results 

3.1 Model selection 

Multiple models were considered for the purpose of this report (as indicated above 48 for each species - 
although not all combinations converged): The form of the spatial variability (anisotropic vs omnidirectional); 
distribution family; and the covariates sets were considered. The performance of the models were 
assessed based on information theoretic approach using AIC. Model performance table are shown in Table 
1 and Table 2 for blue and mako sharks respectively. 

  



 Table 1: Comparison of model performance, based on AIC, models with different fixed effect structure and distribution family for 
blue shark. Using all the data, and data from indicator vessels. 

data source family formulas anisotropy AIC 

All vessels 

tweedie 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) TRUE 278,063.31 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) FALSE 278,064.86 

0 + as.factor(year) + fmonth + s(PC1, k = 3) TRUE 285,219.62 

0 + as.factor(year) + fmonth + s(PC1, k = 3) FALSE 285,221.76 

0 + as.factor(year) + fmonth TRUE 300,269.05 

0 + as.factor(year) + fmonth FALSE 300,278.80 

0 + as.factor(year) TRUE 300,763.84 

0 + as.factor(year) FALSE 300,773.05 

delta-gamma 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) TRUE 266,468.04 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) FALSE 266,474.92 

0 + as.factor(year) + fmonth + s(PC1, k = 3) TRUE 275,461.61 

0 + as.factor(year) + fmonth + s(PC1, k = 3) FALSE 275,463.33 

0 + as.factor(year) + fmonth TRUE 293,302.01 

0 + as.factor(year) + fmonth FALSE 293,304.96 

0 + as.factor(year) TRUE 293,977.24 

0 + as.factor(year) FALSE 293,979.95 

Indicator vessels 

tweedie 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) + s(depth_scaled, k = 3) TRUE 38,732.19 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) + s(depth_scaled, k = 3) FALSE 38,728.66 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) TRUE 38,729.02 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) FALSE 38,725.41 

0 + as.factor(year) + fmonth + s(PC1, k = 3) TRUE 38,895.75 

0 + as.factor(year) + fmonth + s(PC1, k = 3) FALSE 38,891.94 

0 + as.factor(year) + fmonth TRUE 39,176.35 

0 + as.factor(year) + fmonth FALSE 39,174.64 

0 + as.factor(year) TRUE 39,306.39 

0 + as.factor(year) FALSE 39,303.14 

delta-gamma 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) + s(depth_scaled, k = 3) TRUE 37,919.51 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) TRUE 37,913.46 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) FALSE 37,913.26 

0 + as.factor(year) + fmonth + s(PC1, k = 3) TRUE 38,316.37 

0 + as.factor(year) + fmonth + s(PC1, k = 3) FALSE 38,312.90 

0 + as.factor(year) + fmonth TRUE 38,650.78 

0 + as.factor(year) + fmonth FALSE 38,647.29 

0 + as.factor(year) TRUE 38,825.88 

0 + as.factor(year) FALSE 38,825.08 



 Table 2: Comparison of model performance, based on AIC, models with different fixed effect structure and distribution family for 
mako shark. Using all the data, and data from indicator vessels. 

data source family formulas anisotropy AIC 

All vessels 

tweedie 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) + s(depth_scaled, k = 3) + s(slope, k = 3) TRUE 295,337.21 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) + s(depth_scaled, k = 3) + s(slope, k = 3) FALSE 295,349.29 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) + s(depth_scaled, k = 3) TRUE 295,381.91 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) + s(depth_scaled, k = 3) FALSE 295,394.14 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) TRUE 295,413.86 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) FALSE 295,426.05 

0 + as.factor(year) + fmonth + s(PC1, k = 3) TRUE 304,738.03 

0 + as.factor(year) + fmonth + s(PC1, k = 3) FALSE 304,765.31 

0 + as.factor(year) + fmonth TRUE 318,165.37 

0 + as.factor(year) + fmonth FALSE 318,216.18 

0 + as.factor(year) TRUE 318,532.98 

0 + as.factor(year) FALSE 318,586.44 

delta-gamma 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) + s(depth_scaled, k = 3) TRUE 285,996.84 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) + s(depth_scaled, k = 3) FALSE 286,008.57 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) TRUE 286,022.73 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) FALSE 286,034.38 

0 + as.factor(year) + fmonth + s(PC1, k = 3) TRUE 293,626.27 

0 + as.factor(year) + fmonth + s(PC1, k = 3) FALSE 293,629.88 

0 + as.factor(year) TRUE 312,657.72 

0 + as.factor(year) FALSE 312,662.39 

Indicator vessels 

tweedie 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) + s(depth_scaled, k = 3) FALSE 38,966.74 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) FALSE 39,000.44 

0 + as.factor(year) + fmonth FALSE 39,982.50 

0 + as.factor(year) TRUE 40,176.90 

0 + as.factor(year) FALSE 40,190.81 

delta-gamma 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) TRUE 38,231.48 

0 + as.factor(year) + fmonth + s(PC1, k = 3) + (1 | fvessel) FALSE 38,232.97 

0 + as.factor(year) + fmonth + s(PC1, k = 3) TRUE 38,401.69 

0 + as.factor(year) + fmonth + s(PC1, k = 3) FALSE 38,404.88 

0 + as.factor(year) + fmonth TRUE 39,514.02 

0 + as.factor(year) + fmonth FALSE 39,525.39 

0 + as.factor(year) TRUE 39,639.64 

0 + as.factor(year) FALSE 39,647.44 

Visual summary of estimated range from the different models are shown in Figure 8 and Figure 9 for blue- 
and mako- sharks respectively. The range, distance after which observations can be considered 
independent (specifically here it refers to the distance where correlation drops to 10% of estimated 
correlation 𝜌), was relatively comparable among the different models, with range from the different models 
having overlapping estimates of range. 



 

Figure 8: Summary of the estimated range from the different models (Models with different fixed effect structure) for blue sharks. 
Estimated range from the best model is denoted with blue shade. A) for models that use all the data B) for models that uses only 
indicator vessel. 

  



 

Figure 9: Summary of the estimated range from the different models (Models with different fixed effect structure) for mako 
sharks. Estimated range from the best model is denoted with blue shade. A) for models that use all the data B) for model that 
uses only indicator vessel. 

 

3.2 Partial effects 

The partial effects of the covariates, depth (depth_scaled) - z-transformed bottom depth, PC1 (first 
principalcomponent axis score), and month. The partial effects of the covariate on both the positive and 
binomial components of the delta-Gamma model are summarised below. The partial effect of bottom depth 
on mako sharks probability of occurrence and catches are shown in Figure 10. Although characterized by 
wider confidence interval the probability of occurrence of mako shark appears to increase with increase in 
depth on the other hand positive catches were largely flat. 



  

Figure 10: Partial effects of depth on the distribution and abundance of mako sharks for the model based on the data from all 
vessels. 

 

The effect of the index of targeting, PC1, appears to be largely similar between blue and mako sharks 
(Figure 11). The form and the direction of the effect of PC1 appear to vary between model based on data 
from indicator vessels and those based on data from all vessels that landed either of the two pelagic 
sharks. This contrasting form appears to hold true for both the binomial and positive components of the 
delta-Gamma model. 



  

Figure 11: Partial effects of PC1, index of species composition used as proxy for targeting, on the distrbution and abundance of 
A) blue shark B) mako sharks. 

 

Similar to that observed for the partial effect of PC1 the partial effect of month on the blue and mako sharks 
appear to be relatively similar Figure 12. In addition, the forms and direction of the effect of month appears 
to be similar across the data source (data from all vessels vs data from indicator vessels) for the binomial 
components. For the positive components, peak in blue shark catch appears to occur late in the year or the 
start of the year, whereas for mako shark catch appears to peak around the middle of the year. 



  

Figure 12: Partial effects of month on the distrbution and abundance of A) blue shark B) mako sharks. 

 

3.3 Model diagnostics 

Standard model diagnostics, described below, have been checked. To save space, only those 
corresponding to the model that used the entire data set are presented below. The quantile-quantile plots of 
residuals, randomized quantile residuals (if the data is consistent with the model residuals should be 
distributed 𝑁(0,1)), for the blue shark model that uses all the data is shown in Figure 13 whereas that for 
mako shark is shown in Figure 14. The quantile-quantile plots of residuals for the blue shark model based 
on indicator vessels is shown in Figure 15 and that for mako sharks is shown in Figure 16. 



  

Figure 13: Quantile-quantile plots residuals for the best model for blue sharks that uses data from all vessels. 

  

Figure 14: Quantile-quantile plots residuals for the best model for mako sharks that uses data from all vessels. 



  

Figure 15: Quantile-quantile plots residuals for the best model for blue sharks that uses data from indicator vessels. 

  

Figure 16: Quantile-quantile plots residuals for the best model for mako sharks that uses data from indicator vessels. 



3.4 Spatio-temporal pattern in predicted catch 

The predicted catch for the best model that uses all the data are shown in Figure 17 and Figure 18 for blue 
and mako sharks respectively. 

  

Figure 17: Predictions of catch for blue sharks from the best model that uses data from all vessels operating in the south Atlantic 
and Indian oceans. 



  

Figure 18: Predictions of catch for mako sharks from the best model that uses data from all vessels operating in the south 
Atlantic and Indian oceans. 

 

The corresponding predicted catch for the best models that used data from indicator vessels are shown in 
Figure 19 and Figure 20 for blue and mako sharks respectively. 



  

Figure 19: Predictions of catch for blue sharks from the best model that uses data from indicator vessels in the pelagic longline 
vessels operating in the south Atlantic and Indian oceans. 

  

Figure 20: Predictions of catch for mako sharks from the best model that uses data from indicator vessels operating in the south 
Atlantic and Indian ocean. 



3.5 Standardized indices of abundance 

The standardized indices from the best model are shown in Figure 21. As it can be seen in the index from 
indicator vessels are not that different from that based on data from all vessels. 

  

Figure 21: Standardized index from the best model for blue and mako sharks. Filled circles denote the nominal indices. 

4. Discussion 

The result from this work shows the value of spatio-temporal GLMM in generating standardized CPUE for 
the pelagic-long line fishery operating in the south Atlantic and Indian ocean landing blue and mako sharks. 

  



Appendix 

Spatial random effects 

Relevant output on model diagnostics is presented below. Estimated spatial random effects for the best 
model based on data from all vessels are presented in Figure 22 for the binomial component and positive 
components for blue shark. The corresponding spatial random effect for mako shark based on data from all 
vessels are shown in Figure 23. 

  

Figure 22: Spatial random effects (omega_s) from the best model for blue sharks, when using data from all vessels in the pelagic 
longline fishery. A) for binomial component, B) for the positive component. The spatial random effect is expected to account for 
time invariant effects (both biotic and abiotic) that are not taken into account by the current fixed effect structure. 



  

Figure 23: Spatial random effects (omega_s) from the best model for mako sharks, when using data from all vessels in the 
pelagic longline fishery. A) for the binomial component, B) for the positive component. The spatial random effect is expected to 
account for time invariant effects (both biotic and abiotic) that are not taken into account by the current fixed effect structure. 

Similar to that done for model based on data from all vessels the spatial random effect for the model based 
on indicator vessels are summarised below. blue and mako sharks spatial random effect based on data 
from indicator vessels are presented in Figure 24 and Figure 25. 



  

Figure 24: Spatial random effects (omega_s) from the best model for blue sharks, when using data from indicator vessels in the 
pelagic longline fishery. A) for binomial component, B) for the positive component. The spatial random effect is expected to 
account for time invariant effects (both biotic and abiotic) that are not taken into account by the current fixed effect structure. 



  

Figure 25: Spatial random effects (omega_s) from the best model for mako sharks, when using data from indicator vessels in the 
pelagic longline fishery. A) for the binomial component, B) for the positive component. The spatial random effect is expected to 
account for time invariant effects (both biotic and abiotic) that are not taken into account by the current fixed effect structure. 

 

Spatio-temporal random effect 

The spatio-temporal random effect for the best model based on the data from all vessel for the binomial 
and positive components for blue shark are shown in Figure 26 and Figure 27 respectively. Figure 28 and 
Figure 29 summarise the spatio-temporal random effect for the binomial and positive components of the 
delta-Gamma model based on all data for mako sharks. 



  

Figure 26: Spatio-temporal random effects (epsilon_st), for the binomial component, accounting for deviation from the fixed effect 
prediction and spatial random effect for blue sharks for model based on data from all vessels. These represent temporally 
varying biotic and abiotic effects. 



  

Figure 27: Spatio-temporal random effects (epsilon_st), for the positive component, accounting for deviation from the fixed effect 
prediction and spatial random effect for blue sharks for model based on data from all vessels. These represent temporally 
varying biotic and abiotic effects. 



  

Figure 28: Spatio-temporal random effects (epsilon_st), for the binomial component, accounting for deviation from the fixed effect 
prediction and spatial random effect for mako sharks for model based on data from all vessels. These represent temporally 
varying biotic and abiotic effects. 



  

Figure 29: Spatio-temporal random effects (epsilon_st), for the positive component, accounting for deviation from the fixed effect 
prediction and spatial random effect for mako sharks for model based on data from all vessels. These represent temporally 
varying biotic and abiotic effects. 

 

For the models based on data from indicator vessels the spatio-temporal random effect are summarised 
below. Figure 30 and Figure 31 show the spatio-temporal random effect for the binomial and positive 
components for blue sharks. Spatio-temporal random effect for the binomial and positive components for 
mako sharks are presented in Figure 32 and Figure 33 respectively. 



  

Figure 30: Spatio-temporal random effects (epsilon_st), for the binomial component, accounting for deviation from the fixed effect 
prediction and spatial random effect for blue sharks for model based on data from indicator vessels. These represent temporally 
varying biotic and abiotic effects. 



  

Figure 31: Spatio-temporal random effects (epsilon_st), for the positive component, accounting for deviation from the fixed effect 
prediction and spatial random effect for blue sharks for model based on data from indicator vessels. These represent temporally 
varying biotic and abiotic effects. 



  

Figure 32: Spatio-temporal random effects (epsilon_st), for the binomial component, accounting for deviation from the fixed effect 
prediction and spatial random effect for mako sharks for model based on data from indicator vessels. These represent temporally 
varying biotic and abiotic effects. 



  

Figure 33: Spatio-temporal random effects (epsilon_st), for the positive component, accounting for deviation from the fixed effect 
prediction and spatial random effect for mako sharks for model based on data from indicator vessels. These represent temporally 
varying biotic and abiotic effects. 

 

Spatial pattern of residuals 

Spatio-temporal pattern in the distribution of residuals for the positive components of the best model based 
on data from all vessels for blue sharks are shown in Figure 34 and that for mako sharks are shown in 
Figure 35. The spatio-temporal pattern in the distribution of residuals for the positive components of the 
best mode based on data from indicator vessels are shown in Figure 36 and Figure 37 for blue and mako 
sharks respectively. 



  

Figure 34: Spatio-temporal pattern in the residuals for the positive components for blue sharks based on the data from all vessels 
in the pelagic longline fishery. 



  

Figure 35: Spatio-temporal pattern in the residuals for the positive components for mako sharks based on the data from all 
vessels in the pelagic longline fishery. 



  

Figure 36: Spatio-temporal pattern in the residuals for the positive components for blue sharks based on the data from indicator 
vessels in the pelagic longline fishery. 



  

Figure 37: Spatio-temporal pattern in the residuals for the positive components for mako sharks based on the data from indicator 
vessels in the pelagic longline fishery. 

 

Spatial pattern in prediction uncertainty 

Spatio-temporal pattern in prediction uncertainty cv for blue sharks based on data from all vessels is shown 
in Figure 38, based on indicator vessels is presented in Figure 39. Prediction uncertainty when using data 
from indicator vessels for blue sharks and mako sharks is presented in Figure 40 and Figure 41, 
respectively. 



  

Figure 38: Prediction error from the best model for blue sharks based on the data from all vessels in the pelagic longline fishery. 



  

Figure 39: Prediction error from the best model for mako sharks based on the data from all vessels in the pelagic longline fishery. 



  

Figure 40: Prediction error from the best model for blue sharks based on the data from all vessels in the pelagic longline fishery. 



  

Figure 41: Prediction error from the best model for mako sharks based on the data from all vessels in the pelagic longline fishery. 
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7 flextable 0.9.7 2024-10-27 
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9 forcats 1.0.0 2023-01-29 

10 ggplot2 3.5.1 2024-04-23 
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12 inlabru 2.12.0 2024-11-21 

13 kableExtra 1.4.0 2024-01-24 

14 knitr 1.49 2024-11-08 
 

 



 Package Loaded version Date 

15 lattice 0.22-5 2023-10-24 

16 lubridate 1.9.4 2024-12-08 

17 mgcv 1.9-1 2023-12-21 

18 nFactors 2.4.1.1 2022-10-10 

19 nlme 3.1-167 2025-01-27 

20 patchwork 1.3.0 2024-09-16 

21 purrr 1.0.2 2023-08-10 

22 readr 2.1.5 2024-01-10 

23 scales 1.3.0 2023-11-28 

24 sf 1.0-19 2024-11-05 

25 stringr 1.5.1 2023-11-14 

26 tibble 3.2.1 2023-03-20 

27 tidyr 1.3.1 2024-01-24 

28 tidyverse 2.0.0 2023-02-22 

29 usethis 3.1.0 2024-11-26 
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