
Aging albacore tuna using epigenetic clocks 

 

Chevrier Thomas1,2, Sylvain Bonhommeau2, Michael Thompson3, Giorgia Del Vecchio3, 

Anne-Elise Nieblas1, Dominique Cowart1, Julie Imbert Nguyen2, Serge Bernard4, Jessica 

Farley5, Yann Guiguen6, Cedric Cabau7, Christophe Klopp7,  Joseph A. Zoller8, Steve 

Horvath8,9,10, Robert Brooke11,  Matteo Pellegrini3 

 
1Company for Open Ocean Observations and Logging (COOOL), Saint-Leu, La Réunion, France 

2Ifremer, DOI Délégation Océan Indien, F-97420 Le Port, La Réunion, France 

3Department of Molecular, Cell and Developmental Biology, University of California, Los 

Angeles, CA, USA 

4 LIRMM-CNRS, university of Montpellier, rue Ada, 34000 Montpellier, France 

5CSIRO Environment, Hobart, TAS, Australia 

6INRAE, LPGP, 35000, Rennes, France 

7Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France. 

8Department of Biostatistics, Fielding School of Public Health, University of California, Los 

Angeles, California, USA 

9Department of Human Genetics, David Geffen School of Medicine, University of California, 

Los Angeles, California, USA 

10Altos Labs, San Diego, California, USA 

11Epigenetic Clock Development Foundation, Torrance, CA, USA 

 

Emails: t.chevrier.cooolresearch@gmail.com  

mailto:t.chevrier.cooolresearch@gmail.com


I. Introduction 

Accurately determining the age of individuals is a cornerstone of ecological and 

biological research. Age information underpin a wide range of applications, from assessing 

population dynamics to evaluating ecosystem health (Ono et al., 2015). Reliable age 

estimates are essential for inferring key life-history traits such as growth rates, age at sexual 

maturity, and age-specific fecundity (Schaffer, 1974; Western, 1979; Frisk et al., 2001). 

Consequently, the ability to estimate age enables more robust monitoring of demographic 

parameters, including population structure and reproductive potential. Despite its central 

role, chronological age remains difficult to determine in wild animal populations, particularly 

in species lacking clear aging markers in hard structures or with limited access to long-term 

observational data (Cailliet et al., 2001; Campana, 2001). 

The importance of chronological age for wild populations has prompted the 

development of many estimation methods (Campana, 2001). Morphological features of 

internal structures have been commonly used to provide accurate age estimation (e.g. 

mammalian teeth (Goren et al., 1987)). For fish, age is traditionally determined by counting 

growth zones in a range of hard structures including otoliths, vertebrae, scales, and fin rays 

(Pannella, 1971; Secor et al., 1995; Campana, 2001). Such techniques have however some 

shortcomings : they can be costly and time consuming (Helser et al., 2019), of low accuracy 

for some species, require inter-calibration and cross-validation between labs, and are 

necessarily lethal in the case of otolith and vertebra readings (Campana, 2001; Anastasiadi & 

Piferrer, 2019). As the demand for fish age composition data is increasing (Helser et al., 

2019), developing a non-lethal method for the accurate estimation of chronological age is an 

important first step for furthering our understanding of aging in wild populations. 

Biological aging is a widespread process across animal species and is typically 

accompanied by molecular modification (Boyd-Kirkup et al., 2013; Booth & Brunet, 2016). 

However, evidence of senescence in fish remains limited. Unlike most vertebrates, several 

fish species show no-age related telomere shortening, raising questions about how aging 

manifests in this taxa (Simide et al., 2016; Sauer et al., 2021). Among the molecular 

processes associated with aging, DNA methylation at cytosine-phosphate-guanine (CpG) sites 

is known to change with age (Horvath, 2013; Lu et al., 2023). Methylation profiles have been 
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used to develop biomarkers of age known as epigenetic clocks, which predict chronological 

age with remarkable accuracy (Mayne et al., 2021a; Arneson et al., 2022; Lu et al., 2023). 

This genetic method is promising for inferring health status as an indicator of biological age. 

Epigenetic clocks were first built to monitor human aging (Horvath, 2013), but their 

underlying principles appear to be evolutionarily conserved, as they have now been 

successfully developed for many mammalian species (Polanowski et al., 2014; Bors et al., 

2021). More recently, a mammalian methylation array was developed by Arneson et al. 

(2022), which is a single custom array that measures up to 36k CpGs per species that are well 

conserved across many mammalian species (Lu et al., 2023). It is not yet known whether the 

CpGs on the mammalian methylation array lend themselves for measuring cytosine 

methylation levels in fish. 

Only a handful of epigenetic clocks have been developed for laboratory-raised fishes, 

including for European sea bass (Dicentrarchus labrax; (Anastasiadi & Piferrer, 2019) and 

zebrafish (Danio rerio; (Mayne et al., 2020)). Subsequently, Mayne et al. 2021 developed 

epigenetic clocks for three species of threatened fishes (Australian lungfish, Neoceratodus 

forsteri; Murray cod, Maccullochella peelii; and Mary River cod, Maccullochella mariensis), 

using a combination of wild and laboratory-raised individuals. Weber et al., 2022 developed 

a novel epigenetic age method estimation for two wild-caught reef fish from the Gulf of 

Mexico (Red snapper: Lutjanus campechanus and red grouper: Epinephelus morio). More 

recently, Weber et al have advanced the development of epigenetic clocks in two marine 

species, focusing on both deepwater teleost and ray (Weber et al., 2024a, 2024b). In the 

Weber et al., 2024a  study on the blackbelly rosefish (Helicolenus dactylopterus) with 61 

samples, two single-tissue epigenetic clocks developed from fin clip and muscle tissues 

showed high correlation (R² > 0.98; MAE < 1 year) between epigenetic and chronological age. 

However, a multi-tissue clock with both tissues showed low performance, particularly for 

muscle samples (R²=0.77; MAE=5.43 years), indicating tissue-specific differences in 

age-associated DNA methylation patterns for the targeted region in this species. In contrast, 

two single tissue (fin clip and whole blood) and multi-tissue epigenetic clocks were 

developed for the cownose ray (Rhinoptera bonasus), and as for the blackbelly rosefish, they 

achieved high accuracy (R²=0.97-0.99; MAE < 1 year; Weber et al., 2024b). Notably, CpGs 

sites used by the multi-tissue clock did not overlap with those in both single-tissue models. 
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Here we focus on albacore tuna (Thunnus alalunga) which is a commercially 

important species in all oceans. Given the importance of age data for its stock assessments, 

the development of epigenetic clocks represents an opportunity to improve estimates of life 

history parameters which is especially true in the Indian Ocean where some parameters are 

taken from those established in other oceans. The development of this clock would also 

enable the upscale of sample sizes, allowing for more robust estimates of the age structure 

of the stocks. 

II. Materials and Methods 

A. Samples collection, chronological age estimation 

 

Albacore muscle samples (n = 101) were collected from three sites in the Western Indian 

Ocean (Reunion, Seychelles and South Africa). Most samples were obtained from the 

“Germon project” (Nikolic et al., 2015) and were collected in 2013 and 2014. An additional 

set of four larvae was sampled north of Reunion Island during a scientific larval survey 

conducted by Ifremer in January 2022. Decimal chronological age was determined using the 

count of opaque zones in the otolith of the sampled fish (Farley et al., 2019). The distribution 

of age estimates from otolith readings for the 105 albacore tuna specimens is presented in 

Figure 1.  

 

 

 

 

 

 

 

Figure 1: Total number of samples and age ranges used for Albacore clock 
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B. DNA extraction 

 

Genomic DNA was extracted from muscle tissue for 101 individuals and from the eyes 

for four larvae (see Supplementary Information), using the DNeasy Blood & Tissue Kit 

(Qiagen), following the manufacturer’s protocol. DNA concentrations were quantified with a 

Qubit™ 4 Fluorometer (Invitrogen™), and DNA purity was assessed using the 260/280 

absorbance ratio measured with a NanoDrop Lite spectrophotometer (Thermo Scientific). 

Samples with quantity higher than 500 ng and a ratio between 1.8 and 2.0 were considered 

to contain high-quality DNA and usable for subsequent sequencing. 

 

C. Larvae species identification 

To determine the larvae species identity, a PCR amplification followed by 2% agarose 

gel electrophoresis was performed. These molecular analyses were essential because early 

developmental stages of tuna species exhibit highly similar morphological features, 

rendering visual identification unreliable. For amplification, species-specific primers 

developed by (Lee et al., 2022) were used with the following primer pair: forward primer 

-GTTTCGTGATCCTGCTAGTG- and reverse primer -CCTCCTAGTTTGTTGGAATAGAT-. The PCR was 

performed under the following thermal cycling conditions: an initial denaturation at 94 °C for 

2 min, followed by 35 cycles of – denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s, 

and extension at 72 °C for 30 s –, with a final extension step at 72 °C for 3 min, and a final 

hold at 4 °C. This genetic approach enabled accurate species identification, overcoming the 

limitations of morphological discrimination in early larval stages. 

D. Library preparation and sequencing 

For library preparation, 500 ng of genomic DNA was fragmented and subjected to 

end-repair, dA-tailing, and adapter ligation using the NEBNext Ultra II DNA Library Prep Kit 

(New England Biolabs) with custom pre-methylated adapters (custom adapter plate, IDT). 

Pools of 16 purified libraries were hybridized to the biotinylated probe panel following the 

manufacturer’s instructions (xGen Hybridization Capture Kit, IDT). 
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Captured DNA was treated with bisulfite using the EZ DNA Methylation-Gold Kit 

(Zymo Research), followed by PCR amplification with KAPA HiFi Uracil + ReadyMix (Roche) 

under the following conditions: initial denaturation at 98°C for 2 minutes; 14 cycles of 98°C 

for 20 seconds, 60°C for 30 seconds, and 72°C for 30 seconds; final extension at 72°C for 5 

minutes; hold at 4°C. 

Library quality was assessed using the High Sensitivity D1000 Assay on a 4200 Agilent 

TapeStation. Libraries were pooled (96 per pool) and sequenced as 150 bp paired-end reads 

on an Illumina NovaSeq 6000 (S1 flow cell). 

E. Sequencing data processing 

 Raw bisulfite sequencing data were processed using BSBolt to generate high-quality 

methylation calls. Paired-end fastq files were first quality-checked, trimmed to remove 

adapters and low-quality bases using fastp. Prior to alignment, the reference genome was 

bisulfite-converted and indexed using BSBolt's genome indexing module to enable accurate 

mapping of converted reads. Reads were then aligned to the bisulfite-indexed reference 

genome, which accounts for the C-to-T conversions characteristic of bisulfite treatment. 

After alignment, methylation calls were extracted using BSBolt's methylation caller module, 

providing per-CpG site methylation ratios (methylated reads over total coverage). Sites with 

low coverage (<5×) were filtered out to ensure data reliability. The resulting data were 

merged across samples to generate a single methylation matrix, with rows corresponding to 

individual samples and columns representing common CpG sites. This matrix served as the 

input for downstream statistical analyses, including epigenetic clock construction and age 

prediction models. 

 

F. Statistical modelling for age prediction from methylation profiles 

To develop an epigenetic clock, we first imported the methylation matrix generated with 

BSBolt and harmonized sample identifiers to match age metadata. After quality control and 

matching, samples were split into a training set (85%) and a testing set (15%) using stratified 

partitioning to maintain age distribution. We used a LASSO regression approach 

implemented via the glmnet package in R, with 10-fold cross-validation on the training set to 

determine the optimal penalty parameter (lambda) minimizing prediction error. The final 



model was then fitted to the training data and used to identify age-informative CpG sites 

(non-zero coefficients). Predicted ages were generated for both training and testing sets, and 

model performance was evaluated by calculating Pearson correlation coefficients and 

median absolute errors (MAE) between predicted and chronological ages. To further evaluate 

model robustness and reduce overfitting bias, a leave-one-out cross-validation (LOOCV) was 

performed on the filtered set of age-informative CpG sites, allowing age prediction for each 

individual while being left out from model training.  

III. Results 

A. Whole genome sequencing 

Our genome assembly of the albacore tuna (Thunnus alalunga) represents the first 

chromosomal-scale reference available for this species. The initial assembly, generated using 

Hifiasm from PacBio HiFi long reads, resulted in 537 scaffolds, with a scaffold N50 of 3.6 Mb, 

reflecting a high level of sequence continuity. In a second step, we used Hi-C contact maps to 

scaffold and organize the assembly, resulting in a complete scaffolded genome comprising 38 

scaffolds, with a markedly improved scaffold N50 of 34.1 Mb. Of these, 24 scaffolds 

correspond to chromosome-scale scaffolds, consistent with the expected haploid 

chromosome number (n = 24) previously reported in tunas (REF), into which Hi-C integration 

enabled anchoring of 99.88% of the 785.3 Mb genome sequence. Assembly completeness, 

assessed using BUSCO v4 (Actinopterygii lineage, protein mode), confirms the high quality of 

the genome, with 93.6% of genes detected as complete and single-copy genes. 

B. Epigenetic clock 

Across all individuals, we have recovered 95,191 unique CpGs sites with an average of 

4,472,876 reads per individual, for an average sequencing depth of 585 reads/site. The final 

methylation matrix contains a total of 7,637 CpG sites shared by all samples, all with base 

and alignment quality scores > 10 and with a minimum site coverage of five reads. For each 

CpG in our methylation matrix, we computed a Pearson correlation between methylation 

values and chronological age of the fish samples.  

For Albacore, using LASSO regression, 48 CpGs sites were used to calibrate the model, 

we found a high correlation between the chronological age and the predicted age in both the 



training (Pearson’s r = 0.973) and the testing dataset (Pearson’s r = 0.946) (Figure 2). The 

median absolute error (MAE) in the training data set was 0.721 years and 1 years for the 

testing one.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The Albacore clock based on 48 CpGs sites calibrated with chronological age. Correlation 

between otolith age and predicted age in (A) the training set and (B) in the testing set. (C) Samples 

repartition between training and testing data set. 

 

The Leave-one-out cross-validation reveals a strong correlation between these 48 

CpGs sites and chronological age (Pearson correlation = 0.955 and MAE = 0.795 years) (Figure 

3).  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Leave-one-out cross-validation for Albacore clock based on 48 CpGs sites calibrated with 

chronological age 

IV. Discussion 

Otolith age readings do not fully cover the complete age range of the species. In 

particular, individuals under 3 years of age and those older than 13 years are 

underrepresented (Fig. 1), likely due to natural sampling challenges in the Indian Ocean. This 

limited representation may slightly reduce predictive accuracy for the oldest age classes, 

especially beyond 12 years. As the maximum lifespan of T. alalunga is estimated to be 

around 20 years (grey literature), expanding the dataset to better include juvenile and older 

individuals would enhance an already robust clock, improving its calibration and reliability 

across the species’ full lifespan. Moreover, our models are based respectively on 105 

samples. Increasing the sample size—particularly by targeting age classes currently 

underrepresented—would not only help capture the full range of age-associated methylation 

dynamics, but also improve the generalizability of the models. Ideally, as explained by Mayne 

et al., 2021b at least 70 and optimally 134 samples from a single tissue type are 
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recommended to develop a reliable epigenetic clock for a given species, in order to minimize 

prediction error rates. 
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