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Summary 
This paper presents the results of a statistical design exercise investigating the potential for Close-
kin Mark-recapture (CKMR) to provide accurate assessment of population size for Indian Ocean 
shortfin mako sharks (Isurus oxyrinchus). CKMR uses the prevalence of closely related animals (in 
this study, those which share a parent) in a collection of genetic samples to estimate adult 
population size. The method can be combined with more typical fisheries data in order to conduct 
integrated stock assessments. Prior to committing to a large scale CKMR study, it is prudent to 
conduct a numerical design exercise to investigate how many sample sizes are likely to be 
required, assuming current knowledge of a population is informative enough to at least guide 
planning of real sampling. In this working paper, we provide some introductory desciption of how 
CKMR operates and then detail a design approach to investigate sampling strategies for SMA. For 
this, a sex and age-based operating model was constructed that simulated CKMR kinship data 
and catch-at-age data. These data were fed into a similarly structured statistical estimation model 
which estimated population parameters and predictions of spawning output (akin to spawning 
stock biomass) and other quantities. The operating model was tuned to approximate outputs 
from the 2024 stock assessment. We considered a range of sample sizes, which recent IOTC data 
would suggest are logistically feasible to obtain - even if there are now complications in retaining 
samples from current management measures. The design modelling estimated that informative 
population estimates (i.e. with sufficiently low uncertainty to be useful in management decisions) 
would be expected from 2000 annual samples over 5 years. Testing of this approach with 1000 
tissue samples were predicted to be of a reduced quality, and we advise any future sampling 
program to aim for at least 2000 samples per year. We outline the results and discuss challenges 
and opportunities for initiating CKMR at scale to obtain estimates of population size for SMA and 
other pelagic sharks captured by Indian Ocean fishing operations. 
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1 Introduction 
The shortfin mako shark (Isurus oxyrinchus, SMA) is a large pelagic shark with a circum global 
distribution over a latitudinal range of approximately 50∘N to 50∘S. It has a low biological 
productivity owing to a slow reproductive cycle and late age at maturity (Bowlby et al. 2022). 

Various analyses have concluded that SMA is highly susceptible to longline fisheries (Murua et al. 
2018). The catch data used in Coelho et al (2024) (combined records of SMA, Mackerel sharks 
and Porbeagle) from the IOTC indicate catches in recent years to be in excess of 2000 tonnes, 
down from a peak of approximately 5400 tonnes in 2014. Globally, most catches are focused on 
juveniles and large adults are rarely captured. However, concerns about ongoing declines center 
around the possibility that largely juvenile catches are not allowing for replenishment of adults 
(Kai 2021; Bravington 2019). 

Globally, there is poor knowledge of the species status, but is generally thought to be declining 
(Sims, Mucientes, and Queiroz 2021). As such, the species is listed as Endangered under IUCN 
rankings and is listed under CITES Appendix II, although there has been debate regarding the 
efficacy of this as a management response (Kai 2021; Sellheim 2020). 

Globally, stock assessments of SMA have faced data uncertainty and inconsistencies and have 
mainly applied surplus production model approaches to calculate stock status (Anon 2019; Anon. 
2024). In the Indian Ocean, the 2024 assessment of Coelho, Rosa, and Mourato (2024) was 
conducted using a Bayesian surplus production model (the JABBA methodology Winker et al. 
(2020)). This is the most recent assessment for the Indian Ocean and the base-case suggested 
that the stock is currently overfished and subject to overfishing, albeit with large uncertainty. 
This assessment also recommended that there is a need to reduce catches to a total allowable 
catch at 40% of current levels to prevent further declines in stock size (Coelho, Rosa, and Mourato 
2024). 

Given general concern at the potential for current catch levels leading to overfishing of SMA, and 
that current estimates of stock status are highly uncertain, there is a need to explore new 
approaches that will allow for a greater degree of certainty about stock size to guide future 
management decisions. 

This paper details a statistical design study examining the feasibility of using close-kin mark 
recapture (CKMR) to assess shortfin mako in the Indian Ocean (Bravington, Skaug, and Anderson 
2016). We first provide a brief overview and context for CKMR and then consider a very simple 
examination of potential sample sizes before presenting the details of a more complex approach 
based on using CKMR data along with catch-at-age data in an age-structured assessment model. 
Further details on the practical requirements of sample collection, sequencing methods and 
potential sample sources are given in Patterson et al, IOTC-2025-WPEB21(AS)-41. 

1.1 CKMR background 

CKMR is a relatively new stock assessment method that has been demonstrated to be a powerful 
technique for estimating animal abundance (Bravington, Skaug, and Anderson 2016; Bravington, 
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Grewe, and Davies 2016; R. M. Hillary et al. 2018; Ruzzante et al. 2019). In essence, CKMR is a 
mark recapture technique based on data from modern genetic sequencing methods. This data 
allows kinship between pairs of sampled individuals to be used as a mark. The method has now 
been used on several elasmobranch species (R. M. Hillary et al. 2018; Bruce et al. 2018; Patterson, 
Hillary, Feutry, et al. 2022; Patterson, Hillary, Kyne, et al. 2022; Bradford et al. 2018; Trenkel et 
al. 2022; Thomson et al. 2020) 

Because CKMR uses the DNA of the animal as a tag, it is less susceptible to fisheries catch 
reporting biases and under-reporting than traditional methods, and is entirely fisheries 
independent (Bravington, Skaug, and Anderson 2016). The method produces estimates of sex-
specific adult abundance and trend therein, as well as adult mortality rates. While it does not 
need other data sources, such as catch-at-age/length data, these can be combined with CKMR 
data in integrated assessments (Thomson et al. 2020; Hillary et al. 2023; Punt et al. 2024) and 
Management Strategy Evaluation (Hillary, Preece, and Davies 2017). 

The premise for CKMR is that number of kin-pairs in a sample of individuals is inversely related 
to the size of the breeding population. If a study finds a high rate of kin-pairs per sample, this 
suggests a smaller population than a lower rate of kin-pair detection. This is the central idea of 
CKMR and in the simplest (and most unrealistic) setting of a closed population with no mortality, 
recruitment, emmigration or immigration, it is a form of Lincoln Petersen estimate (Bravington, 
Skaug, and Anderson 2016). 

Real world applications of CKMR are generally more complex than this (e.g. Hillary et al. 2023). 
One of the reasons for this complexity is that the probability of detecting a given number of kin-
pairs is related to the expected total reproductive output (TRO) of the adult population. 
Therefore, in relating kinship data to abundance, the population dynamics model usually has to 
account for factors such as maturity schedules, reproductive output, selectivity in the sampling, 
among other factors (Bravington, Skaug, and Anderson 2016). Additionally, the influence of these 
covariates may need to be sex specific. 

These complexities notwithstanding, CKMR is a type of natural tagging experiment which is 
fisheries independent and, therefore, is not subject to problematic reporting rates, 
fleet/gear/targeting changes, errors in catch reporting and other potential sources of bias 
associated with more traditional fisheries and mark recapture data (Polacheck and Davies 2007). 
The attractiveness of CKMR is that it can provide an estimate of absolute abundance of the 
breeding population from a relatively short study (possibly over a few years) and, with enough 
data, can simultaneously provide estimates of adult mortality rates and population trend. 

Another key point is that for sizeable pelagic fisheries, CKMR is also cost effective relative to other 
methods such as large-scale/long-term conventional tagging programs (Kolody and Bravington 
2019). Additionally, when CKMR studies are conducted at appropriate scale, it is also one of the 
fastest methods for obtaining abundance estimates. Estimates of population size and trend can 
be produced from a research program of several years. This feature of CKMR derives from the 
fact that the population has already “tagged itself” through its DNA. A conventional tagging 
program, even putting aside the aspects of logistics, expense, tag reporting/loss etc., produces 
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data in “real time”. For long lived species such as sharks, this can mean that informative data for 
traditional abundance estimation are slow to accumulate. 

CKMR typically consider two instances of kinship; Parent-offspring-pairs (POPs) and sibling pairs, 
where two individuals share at least one parent. If one parent is shared this is termed a half-
sibling pair (HSP), and if both parents are shared then this is termed a full-sibling pair (FSP). As 
we will expand on below, a key quantity is the probability of finding a kin pair given both the 
underlying stock abundance and dynamics, and the amount of sampling effort. 

FSPs are typically not used in CKMR, while POPs and HSPs provide slightly different information 
in CKMR population models. POPs primarily inform estimates of relative reproductive output 
which can be linked to abundance, while HSPs also carry a signal of total mortality. 

The modelling here considers HSPs as the sole type of kin data. This is because juveniles are the 
overwhelming proportion of the catch (see Patterson et al., IOTC-2025-WPEB21(AS)-41). As 
described in Bravington (2019), by comparing over a time series of cohorts, HSPs can be used to 
find abundance. This is because the average rate of finding HSPs is inversely proportional to the 
average adult abundance. The rate here is the proportion of the pairwise comparisons between 
all samples that are HSPs. Changes in the HSP detection rate for new cohorts signals how fast the 
adult population is changing. Additionally, the rate of change in HSP detection rates over a given 
cohort gap is an information source on total adult mortality (!). 

Among other concerns, is the accuracy of SMA catch data in the Indian Ocean (IO), because very 
few adults are captured it is difficult to monitor status and trends in the spawning stock. This is 
one of the major motivations for considering CKMR - as a key advantage of the method is its 
ability to estimate adult numbers and mortality rates from sampling of juveniles. 

As we demonstrate in the model used here, while CKMR alone estimates total mortality (!), this 
can be split into natural mortality (") and fishing mortality (# or alternatively a harvest rate ℎ, 
as used here), if data on catches and catch-at-age/size are available. Further complications can 
be considered such as spatial structure as HSP detection rates between areas inform on spatial 
connectivity (Hillary et al. 2022). 

1.2 Preliminary calculations: Could CKMR work? 

Before embarking on a detailed design exercise, it can be instructive to examine whether there 
is any appreciable chance of obtaining a useable number of HSPs from a population resembling 
what we guess SMA might look like in terms of number of mature individuals. To complete this 
calculation, an estimate of total reproductive size is required. As there is no basis for an estimate 
in the following, we simply examine a range of populations sizes from 10-800K adults. To do this 
we assume each adult has the same expected reproductive output, a 50:50 sex ratio and the 
following: 

• An average time of %" between HSP birth years 
• A constant total mortality rate of ! 
• A constant &# number of adults with equal reproductive output 
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• Sample size of &$ 
• There are no births, deaths or immigration/emmigration over the sampling period. 

Given these highly unrealistic assumptions, the HSP probability given a 50:50 sex ratio for either 
sex '%&' = 2/& (as every juvenile has 2 parents) and so for HSP in general '%&' = 2/&# +
2/&# = 4/&#. This factor has to be adjusted for mortality effects on the adults over %" which is 
used in the formula below. From this we can calculate the expected number of HSPs as &($) =
HSP probability × &(pairwise comparisons) which is given by: 

&($) = 041*+,!/&#2 3
&$(&$ − 1)

2
6 

If we set the desired number of HSPs (see below) we can therefore solve for the number of 
samples 7 as 

&$ =
1 + 81 + 2	&#	&($)	1*+

2
 

We can set the required numbers of half-sibling pairs, &($) (e.g. 50, 100) by noting that 
the coefficient of variation on an estimate scales roughly as :;(&) = 1/8&($). Therefore, we 
would need at least 25 (CV of 20%) for a poor estimate. Using this argument with some plausible 
guesses for ! and %" and running over a range of adult population sizes and numbers of HSPs, we 
get the results in Table 1.1. This shows that if the population is small, and an imprecise estimate 
is sufficient, then few samples are required (Table 1.1). 

These results also highlight an important aspect of CKMR in that a larger population requires a 
higher number of samples to get an equally precise result. Therefore, in the context of a species 
where there is a concern of over depletion, for a given number of samples, there will be more 
precise indications of “bad news” and conversely, imprecise evidence of “good news”. 

Table 1.1: Simple calculations of number of samples, &$ (cell values) that would be required to 
estimate number of adults (rows). Here ! = 0.26 (which is an annual survival rate of adults of S= 
0.77 y*-) and %"= 4 years. 

N(adults) N[HSP]= 25  
(CV= 0.2) 

N[HSP]= 50  
(CV= 0.14) 

N[HSP]= 100  
(CV= 0.1) 

50,000 471 665 941 
100,000 665 941 1330 
200,000 941 1330 1881 
300,000 1152 1629 2303 
500,000 1487 2102 2973 
800,000 1881 2659 3761 
900,000 1995 2821 3989 
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2 Population / Operating model 
We implemented an age- and sex-structured population dynamics model (the Operating Model, 
OM) based on SMA biology and demographics. The OM was tuned to replicate key aspects of the 
2024 IOTC stock assessment given the time series of catches (also used in the assessment, 
Coelho, Rosa, and Mourato (2024)). 

The model used in this study generates two potential sources of information; (1) the kinship data 
that would be derived from sequencing of tissue samples and detecting HSPs and (2) information 
on the distribution of catch-at-age. This can come from the same sampling program - i.e. we 
assume measuring ages (or converting measured lengths to age) occurs at the same time as 
samplers take a tissue sample. 

Conditional on the underlying population abundance and age distribution, we simulated the 
number of half-sibling pairs (HSP, CKMR data) and catch-at-age (CAA data) samples that would 
be expected given the underlying population dynamics and a candidate sampling design. 

2.1 Caveats on the design approach 

Design studies for CKMR can consider potential uncertainties in fundamental data such as the 
effect of ageing error (RM Hillary et al. 2022). In these examples, there is often a comprehensive 
set of stock assessment outputs and, therefore, a better understanding of the population status. 
For SMA in the IOTC region, estimates of numbers at age are not available. Additionally, in a 
similar design study for SMA in the Atlantic, Bravington (2019) found that ageing error had 
surprisingly little effect on the uncertainty of management metrics. For these reasons and to 
maintain simplicity we have not considered the effect of ageing error in this study. 

Additionally, following Hillary et al. (2022) we do not consider geno-typing related errors or false 
negative/positive rates in kin-pair detection and, therefore, assume that any kin in a sample will 
be detected without error. In reality, these assumptions are unlikely to hold completely. 
However, CSIRO experience with sharks on recent studies has found that improvements in 
sequencing are reducing the influence of these factors. Furthermore, if an actual CKMR study 
were to be commenced on SMA, detailed examination of these factors would be part of the 
quality control checks used by CSIRO in reducing the potential for biases due to mistakenly 
including false positive kin pairs. 

2.2 Simulation and estimation approach 

The design methodology in this study differed from the previous CKMR design study presented 
to IOTC Hillary et al. (2022) in that instead of applying analytical statistical information-based 
approaches to estimate likely uncertainty, we employed a simulation and back-estimation 
method. Synthetic data sets were generated from an operating model, the OM which were used 
as input into an estimation model, the EM. While they are simpler, the underlying population 
dynamics were similar and the CKMR statistics follow the approach of  Hillary et al. (2022). The 
simulation/back-estimation approach has the advantages of being able to examine potential 
biases due to sampling and also consider fitting other model variants to simulated CKMR data. 
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So in our study, simulated data generated from the OM was then passed to an EM, which 
estimated parameters through standard numerical minimization of the joint negative log-
likelihood of population parameters and thereby predicted key estimates of such as an estimated 
adult abundance series (number of mature animals). 

These predicted outputs from the EM (parameters and predicted abundances) were then 
compared to the true simulated versions of these from the OM to compute statistics summarizing 
the likely uncertainty, potential biases etc. 

Given the lack of data on SMA and, therefore, the lack of a full age structured assessment, the 
OM used here is relatively simple. It is a two-sex, non-spatial model, with a simple density 
independent stock-recruitment relationship based on litter size and pupping frequency. Where 
possible model parameters were selected to be consistent with the IOTC surplus production 
assessment of Coelho, Rosa, and Mourato (2024). For other components, model parameters 
were drawn from the literature. 

The OM was informally “tuned” to approximate the predictions of exploitable biomass from 
Coelho, Rosa, and Mourato (2024), with sensitivity to this value tested by including scenarios of 
exploitable biomass at the upper and lower credible intervals of the base case assessment. The 
same catch series was used as an input. 

Details of the model structure are given below. 

2.3 Biology 

Standard functional forms were used to model growth, maturity and weight-given-age. The 
proportion of mature animals as a function of age was given by a logistic function: 

Pr(>?@AB1|?) = >&,/ =
1

1 + 190/"#
$ */1/0/%"$ */"#$ 1 

where ?34&  and ?53&  are the ages of 50% and 95% maturity, respectively for sex E =
{G1>?H1, 	>?H1}. 

The expected weight given age was given by: 

K&,/ = ?&L/
6$  

where L/ is the expected length given age which was specified by a Von Bertallanffy growth 
function: 

L" = L7 M1 − exp0−Q(? − @4)2R 

Parameters of the weight length relationship were from Romanov and Romanova (2009) and the 
VBGF parameters were from Liu et al. (2018) (see Table 2.1). Where possible, the the parameter 
values that were used in the analyses matched those used in the base case of the most recent 
stock assessment Coelho, Rosa, and Mourato (2024). Parameter values used in the simulation 
are detailed in Table 2.1 and Figure 2.1. 
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Table 2.1: Life history parameters used in the simulations. 

Life History Parameter Sex Value Reference 

Growth Linf  323.8 Liu et al. (2018) 

 k  0.075  

 t0  -4.36  

Lifespan max age  32 Coelho et al (2024) 

Mortality M  0.17 Assumed / tuning 

Weight-Age a  0.0000349 Romanov & Romanova 2009 

 b  2.76544  

Maturity a50 F 15.0 Cliff et al. (1990), Francis and Duffy (2005), Bishop et al. (2006), Natanson et al. 
(2006) 

 a95 F 19.  

 a50 M 5.0  

 a95 M 6.0  

Reproduction N pups  12 Groeneveld et al (2014) (mean value, rounded) 

 Pupping frequency  2 years Mollet et al (2000) 

 sex ratio  0.5 Coelho et al (2024) 

 recruitment 
variability  0.1 Assumed 

There seems to be various views in the literature on whether the number of pups produced in a 
SMA litter varies with female size. For this study we assumed a constant litter size (Table 2.1) 
using estimates from Groeneveld et al. (2014). Pupping frequency of 2 years follows Mollet et al. 
(2000) a 50:50 sex ratio at bith. As the model is sex-specific maturity, seperate male and female 
maturity schedules were applied (Table 2.1) based on examination of various literature sources 
(Cliff, Dudley, and Davis 1990; Francis and Duffy 2005; Bishop et al. 2006; Natanson et al. 2006) 
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Figure 2.1: Marurity at age, weight at age, selectivity and catch values used in the design study. 

2.4 Population model 

The population dynamics were structured by sex E, age ? and year S and specified by: 

&&,/,8 = T
U81*9& if ? = 1

&&,/*-,8*-1*:01 − ℎ&,/*-,8*-2 if ? > 1
 

where recruitment U8 is given by: 

U8 = WX&;,/,8
/

>/Y/@'<' 

Here W is the sex ratio at birth, Y = expected number of pups per litter and @'<' is the spawning 
interval between litters for females (Table 2.1). Recruitment deviations were modeled as log-
normal random variables B8 ∼ [(0,−(]=/2)>). 

The model is initialised by supplying a starting number of females &4
; and an initial catch value 

:4. In the initial conditions, these two numbers are used to numerically estimate an initial value 
of harvest rate ℎ?@?" that sets the population at a stable age structure in the first year. In 
subsequent model years, the total harvest rate in year y is ℎ8 = :8/^8 where the selected 
biomass, ^8 is: 

^8 =X X&&,/,8
/&

1*:E/K&,/ 

IOTC-2025-WPEB21(AS)-42



	

	 	 	 10	

where Selectivity E/ is selectivity at age (see below) and K&,/ is the expected weight-at-age 
calculated by combining the VBGF and length-weight relationships. The sex/age specific harvest 
rate is then: 

ℎ&,/,8 = ℎ8E/,8 

Selectivity E/ was modeled as a dome-shaped function (Hulson and Hanselman 2014) of two 
parameters; ?A/B which is the age of maximum selectivity and a shape parameter _. The 
selectivity as a function of age is then given by: 

E/ = `
?

?A/B

(/'()/')
a 1(/'()*/)/' 

where 

' = M28?A/B> + 4_> − ?A/BR
*-

 

Tuning the OM to approximate the results of the most recent stock assessment was done in terms 
of the estimated exploitable biomass (Coelho, Rosa, and Mourato 2024) for years after 2020. The 
parameters that were allowed to vary to meet the conditioning constraints were the overall 
number of females in the population and the initial harvest rate. Due to differences in the 
structure of the biomass dynamics model implemented by Coelho, Rosa, and Mourato (2024) and 
the age-structured population dynamics developed here, it was not possible to directly match 
the results of the stock assessment. We have, however, matched the absolute value as closely as 
possible, while trends through time differ slightly. 

Due to the large credible intervals on exploitable biomass bEB',8 from the 2024 JABBA 
assessment, we have tested three scenarios of population size, one around the median estimate 
from the base case 2024 IOTC stock assessment, one approximately at the upper 95% credible 
interval and one approximately at the lower 95% credible interval. 

2.5 Estimation model (EM) 

The EM had the same population dynamics as the OM but requires characterization of various 
quantities related to kinship likelihood based on various calculations related to age-specific 
reproductive output. Accordingly, the following section details how, given the population 
dynamics outlined above, we both simulate Half-Sibling Pairs (HSPs) from a population, and also 
use the same quantities in calculating the likelihood of an observed number of HSPs so that we 
can estimate population quantities from HSPs. 

2.5.1 Half-sibliing probabilities given population dynamics 

For CKMR the model must track the expected relative-reproductive output given relevant 
covariates such as age, size, sex. The following quantities are required for calculating the 
likelihood of kin matches arising from a random sample of the population as would be the case 
in a study. These same quantities are also required for calculation of the statistical likelihood of 
a given number of kin-matches. 
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Given the biology of SMA, a simple model of relative spawning output at age c&,/ was used where 
the expected per-capita pupping output at age is scaled relative to the maximum over age. How 
this relates to concepts of spawning stock biomass in general is discussed in Hillary et al. (2022). 
In sharks, reproductive output often does not vary with age to the exent seen in teleosts, which 
led to the simpler model given here as 

c&,/ =
>&,/Y/@'<'

max
/
f>&,/Y/@'<'g

 

The reproductive potential (or TRO - which here gives an estimate of spawning stock size - since 
reproduction at age is considered constant- is given as: 

7&,8 =X&&,/,8
/

c&,/ 

The adult age-distribution is calculated as  

h&,/,8 =
&&,/,8c&,/
7&,8

 

2.5.2 Simulation and likelihood calculations 

Simulation of data from the data-generating models based on the underlying OM dynamics and 
back-estimation of model parameters and population state, both require calculation of the same 
two probabilities. Specifically, these are: 

1. '($): The probability of an observed number of kin deriving from two comparison 
candidate years 

2. 'F##: The probability of observed catch-at-age data given harvest rates and age-specific 
selectivity. 

2.5.3 CKMR simulation and likelihood calcuations 

Following details given in Hillary et al. (2022), to calculate '($) for a given comparison of 
individuals born in cohorts i?  and iG, we need to consider the following quantities: 

1. At the time of birth of the older juvenile, what is the sex and age distribution of adults 
that could have been the parents? 

2. Given total mortality (" and #), what is probability that a potential parent survived over 
ji?G = i? − iG, the elapsed time between k and l’s birth years? 

3. At the time of birth of the younger juvenile, what is the probability that a given parent 
out of all other potential parents, was the actual parent of the younger juvenile? 

The individual parents are of course, unobserved. Therefore, calculation of the '($) integrates 
over all possible age, and informally, the probability of a half-sibling pair combines the three 
components listed above as: 
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'($) = (dist. possible parent age) × Pr(parent survived) × Pr(particular parent) 

which results in the following equation 

'($) = X X c&,HI

/'()

/J-&∈A,;
mn1*:

/
01 − ℎ&,/LHI,8'*+2o`

h&,/,8'*+
7&,8'()

a 

To simulate the number of HSPs we would expect from a given comparison of {i-,i>} we simulate 
data with the following 

&I,,I-
M ∼ rbinom0&I,,I-

F , '($)2 

where rbinom denotes a random binomially distributed variable. Here &I*,I.
M  are the expected 

number of kin pairs from the &I*,I.
$  samples compared in the cohort year pair {i?, iG}. The term 

&I*,I.
F  is the number of pairwise comparisons deriving from the samples from cohort year pair {iG, 

iG}. 

The number of comparisons (i.e. comparing all samples in a relevant cohort pair to all others, but 
not to itself) is given by 

&I*,I.
F =

&I*,I.
$ M&I*,I.

$ − 1R

2
 

Having specified the relevant quantities above, the negative log-likelihood of data 

ℒ($)0q|rs($)2 = −X X&I*,I.
F

G?
ln('($)) + M&I*,I.

M − &I*,I.
F R ln(1 − '($)) 

2.5.4 Catch at age simulation and likelihood 

The model also used catch-at-age data generated from the OM. 

'̂&,/,8 =
&&,/,8	E/

∑ &&,/,8/ 	 E/
 

To generate CAA data from the OM, multinomial draws of &F## annual samples were taken in 
the designated sample years. 

r&,/,8F## ∼ rmultinom0&F##, '̂&,/,82 

Accordingly, the negative-log-likelihood component for use in the EM is given by 

ℒF##(q|xF##) = −X X X'̂&,/,8
/&8

ln0'&,/,82 
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2.5.5 EM total log-likelihood 

The objective function of the EM is the joint negative log-likelihood of the HSP data, the CAA data 
and also a random effects term for estimation of recruitment deviations 

ℒGN?@"(q|x) = ℒ(q|xF##) + ℒ(q|x($)) + ℒ(q|x=O) 

Here the last component is the contribution of the random effects on recruitment to the joint log 
likelihood. This is given by ℒ(q|x=O) = −∑ log8 M[0B8 , ]=

>2R where [(. ) denotes a Gaussian 
likelihood function. 

2.6 Design structure 

The study design specifies the intensity of sampling effort in terms of number of tissue samples 
to be taken each year and the number catch-at-age samples taken from the fishery. 

In theory every CAA sample could be sampled for DNA, however each sample will take a cost to 
process. Therefore, the number of samples is a big driver of the cost of a project and so we want 
to set a target number of samples that is expected to provide useable results. In other words, we 
want to understand, given a plausible population of shortfin mako in the IO, what amount of 
sampling would likely provide a sufficiently accurate estimate of abundance or other metrics that 
would inform any future potential management decisions or monitor population status. 

The design inputs for CKMR sampling specifies 

• i-, i> - these are the cohorts/ sampling years 

• &(7)I,,I-
FM:=  - the number of tissue samples taken from these years 

It is important to note that age or sex specific sampling was not considered in this study. This is 
because SMA are a bycatch species and there is no reason to consider designs that target a 
particular range of sizes / ages. Instead, we assumed that the sample ages were set by the 
proportions of ages expected in the catch. In other CKMR design studies focusing on target 
species, there is scope to consider particular age ranges in sampling. In the case of bycatch 
species, there is limited ability to dictate the age range being encountered and the more likely 
situation is that a study would want to consider every sample it could obtain. 

2.6.1 Design sample sizes 

Design inputs for the CAA data were similar in this regard. We assume that both sexes are 
sampled equally and that sampling is dictated by an Effective Sample Size (ESS) number taken 
each year - labelled &(7)8F##. 

In all scenarios considered here, we applied the model over the same sequence of years: 

• The model was initialized to start in 2020 and run forward with CAA data until 2026 when 
we assume CKMR tissue sampling starts. CAA sample sizes remained constant throughout 
the 20-year model period and a range of sample sizes were tested 
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• Tissue samples were modelled as being collected at a constant sample size for 5 years to 
2031. 

The sample sizes for CAA and HSP data are shown in Table 2.2. 

Table 2.2: Configurations of base case design exploration. &(:||) gives the number of CAA 
samples used in that run (these were simulated as being collected for 2020 to 2031). &(}&|) 
denotes the number of tissue samples simulated as being collected over the years given in the 
sample years (middle) column 

N(CAA) Sample years N(DNA) 
50 2026 → 2031 1000 
75 2026 → 2031 1000 
100 2026 → 2031 1000 
150 2026 → 2031 1000 
50 2026 → 2031 2000 
75 2026 → 2031 2000 
100 2026 → 2031 2000 
150 2026 → 2031 2000 
50 2026 → 2031 3000 
75 2026 → 2031 3000 
100 2026 → 2031 3000 
150 2026 → 2031 3000 

For each scenario in Table 2.2, �9E' = 1000 replicate OM / EM runs were carried out. The 
estimated values of parameters qs = 0&4

; , ", ]=2 were stored. Average coefficient of variation 
values across the replicate runs were calculated as :;Ä(q?) = 1/�9E'∑SE(q?)/qP‾  where �9E' =
1000 is the number of simulations. The average CV is intended as an approximate guide to the 
likely uncertainty on model parameters. 

We examined relative errors on the following variables 

• Exploitable biomass: 

b8
EB' =X X&&,/,8

/&
E/K&,/ 

• Number of mature animals 

&8A/"<9E =X X&&,/,8
/&

>&,/ 
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as well as 7/ = ∑ 7&,/& . For each of the above model predicted quantity ^∗ we calculated a 
difference against the estimate ŝ i.e. ?̂

∗ − ŝ?. The rationale for this was to examine the time 
trend in errors as data accrues over the course of sampling. 

2.7 Uncertainty in population size 

The uncertainty range in the latest stock assessment spans a large range. To demonstrate the 
potential for this to influence CKMR results, we ran two other scenarios on abundance: One 
where the b>4>4

EB' ≈ 20K tonnes to look at a lower population (relative to the assessment) than is 
expected, and another at b>4>4

EB' ≈ 150K tonnes to demonstrate the effect of a much larger 
population size. These values chosen were close to the upper and lower confidence bounds from 
the 2024 assessment. For these we conducted the same OM/EM approach as the base case above 
but only considered the case of &(:||) = 75. 

3 Results and Discussion 
3.1 Existing length frequency data 

The length frequency data from IOTC shows considerable variability in the number of length 
measurements collected between years (range: 83–1982). Converting these to ages using the 
growth model of Liu et al. (2018) gives the distributions shown in Figure 3.1. Aggregated together 
50% of animals sampled were predicted to be less than 6.5 years and 80% were younger than 10 
years old. While some parent offspring pairs might accrue from a 5-year sampling program 
(especially paternally, given the smaller size at maturity in males), these length/age distributions 
support the notion of models relying on HSPs. 

To estimate the effective sample size of the distributions in Figure 3.1 would require dedicated 
modelling to and estimation of over-dispersion parameters (Candy 2008; Truesdell et al. 2017). 
However, the evident variability in sampling and at times very low sample size, does justify the 
use of a modest CAA ESS of 75 (Table 2.2) at least as a test of the robustness of the model. 
However, from 2012 to 2022 large sample sizes were collected which are likely to have a higher 
ESS. 
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Figure 3.1: Existing length frequency data by year of collection (for IOTC species codes MAK, SMA 
and POR), with number of measurements included on the plot. 

3.2 OM simulatioms 

By selecting &4
; and :4 values that yielded approximate agreement with Coelho, Rosa, and 

Mourato (2024), a base case OM was configured to approximately reproduce the outputs of the 
2024 stock assessment. Due to differences in structure and parameterisation between our age-
structured model and the stock assessment surplus production model, the abundance and trends 
could not be precisely replicated. However, the approximate population size, throughout the OM 
model period was matched approximately to the assessment. 

Initial simulations were investigated to determine the impact of different number of genetic 
samples on EM results. These simulations were conducted with an ESS of CAA data of N=75. 
Sensitivity to this value is explored in further analyses. 
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3.3 HSPs 

Figure 3.2 shows how the number of HSPs observed in simulations increases with the number of 
genetic samples taken. Around 50 HSPs were detected when taking 1000 samples each year, 
~150 for 2000 annual samples and ~350 for 3000 annual samples (Figure 3.2). These are lower 
than indicated in Table 1.1 but given the extremely unrealistic dynamics and assumptions in the 
simpler calculations, this is not unexpected. When more realism is added to the models, 
especially sexual dimorphism in maturity, the kinship probabilities change Given that the 
numbers are not massively different.   

 

Figure 3.2: Boxplots of the number of observed HSPs from the simulations for each of the genetic 
sample sizes. 

The EM was able to fit the provided data and estimate four parameters, the initial number of 
females &4

;, the initial harvest rate ℎ?@?", natural mortality, " and recruitment variability 
standard deviation, ]=. 

Estimates from the EM were variable among simulations but always encompassed the OM (true 
simulated) value, with the peak of the distribution approximately matching the true value used 
in the OM for all parameters, except for ]=  (Figure 3.3). In this case, there was a large proportion 
of simulations where the estimate of ]=  approach 0. This is not a surprising result as the low level 
of variability in the OM does not provide a substantial increase in likelihood when fitting to data 
with low levels of variability. For this reason, ]=  is often a difficult parameter to estimate in stock 
assessments. Additionally, in any real assessment situation, there would be strategies for 
allowing for random recruitment variation through specification of a prior on ]=. 
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Figure 3.3: Histograms of the estimated parameters within the EM (bars) compared to the 
specified value in the OM (dashed line). 

Trends in the total reproductive output 7 and exploitable biomass b8
EB' were relativity stable 

throughout the model period (2020 to 2036), with median estimates from the OM and EM almost 
identical, over the range of genetic sample numbers considered (Figure 3.4). 

However, larger number of genetic samples reduced estimate uncertainty with a 
particularly large drop in uncertainty between 1000 and 2000 samples (Figure 3.4). There was 
less of a gain in information when comparing 2000 to 3000 levels. This is consistent with the 
notion that the addition of new kin pairs via more intensive sampling does not continue to add 
the same amount of information. 

Based on the results in Figure 3.4 and noting the dependence on the assumptions driving the OM 
configuration, we would recommend collection of at least 2000 samples per year over the course 
of a 5-year sampling program. The corrollary of this, is that collection of significantly less than 
2000 samples is likely to be riskier - i.e. is more likely to result in an uncertain estimate of 
population status. 
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Figure 3.4: Estimates of S and exploitable biomass from the OM and EM. Lines are median values 
among simulations and shaded areas are 90% simulation intervals. The larger confidence 
intervals are for the EM.  

Relative error, or difference between the OM and EM results showed no systematic trends 
throughout the model period for all variables investigated (Figure 3.5). The results do 
demonstrate that on average, simulations have a larger relative error when there are only 1000 
genetic samples, compared to when there is 2000 or 3000 (Figure 3.5). This suggest that larger 
genetic sample sizes reduce the likelhood of model that are biased. 
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Figure 3.5: Estimates of S and exploitable biomass from the OM and EM. Lines are median values 
among simulations and shaded areas are 90% simulation intervals. 

The CVs from the EM are often used to determine the appropriate number of genetic samples 
for CKMR design studies. The estimated CVs for all parameters decreased as the number of 
genetic samples increased, although this was particularly evident when moving between 1000 
and 2000 samples annually, with a smaller difference between 2000 and 3000 annual samples 
(Figure 3.6). On average across the various model outputs investigated CVs were generally at or 
below 0.1 when at least 2000 annual samples were collected (Figure 3.6). When considering this 
is combination with the time series and relative error plots presented above, that showed 
reduced variability in OM/EM differences with 2000 or more samples, it suggests that a minimum 
of 2000 annual samples over 5 years would be required to obtain a robust estimate of absolute 
population size. Note in Figure 3.6 that the recruitment estimates are less influenced by increased 
genetic sample size. This reflects the fact that CKMR data informs mostly on the adults, whereas 
the fixed CAA sample size which informs on the rest of the population.   
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Figure 3.6: Boxplots of estimated CVs from the EM for key outputs of the population dynamics 
model for each of the genetic sample sizes tested. 

3.3.1 Sensitivity to CAA sample sizes 

Additional simulations were conducted to test the impact of varying the number of CAA samples 
obtained throughout the model period. CAA effective sample sizes of 50, 75, 100 and 150 were 
conducted. Estimates of S throughout the model period were relatively stable with almost no 
difference between OM and EM median values by the number of annual genetic samples, or by 
CAA ESS (Figure 3.7). There was reduced 90% simulation intervals to those similar to the EM when 
collecting at least 2000 annual genetic samples, however, none of the CAA ESS values 
investigated impacted these results (Figure 3.7). Therefore, we observed incremental reduction 
in CVs of all model outputs as the CAA ESS increased, although the difference is relatively minor 
when compared with the decrease from increasing the number of annual genetic samples (Figure 
3.7). This suggests that the results of a CKMR assessment model would be relatively robust to 
lower number of length samples, however, there is benefit from sampling as many individuals as 
practicable. 
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Figure 3.7: Boxplots of estimated CVs from the EM for key outputs of the population dynamics 
model with panels for each of the annual genetic sample sizes tested, while different CAA effective 
sample sizes (CAA ESS) are demonstrated by colour. 

This picture was also reflected in the estimated trajectories of TRO (S), which were reasonably 
well estimated on average for all combinations of genetic sampling and CAA sampling considered. 
However, it was again clear that the uncertainty on the EM estimates is most influenced by the 
amount of genetic tissue samples. Given that in practice, each tissue sample should have an 
accompanying length measurement, then 2000 tissue samples, for example, should imply 2000 
length measurements which can be converted to ages. We emphasize again, that uncertainty in 
ageing would most likely need to be accounted for in a real model. 
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Figure 3.8: Simulated and estimated annual averages of population trajectory over all simulations 
at three levels of genetic sampling and four levels of CAA sampling. . 

3.3.2 Alternative population sizes 

The effect of lower and higher than expected population sizes on the parameter CVs is show in 
Figure 3.9. As per the general principles of CKMR, the lower population size generates more HSPs 
and gives a higher precision estimates (median CV on all quantities < 0.1 - figure 3.9). This rises 
in the upper case to median CVs between 0.1 and 0.2 on all model quantities. 

This is a general result with CKMR, for a fixed sample size, precision increases at smaller adult 
population sizes. Therefore, in the case considered here, where the concern is that the 
population is declining, then the results suggest a CKMR assessments would provide solid 
evidence of low population sizes. In the converse situation, the uncertainty would rise, but there 
would still be a signal suggesting a large population size. 
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Figure 3.9: Boxplots of estimated CVs at three levels of population size (OM tuned so that b>4>4
EB' ; 

low ≈ 20 k tonnes, median ≈ 50 k tonnes and high ≈ 150 k tonnes) 

Plots of simulated/estimated population Figure 3.10 trajectories through time, indicate that 
more certain results are obtained at lower population sizes, and that there is much higher band 
of uncertainty for the high population size at low sample size. Nevertheless, and again noting all 
the aforementiond assumptions surrounding the OM model tuning, the CKMR/CAA data 
combination is able to estimate the population dynamics reasonably well at 2000 and 3000 
annual tissue samples, even at the larger population levels. 
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Figure 3.10: Summaries of fits through time at three levels of population size (OM tuned so that 
b>4>4
EB' ; low ≈ 20Ö@,>1Ük?� ≈ 50 kt, and high ≈ 150 kt ) 

4 Conclusions 
To the extent possible given the paucity of informative data on SMA population status, the 
modelling in this paper was conducted to approximate the most recent IOTC assessment (Coelho, 
Rosa, and Mourato 2024) of SMA. If this assessment is roughly representative of the true 
abundance of SMA in the IO, then our results indicate that a sample size of around 2000 tissue 
samples per year would provide informative sibling pair data. Moreover, the length sampling 
would need to occur with the tissue collection, which means that the CKMR sampling should also 
produce sufficient CAA data to produce an informative assessment of SMA populations in the 
Indian Ocean. 

The time frame considered here was 5 years of tissue sample collection. In reality, a CKMR project 
would examine the hit-rate of HSPs through the period of sampling and the early results would 
inform on whether the sampling size and timelines were likely to be sufficient. CKMR can 
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therefore be adaptive as information is collected, with potential to increase or even reducing, 
sample rate collection. In addition, if long term sampling was adopted to inform estimates of 
stock size in an ongoing manner, the number of annual samples required would decrease through 
time.  

Catch-at-age data is important for providing information on recruitment and harvest rates – 
which CKMR cannot do. It is important to note that understanding recruitment dynamics are 
particularly important for SMA given its life-history.  Recent ICCAT assessments indicated that as 
the cryptic spawning biomass dies off naturally the recruitment would be severely impaired 
because high fishing pressure on the juveniles meant that there were few individuals replenishing 
the spawning biomass stock. Our analysis indicated that the results are relatively robust to CAA 
ESS, although better sampling is always going to improve model estimates - particularly those 
related to recruitment. Although we cannot say definitively, the modelling indicated that 
sampling intensity of length frequency data over recent years is likely to be sufficient inasmuch 
as it demonstrates that small ESS are sufficient to inform a model like that implemented here. 

We do note that the modelling presented here is somewhat artificial in that we have not 
estimated selectivity, ESS dispersion parameters, accounted for ageing errors and other 
complications that would arise in a real integrated assessments utilising CKMR and age 
distribution data (e.g. Thomson et al. 2020; RM Hillary et al. 2023). In our study we aimed to 
consider a model that captures key aspects of real CKMR assessments, while minimising 
speculation on how these issues may manifest in a real study. 

It is also worth noting that a simpler modelling approach could be investigated. For example, 
simpler population models, which only model number of adults and without including age 
structure has been applied to various shark species of conservation concern (Bruce et al. 2018; 
Hillary et al. 2018; Patterson, Hillary, Kyne, et al. 2022). Assuming that the structure of these 
models does not egregiously contradict assumptions, such models estimate the size of the 
breeding population - which at the moment would be a major step forward in understanding 
SMA populations. But given that to get useable CKMR data requires an age estimate (typically 
inferred based on length), then at the sample sizes envisioned for SMA (N >2000), then CAA data 
would already be generated. Given this data would be useful for understanding juveniles and 
recruitment, we did not investigate simpler model structures in this study. 

Similarly, given that there is no clear picture of spatial structure apparent in IO SMA (see 
Patterson et al, IOTC-2025-WPEB21(AS)-41). we did not consider spatial models of the sort used 
in Hillary et al. (2022). The main point of this study was to advise on sample size required to 
obtain population size estimates.  

From a purely operational perspective, obtaining 2000 samples per year would be a large, but 
not insurmountable task, and there are likely to be sufficient interactions with SMA. The length 
frequency data in IOTC data repositories shows that in some years, roughly this number of 
measurements of SMA were taken. 

However, this statement does not account for how management provisions such the measures 
outlined in IOTC Resolution 25/09 
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 (https://iotc.org/sites/default/files/documents/compliance/cmm/iotc_cmm_2509_0.pdf) may 
add challenges to obtaining samples. Further complications for sampling and logistics arise from 
SMA being listed under CITES Appendix II. While these measures are a in straightforward 
response to concerns regarding SMA declines, they are a challenge for implementation of 
effective CKMR sampling programs, which is the only current method which could significantly 
improve scientific monitoring of their population size. 

While the situation is complex, it is worth noting that retention bans will also make CPUE series 
even more problematic for inclusion in future stock assessments as they will represent a 
fundamental shift in  the data series and mean that post-ban catch and effort data is not 
comparable to pre-ban data, and likely to be even less informative for assessment purposes. 
Nevertheless, it is inevitable that while high-seas tuna fleets operate, interactions with SMA and 
other pelagic sharks will continue. This combination of contining bycatch and simultaneous 
ongoing degradation in already uninformative data sources creates a clear barrier to effective 
monitoring to inform science-based management of SMA and other pelagic shark bycatch issues. 
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