
IOTC-WPEB21(AS)-2025–51 

1 

INDIAN OCEAN BLUE SHARK STOCK ASSESSMENT USING BAYESIAN 

SURPLUS PRODUCTION MODELS (JABBA): MODEL DEVELOPMENT, 

VALIDATION, SENSITIVITY ANALYSIS AND LARGE GRID MODEL 

ENSEMBLES 

 

 

Rui Coelho1,2,* 

 

SUMMARY 

This paper provides the stock assessment for Indian Ocean blue shark 

using JABBA, a Bayesian surplus production models. Four base models 

were constructed with combinations of two productivities and two 

options for catch series. Models were checked for goodness of fit and 

validated, and sensitivity analysis was conducted. A large model grid 

(600 models) was run, by randomly selecting priors from distributions 

built from the plausible for their values, and using alternatively each of 

the two-catch series. Stock status for the main base models ranged from 

not overfished and not undergoing overfishing (B>Bmsy & F<Fmsy), to 

not overfished but currently undergoing overfishing (B>Bmsy & 

F>Fmsy). The stock status for the large grid ensemble was weighed in 2 

alternative ways (equal-weighting and DIC-weighting), and resulted in a 

stock status not overfished and not subject to overfishing (B>Bmsy & 

F<Fmsy). 
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1. Introduction 

The blue shark is the most widely distributed pelagic shark species. It is captured both as 

target species and as bycatch is many oceanic pelagic fisheries worldwide, including in 

the Indian Ocean under the jurisdiction of IOTC. 

Previous assessments have been carried out by IOTC for the blue shark, with the last one 

carried out in 2021. At the time, the stock status was based on an integrated age-structured 

model (SS3), using data up to 2019, with the base case model using GAM-based catch 

history estimates and CPUE series from South Africa, EU-Portugal, EU-France 

(Reunion), EU-Spain, Taiwan and Japan. The major sources of uncertainty identified at 

the time were the catches and CPUE indices of abundance. At the time and given the 

results of that stock assessment, the stock status was determined to be not overfished and 

not subject to overfishing (IOTC, 2024). 

In 2025 the IOTC is conducting a new stock assessment for the Indian Ocean blue shark. 

While it is most likely that the base case advice will again be based on SS3 models, it is 

useful to have additional stock assessment models run, that can be used to either confirm 

the stock status, or help identify any issues. In that sense, the use of production models 

that are simpler and track the exploitable biomass of the stock, can be useful. 

The purpose of this paper is to present the configuration, inputs and results of production 

model (JABBA) for the IOTC blue shark, to support the management advice for this 

pelagic shark species to IOTC. 

 

2. Material and methods 

In March 2025, an IOTC Working Party on Ecosystems and Bycatch (WPEB) data-

preparatory meeting was held, where the group agreed on the technical specifications that 

should be used for the stock assessment, and that were followed in this work and 

presented here (IOTC, 2025). The group also noted that a grid approach over several 

variables would be appropriate, for exploring different life history and productivity 

options, CPUE scenarios and catch histories. 

 

2.1. IOTC BSH nominal catches and catch reconstructions 

In the last stock assessment for IOTC blue shark, GAM based estimated catches were 

used. During the WPEB data-preparatory meeting some discussions on the catches to be 

used were carried out, but there was no definitive agreement on what series was to be 

used. In the intersessional period, the secretariat and contractor updated the nominal and 

estimated catch series, that are represented in Figure 1. Those options contain 3 datasets 

(D1, D2 and D3), each with Nominal catches, Ratio based estimates and GAM based 

estimates. 
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Some preliminary observations from the contractor mentioned that the D2 dataset 

provided strange and unexplainable results, with very high values in the earlier period. In 

addition, in the last assessment, the Ratio based estimates were determined to be worse 

than the GAM based estimates. As such, for this preliminary analysis, we used the GAM 

based catch estimates based on both the D1 and D3 datasets. 

Those 2 series are considerably different, especially in the more recent years after around 

2000, with the D1 estimates continuing to show higher catches until the recent period, 

while the D3 catches decrease considerably after that period. 

 

Figure 1: Time series of the IOTC BSH nominal and estimated catch data options 

considered. 

 

2.2. Life history and demographic analysis 

The life history and demographic parameters for the blue shark Indian Ocean have been 

previously studied, using demographic methods, specifically Leslie matrices analysis. We 

followed the guidelines from the data preparatory meeting, and based the initial model on 

the values from Rosa and Coelho (2016) that estimated r values between 0.32 and 0.35. 

Additionally, we also used a 2nd scenario using the demographic models from Geng et al. 

(2021) with slightly lower estimates of r, specifically varying between 0.26 and 0.32. 

 

2.3. Standardized CPUEs series 
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The CPUEs series that were initially considered were those available and discussed at the 

data preparatory meeting (IOTC, 2025). Those included series from the following CPCs 

fleets (Figure 2): 

● South Africa LL (2000-2023) 

● France La Reunion LL (2007-2023) 

● Portugal LL (2000-2023) 

● Spain LL (2001-2023) 

● Japan LL – time block 1 (1994-2008) 

● Japan LL – time block 2 (2009-2023) 

● Taiwan LL (2005-2023) 

● USSR historical (1966-1989) 

 

The CVs for each series in the models were the ones produced in the CPUE 

standardization analysis, except in cases where the values were lower than 0.2, in which 

cases a minimum CV of 0.2 was defined. This allowed some flexibility in fitting the 

models to the CPUEs. 

The first phase of the model building process was to carry out a sensitivity analysis for 

determining the influence of each CPUE in the overall stock trends, and look for any 

major conflicts between the CPUEs, and between CPUEs and the catch history. This was 

done by running models using only one CPUE at a time as provided in the CPUE papers. 

This process helped the initial stage of decision making on which CPUES should be 

suggested for used in the bae case models. 

 

Figure 2: Standardized CPUE series available for the IOTC BSH stock assessment. For 

better visualization and comparison, each series is scaled by their respective means. 
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2.4. Stock assessment 

2.4.1. Assessment platform 

The assessment models were implemented in JABBA, a Bayesian state-space surplus 

production model framework (Winker et al., 2018). JABBA is implemented in R and 

available from: github.com/jabbamodel/JABBA. 

JABBA is a flexible Bayesian stock assessment modeling framework with various 

options, that include: 1) automatic fitting of multiple CPUE time series and associated 

standard errors, 2) estimating or fixing the process variance, 3) optional estimation of 

additional observation variance for individual or grouped CPUE time series 4) specifying 

the production function, i.e., Fox, Schaefer or Pella-Tomlinson, this last one by setting 

the inflection point from Bmsy/K and converting it into the shape parameter m, 5) setting 

priors for various parameters, including r and K, that can range from more to less 

informative depending on the confidence in the previously available information, 6) 

model diagnostics and goodness-of-fit features with associated tests and plots (e.g. 

residuals run tests, hindcast and retrospective analysis) and, 7) projections for constant 

catches (TACs) in the future to achieve management objectives over certain timeframes. 

JABBA is implemented in R (R Core Team, 2025) and uses the JAGS software (Plummer, 

2003) to estimate model parameters in a Bayesian framework, by means of Markov 

Chains Monte Carlo (MCMC) simulation. JAGS is executed from R using the library 

“r2jags” (Su and Yajima, 2012). 

All analysis in this paper was conducted using R v.4.4.3. (R Core Team, 2025). Some 

additional libraries were used for manipulating and plotting data, including libraries 

“reshape” (Wickham, 2007), “doBy” (Højsgaard and Halekoh, 2023), “tidyr” (Wickham 

et al., 2023), “tidyverse” (Wickham et al., 2019), “ggplot2” (Wickham, 2016), “dplyr” 

(Wickham et al., 2023), “gridExtra” (Auguie, 2017) and “cowplot” (Wilke, 2024). 

 

2.4.2. Stock assessment model specifications 

The model specifications were based on an ensemble grid of 2 main models, mostly given 

the current uncertainty that are associated with the blue shark demographic parameters, 

and specifically in the calculation of r. 

As such, 2 base models were constructed with different assumptions on r, specifically 

with one using a r value centered at 0.33 (following Rosa and Coelho, 2016) and the other 

with r centered at 0.29 (following Geng et al., 2021). In both scenarios, those values were 

used as the center of lognormal priors with a CV of 0.1. 
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The production function used was a Schaefer model, with the shape parameter (m) 

assumed to be 2, which corresponds to a value of Bmsy/K of 0.5, which seems to be a 

reasonable assumption for shark species. 

As described, various time-series of catches were available, but 2 main ones were 

considered in this assessment, namely the GAM-estimations from Dataset 1 (D1) and 

Dataset 3 (D3). Those time series have different values in terms of magnitude, so there 

are some scale differences in the estimations of absolute values such as B0 and MSY. In 

all cases, the catches were inputted in JABBA with an associated CV of 0.2, therefore 

allowing some deviation from the observer and reported catches to reflect the likelihood 

that the catches may not be accurately estimated, recorded and reported to IOTC. 

In the model specifications, the K prior (carrying capacity) was kept as vaguely 

informative, given the lack of prior knowledge on these values and to allow for more 

emphasis to be put in the r parameter), which is derived from biological data. Specifically, 

the K prior used the default settings of JABBA, namely the use of a lognormal prior with 

a large CV (100%) and a central value corresponding to 8 times the maximum total catch. 

This is consistent with other types of models, such as the approach used in catch-MSY 

(Martell and Froese, 2013). 

For all models the same initial depletion (B1971/K) was considered, using a prior with beta 

distribution with a mean of 0.85 and CV of 10%. This was done, given that the models 

were initiated in 1964 when some of the estimated catch series started, and with the oldest 

historical CPUEs available from 1966. 

Catchability parameters were formulated as uninformative priors and the CPUEs were 

scaled externally by their respective means before inputting into the models. 

The process error was defined by an uninformative inverse-gamma distribution with the 

shape and scaling parameters set at 4 and 0.01 (JABBA default). Sensitivities were carried 

out by setting both those parameters at 0.001 (Gelman, 2006; Mourato et al., 2023), and 

by fixing the sigma of the process error to CVs of 5% and 10%. 

In addition to the CPUE variance associated with the data, the base case grid models 

configuration allowed the internal estimation of additional observation variance for each 

CPUE, allowing therefore for a larger divergence between the observed and model 

predicted CPUEs. A sensitivity analysis was carried out by disabling this process. 

For the parameter estimation in the Bayesian models, we used 3 MCMC chains with 

30,000 iterations each, a burn-in period of 10,000 and a thinning rate of 5, resulting in a 

total of 12,000 posterior samples for each model. This configuration allowed for a 

thorough exploration of the posterior distributions of the main base models, ensured 

convergence of the model key parameters, and provided effective sample sizes well above 

the minimum recommended thresholds (ESS > 1,000 for all parameters). This 

specification was used consistently in the model development phase, as well as in the 

sensitivity analysis and ensemble grid of models. 
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2.4.3. Model diagnostics 

Basic diagnostics of model convergence included MCMC trace-plots and other statistics 

(Heidelberger and Welch, 1992; Geweke, 1992; Gelman and Rubin, 1992) implemented 

in the “CODA” package (Plummer et al., 2006). 

To evaluate the CPUE fits, the model predicted CPUE indices were compared to the 

observed CPUE. Additionally, residual plots were used to examine the residuals of 

observed versus predicted CPUE indices for all fleets and boxplots with the median and 

quantiles of all residuals for each year (the area of each box indicates the strength of the 

discrepancy between CPUE series, with larger box indicating higher degree of conflicting 

information), and a loess smoother through all residuals to aid detection of the presence 

of systematic residual patterns. 

Additionally, the root-mean-squared-error (RMSE) was used as a goodness-of-fit 

statistic, and runs tests were conducted to quantitatively evaluate the randomness of 

residuals (Carvalho et al., 2017). The runs test diagnostic was applied to residuals of the 

CPUE fit on log-scale considering the 2-sided p-value of the Wald-Wolfowitz runs test 

and is visualized in JABBA to illustrate which time series passed or failed the test, as well 

as highlighting individual data points that fall outside the three-sigma limits (Anhøj and 

Olesen, 2014). 

To check for systematic bias in the stock status estimates, a retrospective analysis was 

carried out for all the base case Grid models. This analysis was carried out by sequentially 

removing one year of data at a time, over a total period of 5 years, and then refitting the 

model without those years. The parameters of interest (i.e., biomass, fishing mortality, 

B/Bmsy, F/Fmsy, B/K and MSY) were then compared to the original models fitted using 

the full time series. The presence of possible retrospective bias between the models was 

analyzed visually with plots, and statistically with the Mohn’s rho (ρ) statistic (Mohn, 

1999), using the formulation defined by Hurtado-Ferro et al. (2014). In this analysis, the 

more the values diverge from zero the stronger there is the presence of a retrospective 

bias. In general, values that fall between -0.15 and 0.2 are widely deemed as having an 

acceptable retrospective bias (Huerto et al., 2014). 

The analysis included several sensitivity model runs, namely based on the following 

scenarios: 1) a catch only model without using information from the CPUE time series; 

2) leave-one-out CPUE analysis where each CPUE was dropped at a time starting either 

with the full model using all available CPUEs; 3) using one CPUE at a time, 4) sensitivity 

analysis to the sigma of the process error (fixed at 5% and 10%) and inclusion of 

additional CPUE variance and; 5) a sensitivity analysis using various estimated catch time 

series. For the sensitivity analysis, the main base model (base productivity and GAM 

estimated D1 catches) was used. 
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2.5. Model ensemble 

2.5.1 Model ensemble specifications 

After building the base models with the 4 main models as specified above, we then 

constructed and carried out a larger grid ensemble approach, drawing random values from 

pre-defined distributions between the limits or based on the model underlying 

assumptions that had been used in the main base models. This allowed us to increase the 

dispersion of values between the limits that were considered acceptable for the main 

assessment models. 

The parameters and respective statistical distributions that were used in building this large 

ensemble grid were: 

● r prior (intrinsic population growth rate): Values from a random uniform 

distribution varying between 0.29 and 0.33, the values used in the main base 

models; 

● Catch CV prior (coefficient of variation of the catch series): Values from a random 

uniform distribution varying between 0.15 and 0.25; 

● PSI prior (initial depletion): Values from a random uniform distribution varying 

between 0.80 and 0.90. 

● Catch series (D1 and D3 GAM estimated catch series): Each set of values taken 

from the distributions above was run in models using both of those 2 optional 

catch series. 

The large model ensemble with those characteristics was run 600 times (300 times using 

each of the two alternative catch series). Each individual model was validated and 

checked for convergence for key biological parameters (K, r) using the Geweke 

diagnostics and the Heidelberger and Welch tests. Models with failure in either diagnostic 

were excluded from the final ensemble. 

Running such large grid model ensembles requires high computational power. To achieve 

this, we used the High-Performance computing platform services of Inductiva 

(https://inductiva.ai/), enabling high-speed parallel computing of multiple models 

simultaneously. In this case, the entire 600-model grid was run on 50 cloud machines of 

type “c2-standard-8”, each with 8 vCPUs and 32 GB RAM. The full run took 

approximately 58 minutes to complete, produced 23.3 GB of outputs, and had an 

estimated cost of 5.10 USD. For comparison, running this task on a single modern laptop 

(Intel Core Ultra 7, 4.8 GHz, 64 GB RAM) would take about 3 mins per model, or 

approximately 30 hours for all 600 models in the ensemble grid. Thus, the cloud 

computing setup that was used provided an approximate 30× speedup over local 

sequential model execution. 

 

2.5.2 Model weighting and averaging 

https://inductiva.ai/
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Following the convergence diagnostics, the retained ensemble models were summarized 

using two alternative approaches: 

● Equal model-weighing: Each individual model was given equal weight, assuming 

therefore that all models are equally plausible without favoring any particular type 

of fit. 

● DIC-weighted ensemble: Models were weighted inversely by their Deviance 

Information Criterion (DIC) values. The Delta-DIC was computed relative to the 

best-fitting model and the derived model weights as exp(−0.5 × ΔDIC), 

normalized to sum to one (Burnham & Anderson, 2002). This approach gives 

higher weights to better fitted models, while still incorporating ensemble 

uncertainty for the less fit models 

 

2.6. Projections 

Preliminary deterministic projections were carried out individually for the 4 base models. 

Those projections assumed a delay of 3 years in implementation after the terminal year, 

i.e., in this case with the models terminating in 2023 and the fixed TACs implemented 

from 2026 onwards. The catches of the intermediate years (2024-2025), were assumed as 

the average catches of the previous 3 years (mean 2021-2023). 

 

3. Results 

3.1. Initial model development and configuration 

The initial model development phase started with a configuration similar to what was 

used in the last IOTC BSH stock assessment. At the time the JABBA model was used 

only as an auxiliary model and not used for advice, but some runs were carried out to 

support the main SS3 model. 

In terms of catch data, we started with the series represented as D1-GAM Est, that uses a 

GAM modeling estimation and follows what was used in the last (2021) stock assessment. 

In terms of CPUE series, we started with a model using all available CPUEs from the data 

preparatory meeting, that was followed by an analysis using CPUEs one-at-a-time. This 

was done to investigate possible inconsistencies in individual CPUE series, that could be 

problematic if used in the main models. Most CPUE series have somewhat similar 

behaviors in terms of stock trends, except the series from South Africa that produces some 

unreasonable and very different behavior compared to the other CPUEs around the period 

in the 2010s (Figure 3). 

It is also noted that two of the series produced very high confidence intervals in the fishing 

mortality (F) estimation for recent years, namely USSR historical and Japan time block 

1. Given that those 2 series are historical series that only contain data from the past and 
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not any recent data, such high confidence intervals in estimations for recent years are 

expected, given that those series do not contain any information for the recent period. 

Given this initial exploration, the final models were based on the use of all CPUE series, 

except for the South African series, given the conflicts with the other series trends. 

 

Figure 3. Initial exploratory model runs using one CPUE at-a-time, for the Indian Ocean 

blue shark. 

 

3.2. Model goodness of fit and validation 

3.2.1. Model convergence 

The MCMC convergence tests by Heidelberger and Welch (1992) and Geweke (1992) all 

passed with regards to the MCMC estimation of the parameters for all models. An 

adequate convergence of the MCMC chains was also corroborated visually by checking 

the trace plots, which showed good mixing and random deviations around the parameters 

space, without any detectable bias or patterns that could result from autocorrelations in 

the estimations (Figure 4). 
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Figure 4: Trace plots of the base models used for the IOTC blue shark stock assessment. 

 

3.2.2. Fit to CPUE indices 

The fits of the base case grid models to each of the standardized CPUE indices used are 

shown in Figure 5. The goodness-of-fit of those residuals were similar between all base 

case grid models used, with the RMSE statistic ranging between 41.8% and 43.0% 

(Figure 6). 

The runs test for the CPUE residuals from each of the main 4 grid models are provided 

in Figure 7. Some CPUEs passed the tests, while others failed, showing that in some 

cases there are patterns of non-randomness in the residuals. On all the models, the series 

from Japan (t1) and Taiwan passed the tests, while France, Spain, Japan (t2) and USSR 

historical failed. In the case of the Portuguese series, it passed the model using D3 catches 

and higher r, and failed the other tests. In some cases, some outliers were identified in the 

residuals, defined as points outside a 3-fold limit around the overall residuals means 

(Anhøj and Olesen, 2014). 



IOTC-WPEB21(AS)-2025–51 

14 

 

Figure 5: Time series of observed (circles) and predicted (solid line) CPUEs for the IOTC 

blue shark stock assessment models for the main base models. The dark shaded areas 

represent the 95% credibility intervals of the expected mean CPUE, and the light shaded 

areas represent the 95% posterior predictive distribution intervals. The error bars are the 

95% confidence intervals (CIs) from the CPUE observations 
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Figure 6: Residuals diagnostic plots for the base models used for the IOTC blue shark 

stock assessment. Each individual CPUE index and its respective residuals are 

represented by a different color. The solid black lines represent loess smoothers through 

all residuals combined. 
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Figure 7: Runs tests for the CPUE index for the base models used in the IOTC blue shark 

stock assessment. 

 

3.2.3. Process error deviations. 

The deviations from the process error show similar patterns for both main models. There 

were some patterns with lower deviates in the middle time-period, followed by higher 

deviates in the more recent years, since around 2005 (Figure 8). The 95% credibility 

intervals always included the zero value during the entire time series period, suggesting 

that there is no major evidence of structural model misspecifications. 
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Figure 8: Process error deviates from the main base models used for the IOTC blue shark 

stock assessment. The solid line represents the median, and the shaded gray area the 95% 

credibility intervals. 

 

3.2.4. Retrospective analysis 

The results of the retrospective analysis applied to the 2 main base models are shown in 

Figure 9, and the corresponding summaries of the estimations of the Mohn’s rho are 

summarized in Table 1. All models fell within the acceptable range of -0.15 to 0.20 for 

all the parameters, as defined by Hurtado-Ferro et al. (2014) and Carvalho et al. (2017). 
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This analysis confirms that there are some retrospective patterns in the models with 

regards to the main parameters. 

 

Figure 9: Retrospective analysis conducted for the main base models developed for the 

IOTC blue shark stock assessment, by removing 1-year at a time sequentially (n=5) and 

predicting the trends in biomass and fishing mortality relative to MSY (i.e, B/Bmsy and 

F/Fmsy). 

 

Table 1: Summary of the Mohn’s rho statistic computed from the retrospective analysis 

pattern evaluated for the main base models used for the IOTC blue shark assessment. All 

values fall between -0.15 and 0.20 and are considered to have an acceptable retrospective 

bias and are therefore highlighted in green in this table. 
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3.2.5. Hindcast cross validation 

The hindcast cross-validation procedure was conducted for the more recent time periods 

of the indices. The results show that the predictions, when 1-year at a time for the last 5-

years are removed, in many cases fall outside the 95% CIs (Figure 10). The mean 

absolute scaled error (MASE) estimates were under or around the reference level (MASE 

<= 1) for the cases of France, Portugal, Taiwan. The MASE values were a little higher 

for the case of Japan (time block 2) and much higher for the case of Spain when using 

catches D1but better when using catches D3. 

When values of MASE are < 1, this indicates that the average forecasts for those indices 

have good predictive skills (Carvalho et al., 2021), so in this case, the indices that had 

better prediction skills were from France, Portugal and Taiwan, for the recent period. The 

worse CPUE in terms of predicted skills were from Spain when using the catch series D1. 
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Figure 10. Hindcasting cross-validation results for the index available in the last years of 

the model, run for the main base models. The plots show 1-year-ahead forecasts of CPUE 

values, when the last years are removed one at a time, relative to the observed CPUE 

using all data. The CPUE observations, used for cross-validation are highlighted as the 

color-coded solid circles with associated light-grey shaded 95% confidence interval. 

 

3.3. Sensitivity analysis 

With regards to the sensitivity analysis, and given that the 4 main base grid models 

developed, only one of the models was used as a comparison to the options defined as 

sensitivities. Specifically, all sensitivity analysis was compared to the model using a 

higher productivity scenario, and the estimated catches from the D1 dataset, which 

represents the main continuity from the 2021 assessment. 

 

3.3.1. Catch only models 
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The results of the sensitivity analysis conducted for models with catch only information 

is shown in Figure 11. Those models are mostly informed by the biological prior 

information, the priors set for initial and final depletion (if used), and the history and 

trends from the times series of catches. 

There are some differences when the CPUE data is entirely excluded. When the D1 catch 

dataset is used, the biomass trends show an overall and continuous decrease, while the 

fishing mortality shows an increase. When using D3 catch series the trends are similar 

until around 2010, but then increase from that point forward, which is reflective of that 

catch history information, that reduces substantially from that point forward. In both 

cases, the final status with the catch-only models is more pessimistic, resulting in a stock 

that is more depleted and has worse stock status. 

 

Figure 11: Sensitivity analysis relative to catch-only models (without any CPUE 

information) for the IOTC BSH stock assessment. The analysis was carried out in relation 

to the base case model (Mod 06), and contains 2 catch model options, using both D1 and 

D2 GAM estimated catch series. 

 

3.3.2. Using one CPUE at a time 

A sensitivity was conducted by using one CPUE at a time, where each model was run 

using only one of the available CPUEs at a time. This was configured in relation to the 

base case model. The results are represented in Figure 12. 



IOTC-WPEB21(AS)-2025–51 

22 

The results show overall and relatively similar trends in the stock status over time. This 

indicates that all CPUE series produce relatively similar signals to the stock, and that each 

one individually is not too strong to introduce signals that are very different from the 

others. 

 

Figure 12: Sensitivity analysis to using one CPUE at a time, for all available CPUE series 

used in the base models for the IOTC BSH stock assessment. 

 

3.3.3. Leave out one CPUE at a time 

A sensitivity analysis was conducted with leave-one-out CPUE scenarios, where each 

model was run excluding one CPUE series at each time, starting with the base case model. 

The results are represented in Figure 13. 

Overall, there are relatively minor differences when excluding one CPUE at a time from 

the base case model, indicating that there is not any CPUE series that has a particular 

major influence in the final trends and results. This means that if any of those series is 

removed from the base case model, the model still maintains its overall trends and status 

and is not overly being influenced by each of the individual CPUE series. 
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Figure 13: Sensitivity analysis for leaving out one CPUE at a time, for all available 

CPUEs used in the base case models for the IOTC BSH stock assessment. 

 

3.3.5. Comparison of catch options series 

Another sensitivity analysis was conducted for using various catch options for IOTC BSH 

series. In this case we have 2 options in terms of datasets (D1 and D3), each with the 

nominal catches, ratio estimations and GAM estimations (this last one used as the base 

cases). 

In this case, because the catch series are not the same, there is a direct effect in terms of 

total stock biomass and overall MSY estimates. The summaries of those estimates are 

described in Table 2. As expected, the models using the catch series D1 have overall 

higher MSY estimates given that the catches achieve higher absolute values, compared to 

catches from the D3 dataset. Nonetheless, in terms of relative trajectories, both are 

relatively similar on all models in terms of biomass, and the main differences are seen in 

terms of fishing mortality (Figure 15). 

 

Table 2: Summary of the MSY estimations from the various catch series options, 

considered for the IOTC blue shark stock assessment. 
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Figure 15: Sensitivity analysis using various catch series options for the IOTC BSH 

assessment. 

 

3.3.6. Process error and CPUE variance 

An additional sensitivity analysis carried out was with regards to the process error and 

additional estimation of CPUEs variance. In the base case models the process error is 

estimated within the models with uninformative igamma priors set as the default values, 

and the option to allow for additional CPUEs variance internally in JABBA is also 

allowed. Sensitivities were run for options on fixing the sigma of the process error to CVs 

of 5% and 10%, and another to turn off the additional inclusion of CPUE variance. The 

results of this analysis are presented in Figure 16. 
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Overall, the sensitivities in terms of the process error show no major differences in the 

overall trends compared to the base case model. In general, it is preferable to allow the 

process error to be estimated internally by the models, as that will optimize the posterior 

of the process error based on the rest of the data that is providing information to the 

models. 

With regards to the additional CPUE variance, by turning off the additional CPUE 

variance the results are substantially different, as the trajectories are forced to follow 

much more closely all the jumps that are present in the CPUE indices, providing quite 

unreasonable results. As such and in general, it is also preferable to allow this additional 

variance to be estimated within the models. 

 

Figure 16: Sensitivity analysis relative to various options for the sigma of the process 

error (“igamma” = using an igamma vaguely informative prior; “process error 5%” = 

fixing at 5%; “process error 10%” = fixing at 10%) and turning off the estimation of 

additional CPUE variance in the models (CPUE.var), performed for IOTC blue shark 

stock assessment. 

 

3.4. Stock status of  base models 

The parameters estimated in the final base models (2 options for productivity and 2 

options for catches) are represented in Table 2. 
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The trajectories of the final main 4 base models of both biomass and fishing mortality in 

relation to MSY reference points are indicated in Figure 17, and the Kobe Phase plots 

for those 2 scenarios are represented in Figure 18. The overall trajectories of all scenarios 

are very similar. On all cases the biomass values are above Bmsy, while the F is below 

Fmsy for 3 scenarios and slightly above in one model. 

 

Table 2: Estimates (average, lower and upper confidence intervals) of the point estimates 

for the various parameters estimated in the 4 main base grid models, developed for the 

2025 IOTC blue shark stock assessment. 
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Figure 17: Comparative trends and trajectories of the 4 main base models, run for the 

2025 IOTC blue shark stock assessment. 
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Figure 18: Kobe phase plot with the estimated trajectories (1964-2023) of B/Bmsy and 

F/Fmsy for the 4 main base grid models considered for the 2025 IOTC blue shark stock 

assessment. The different gray shaded areas denote the 50%, 80%, and 95% credibility 

intervals for the terminal year of the assessment data (2023). The probability of the 

terminal year stock status falling within each quadrant of the Kobe phase plot is indicated 

in the figure legend, for each of the grid models. The plots represent the following 

scenarios: Top left: higher r with D1 catches; Top right: lower r with D1 catches; Bottom 

left: higher r with D3 catches; Bottom right: lower r with D3 catches. 

 

3.5. Model ensemble 

The large model grid ensemble was run with 600 models, comprising 300 models with 

each of the options catch series (GAM estimated D1 and D3). The range and distribution 

of the input prior values generated for this large grid ensemble of models is shown in 

Figure 19. 
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Figure 19: Distribution of the priors input values that were randomly generated for the 

large model grid ensemble, for the IOTC blue shark stock assessment. 

 

Of the 600 ensemble models run, 32 failed to converge, namely 19 using the D1 catch 

data and 13 using the D3 catches, while the other 568 models converged. The models that 

converged were used for the remainder of this analysis, descriptive statistics and 

determining stock status. 

The trajectories of all the models that converged and are used for analysis are described 

in Figure 20, while the Kobe plots with the terminal year status of all individual models 

relative to B/Bmsy and F/Fmsy (separated by the D1 and D3 catch ensembles)) are shown 

in Figure 21. 



IOTC-WPEB21(AS)-2025–51 

30 

 

Figure 20. Results of the trajectories and main results from the large ensemble grid 

models, using both D1 and D3 GAM estimated catches. Only models that have converged 

are plotted (568 models). 
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Figure 21. Kobe plot with the point estimates and CIs of the large ensemble grid models 

that have converged and are used for the analysis. Each ensemble model (based on D1 or 

D3 catches) is separated in the plot. 

 

The summaries of the main quantities from the large grid models are summarized in 

Table 3. The quantities are summarized in 2 alternative ways: 1) using equal weights 

across all models that converged; 2) using DIC-weights across models that converged, 

giving more weight to models with better DIC values. Additionally, the values are 

separated for the ensemble grids using D1 and D3 catches. 

The summarized Kobe status plot with the 2 model weighing options, and for each pf the 

option on catches (D1 and D3) is given in Figure 22. The stock status is relatively similar 

when using either model weighting option, even though when using the DIC criteria for 

model weighing there is a slight tendency for a slightly better stock status. 
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Table 3: Summaries of the estimates (mean, lower and upper confidence intervals) of the 

main parameters across the large grid of ensemble models, using the two options catch 

series (D1 and D3). The values reported represent the mean, SD and limits of the 95% 

CIs across the estimations (posterior values) of all ensemble models. The summaries are 

calculated by 2 options: 1) giving equal weights across all models; 2) using DIC-weights 

across models. 
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Figure 22. Kobe plot with the point estimates and CIs of the summarized large grid 

models, using two options for model weighing: 1) equal weights across all models; 2) 

using DIC-weights across models, and the 2 ensemble grids (based on D1 and D3 

catches). The summaries are done with all the grid models that have converged. 

 

3.6. Preliminary projections 

The preliminary deterministic projections of the 4 main base models are represented in 

Figure 23 and Figure 24. Given that the 4 main models use two very distinct catch series, 

the absolute values are different and therefore not entirely comparable in terms of the 

absolute scale for the projections. As such, for these preliminary projections there are 2 

options, one using models with the D1 catch dataset and the other with the D3 catch 

dataset. 
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It is noted that under the D1 catch scenarios, the current catches (i.e., average of the last 

3 years) corresponds to 25,848 ton/year, while in the D3 catch scenario the same current 

catch (i.e., average of the last 3 years) corresponds to 9,920 ton/year. 

 

Figure 23. Preliminary deterministic projections for the 2 models using the D1 GAM 

estimated catch dataset (D1 current catches: average of the last 3 years of catches = 25,848 

ton/year). 
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Figure 24. Preliminary deterministic projections for the 2 models using the D3 GAM 

estimated catch dataset (D3 current catches: average of the last 3 years of catches = 9,920 

ton/year). 

 

4. Conclusions 

Bayesian Surplus Production Model (JABBA) were applied for determining the stock 

status, in support of the provision of management advice for the Indian Ocean (IOTC) 

blue shark. 

Four main base models were developed, using two combinations of productivity and two 

options in terms of estimated catches. The stock status from these 4 main based models 

ranged not overfished and not undergoing overfishing (B>Bmsy & F<Fmsy), to not 

overfished but currently undergoing overfishing (B>Bmsy & F>Fmsy). 

In addition to the base models, large model grid ensembles (600 models) were run, 

selecting randomly prior values from distributions built around plausible limits for their 

values, and using alternatively each of the 2 catch scenarios possibilities. The stock status 

from this large grid ensemble was weighed in 2 alternative ways, namely using equal 

model-weighting and DIC model-weighting. On all cases, the stock status resulted in the 

stock not being overfished and not subject to overfishing (B>Bmsy & F<Fmsy). 
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In summary, all the models and scenarios tested for the Indian Ocean blue shark show 

that the current biomass values are likely higher than Bmsy. However, in some scenarios, 

the current fishing mortality (F) is very close or even higher than Fmsy, suggesting that 

future catches should be regulated by means of a catch limit and carefully monitored. 
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