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Abstract 

Indo-Pacific sailfish (Istiophorus platypterus, Shaw, 1792, hereafter referred to as sailfish) is an 

apex predator inhabiting pelagic waters above thermocline are often caught as by-catch in tuna 

longline fisheries. Spatial and temporal trends of sailfish catch rates of tuna longline fishery of Sri 

Lanka in relation to environmental variables were investigated using general linear models (GLM), 

generalized additive models (GAM) and machine learning algorithms such as Random Forest (RF) 

and Gradient Boosted Trees (GBM). This analysis utilise logbook data consists of 16587 non-zero 

catch fishing operations from January 2016 to December 2019 in the northern and central Indian 

ocean.  Spatiotemporal variables included latitude, longitude, month and day of the year.  

Environmental variables such as sea surface temperature, sea surface salinity, sea surface height, 

chlorophyll-a concentration, eddy kinetic energy, euphotic depth, and depth of mixed layer 

downloaded from Copernicus Marine Environmental Monitoring Service (CMEMS). A linear 

regression model with seven environmental variables showed a very low explanatory power (10-

fold cross-validation: R²=0.0017, RMSE=0.715), suggesting that environmental variables may not 

have a simple linear relationship with catch rates. The Random Forest model significantly 

improved the explanation of variability in catch rate (R² = 0.148), highlighting sea surface salinity, 

eddy kinetic energy, and chlorophyll-a as the most influential variables. The GBM model offered 

the highest explanatory power improved prediction accuracy (R² = 0.218), with latitude, longitude 

and eddy kinetic energy identified as dominant predictors. Cross-validated GAM model of 

combined spatiotemporal and environmental predicators, accounting for 17.9% of the variability 

(R² = 0.179). The study highlights that spatio-temporal and environmental factors are essential 

drivers of sailfish catch rates, vital information for the sustainable management of the incidental 

sailfish fishery. 
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Introduction 

Indo-Pacific sailfish (Istiophorus platypterus, Shaw, 1792, hereafter referred to as sailfish) is an 

apex predator inhabiting pelagic waters above thermocline. They are highly migratory species and 

have cosmopolitan distribution of tropical waters close to coasts and islands in depths from 0 to 

200 m (Nakamura., 1985; FAO-FIGIS., 2001). Although they have resemblance to blue marlins 



in shape and colour, they can be distinguished from elongated sail like dorsal fin (Taquet & 

Diringer, 2012). Sailfish are often caught as by-catch in tuna longline and gillnet fisheries and one 

of main target species in sport fishery (Hoolihan 2003., Ndegwa & Herrera., 2011).  

In Indian ocean, four countries are responsible for 75% of the total Indo-Pacific sailfish catches 

mainly from north-west Indian Ocean: Iran (30%), Pakistan (18%), India (18%), and Sri Lanka 

(9%). These nations primarily use gillnets, while India also employs troll lines and Sri Lanka uses 

longlines (IOTC., 2025). The 2022 stock assessment by the Indian Ocean Tuna Commission 

(IOTC) reports a 54% exploitation level for sailfish. There is limited reliable information on the 

catches of this species and no information on the stock structure or growth and mortality in the 

Indian Ocean (IOTC., 2025). 

Methodology 

Data Preparation 

For the analysis, logbook data from 16587 non-zero catch operations of sailfish were used. These 

records, covering the 2016-2019 period, were obtained from longline fishing logbooks provided 

by the Department of Fisheries and Aquatic Resources in Sri Lanka. Catch per unit effort was 

calculated fish per 100 hooks.  

The environmental parameters for this study, including temperature, salinity, mixed layer depth 

and currents, were sourced from the Global Ocean Physics Analysis and Forecast dataset (product 

GLOBAL_ANALYSISFORECAST_PHY_001_024) provided by the Copernicus Marine Service 

(CMEMS, 2025). Chlorophyll-a and Secchi depth data were obtained from multi-satellite merge 

data product of the Globcolour project (Maritorena et al., 2010).  

Eddy kinetic energy (EKE) was derived from the zonal (u) and meridional (v) surface current 

velocity components using the standard formulation  

EKE=0.5×(u2+v2)  

Environmental and fisheries data were compiled into a single dataset of 0.25 degree resolution. 

The response variable was log-transformed catch per unit effort (log-CPUE), while environmental 

predictors included sea surface temperature (temp0), sea surface salinity (sal0), sea surface height 

(ssh), mixed layer depth (mld), chlorophyll-a concentration (ssc), euphotic depth (zsd), and eddy 

kinetic energy (eke). Observations containing missing values were removed prior to analysis. All 

variables were standardized where appropriate to ensure comparability across models. 

Linear Regression 

As a baseline, a multiple linear regression model (GLM) was fitted with log-CPUE as the 

dependent variable and all environmental predictors as covariates. This model provided an 

interpretable framework to identify linear associations between fish abundance and environmental 

drivers. Model diagnostics were checked to assess assumptions of linearity, homoscedasticity, and 

residual normality. 

 



Generalized Additive Model (GAM) 

To account for potential non-linear relationships between environmental variables and log-CPUE, 

a Generalized Additive Model (GAM) was applied. Each predictor was fitted with a smoothing 

spline function. To enhance the model predictability, spatial variables (latitude and longitude), 

temporal variable (month, day of year), density (temperature x salinity), interaction between 

temperature and eke were included. Model performance was evaluated using 10-fold cross-

validation, and smooth functions were inspected to identify ecological response curves. GAMs 

allowed flexible fitting while retaining interpretability in terms of environmental gradients. 

Random Forest (RF) 

A Random Forest (RF) regression model was implemented to capture complex interactions and 

non-linear effects. The model was trained for 1000 iterations with 10-fold cross-validation to 

reduce overfitting. Predictor importance was quantified based on the reduction in mean squared 

error, allowing identification of the most influential environmental drivers of CPUE variability. 

RF provided a robust, non-parametric benchmark against which more structured models (e.g., 

GAM) could be compared. 

Gradient Boosted Trees (GBM) 

A Gradient Boosted Regression Trees (GBM) model was applied to further enhance predictive 

performance. The model was trained using stochastic gradient boosting with 10-fold cross-

validation. Hyperparameter tuning was conducted over tree depth, number of trees, learning rate 

(shrinkage), and minimum node size. A smaller learning rate (0.01–0.05) with a larger number of 

trees (up to 3000) was explored to balance bias–variance trade-offs. Variable importance was 

extracted to highlight key predictors.  

Model Comparisons 

All models (Linear Regression, GAM, RF, and GBM) were compared using root mean squared 

error (RMSE), mean absolute error (MAE), and coefficient of determination (R²) obtained through 

cross-validation. This allowed assessment of predictive performance across parametric, semi-

parametric, and machine learning approaches. 

Results 

Sailfish catch rates were heterogeneously distributed across the northern and central Indian Ocean 

fishing grounds exploited by the Sri Lankan longline fleet (Fig. 1). High CPUE areas were 

consistently observed along in the Arabian Sea and EEZ of Sri Lanka and Bay of Bengal, 

indicating the importance of the Bay of Bengal as a seasonal foraging ground. Catch rates were 

relatively lower in the equatorial Indian ocean and southern latitudes (0–20°S). These patterns 

align with oceanographic drivers such as mesoscale eddies, sea surface height anomalies, and 

chlorophyll concentrations, which were also identified as key predictors in RF and GBM models. 



 

Figure 1: Spatial distribution of sailfish catch rates (1°x1° Aggregated) 

 

Figure 2: Monthly spatial distribution of sailfish catch rates (1°x1° Aggregated) 



 

Figure 3: Timeseries of monthly mean Sailfish catch rates 

 

Figure 4: Monthly trends in Sailfish catch rates 

Mean sailfish CPUE was highest in 2016 and dropped substantially in 2017, remaining at a lower 

but consistent level through 2019 (Figure 3 a). As shown in Figure 3 b, sailfish were caught at a 

consistently higher rate during the Southwest Monsoon (May–Sep) compared to the rest of the 

year, while catch rates during the other three seasons remained relatively similar and low. 

Model Performance 

A total of 16587 non-zero catch operations of sailfish were analyzed in relation to spatiotemporal 

and environmental predictors. Model performances varied substantially depending on the 

algorithm applied (Table 1). The linear model using seven environmental predictors explained a 

negligible proportion of the variance (10-fold cross-validation: R² = 0.0174, RMSE = 0.715, 



MAE=0.597). This indicates that the relationship between catch rates and environmental 

conditions is not adequately captured by a simple linear form.   

Table 1. Cross-validated performance of statistical and machine learning models for predicting 

log-transformed sailfish CPUE. 

Model R² (%) RMSE MAE Key Predictors 

Linear regression 

(GLM) 
1.7 0.715 0.597 None (poor fit) 

General Additive Model 

(GAM) 
17.9 0.645 0.534 

Temperature, Density, longitude 

and latitude, front strength 

Gradient Boosted Trees 

(GBM) 
21.8 1.993 1.132 

Longitude and latitude, Salinity, 

EKE, Secchi depth, MLD  

Random Forest (RF) 14.8 0.66 0.548 Salinity, EKE, Chlorophyll-a 

 

Figure 5: Model comparison for Sailfish CPUE 

GAM model incorporating smooth functions of predictors improved model performance 

substantially. Modelling was initially started with all seven predicators. Chlorophyll-a, Secchi 

depth and mixed layer depth had high concurvity (0.97, 0.72 and 0.74 respectively) and as those 

predicators can be predicted from other predicators (temperature, EKE), removed from the model.  

The GAM explained 19% of the variability in catch rates (R² = 0.188, RMSE = 0.641), 

demonstrating that nonlinear effects and interactions between spatiotemporal and environmental 

variables are important. The partial dependence plot (Fig. 6) shows a clear optimum around 28-

30°C, consistent with known sailfish thermal preferences (Hoolihan et al., 2011). The density 

variable and temperature-EKE interaction suggest that sailfish respond differently to ocean energy 

depending on temperature conditions. 



The GBM model achieved the highest explanatory power of R² = 21.8%. Among the predictors, 

sea surface salinity (sal0) and eddy kinetic energy (eke) emerged as dominant drivers, followed by 

mixed layer depth. The RF model provided a stronger predictive performance than GLM, with R² 

= 15.3% and a lower RMSE. Variable importance analysis revealed sea surface salinity, eddy 

kinetic energy, and chlorophyll-a concentration as the most influential predictors. The GAM’s R² 

(17.9%) is strong, though slightly below the GBM’s (21.8%). Its RMSE (0.645) and MAE (0.534) 

on the log scale are the lowest, indicating high precision in predicting CPUE.  

Across machine learning models (RF and GBM), salinity and eddy kinetic energy consistently 

appeared as dominant predictors of sailfish catch rates. Chlorophyll-a concentration also played a 

strong role in RF and GBM, while GAM highlighted nonlinear responses to both physical (e.g., 

mixed layer depth, SSH) and biological (chlorophyll-a) drivers. GAM model captures spatial 

effects explicitly via s(lon, lat) and includes temperature, density, and front strength, making it 

highly interpretable for spatial patterns and oceanographic drivers (Fig 6). The spatial effect map 

directly shows +/– hotspots, aligning with sailfish fishing grounds (Fig. 7). 

 

 

Figure 6: Partial effect on log CPUE on GAM model predicators 



 

Figure 7: Spatial effect of sailfish catch rates by GAM model predictions 

Discussion 

This study explains the complex spatio-temporal and environmental drivers of sailfish catch rates 

for the Sri Lankan tuna longline fishery in the Indian Ocean. The consistently low explanatory 

power of the simple linear model (R² = 0.17%) strongly suggests that the relationships between 

sailfish distribution and oceanographic variables are predominantly non-linear and likely involve 

complex interactions. This finding underscores the limitation of traditional linear approaches and 

validates the use of more sophisticated modeling techniques like GAMs and machine learning for 

this type of ecological data. 

The GBM explains the most variance, followed closely by the GAM. Based on the analysis, the 

Generalized Additive Model (GAM) is the best model overall for this study, balancing 

performance, interpretability, and alignment with the goal of explaining spatial variation. The 

spatio-temporal and environmental smoothers incorporated in GAM, indicate that a substantial 

portion of sailfish catchability is governed by baseline geographic and seasonal patterns. The 

GAM’s spatial effect map identifies high-catch areas (positive values) that align with known tuna 

fishing grounds, driven by favorable conditions like strong oceanographic fronts and optimal 

temperatures. These are consistent with the GBM’s predictions, where longitude and latitude 

dominate, suggesting key fishing zones. The machine learning models (GBM and RF), were 

crucial for identifying the most influential environmental variables free from linear assumptions. 

The consensus across these models highlights sea surface salinity (SSS) and eddy kinetic energy 

(EKE) as dominant predictors of sailfish CPUE. 



The importance of EKE is ecologically significant, as it is a measure of mesoscale oceanographic 

activity, such as eddies and frontal zones. These features are known to aggregate nutrients and 

prey, attracting apex predators like sailfish (Kai & Marsac., 2010). The higher catch rates observed 

in the Arabian Sea and the Bay of Bengal (Fig. 2) coincide with regions of high EKE, suggesting 

sailfish may forage preferentially in these dynamic environments. 

The strong influence of salinity was a notable finding. Salinity can act as a tracer for water masses 

and oceanic fronts. Sharp salinity gradients often define boundaries between different water 

bodies, which can lead to prey concentration. Furthermore, the Bay of Bengal, an identified 

hotspot, is characterized by strong freshwater inputs from major rivers, creating pronounced 

salinity gradients. Sailfish may be using these fronts as cues for productive foraging grounds. 

The secondary role of chlorophyll-a (a proxy for primary productivity) in the RF model suggests 

that sailfish distribution is also linked to bottom-up trophic processes. Higher productivity supports 

larger forage fish populations, which in turn support sailfish.  

The is no significant interannual change in CPUE from 2016 to 2019 period (Fig. 3 and 4) but 

seasonal changes of CPUE observed. While this study focuses on environmental correlates, this 

pattern could be indicative of fishery-related impacts, such as seasonal migration of fishermen 

from South coast to East coast of Sri Lanka. This underlines the urgent need for effective 

management strategies to ensure the sustainability of this bycatch species. 

In conclusion, our models confirm that sailfish distribution in the Indian Ocean is not random but 

is influenced by a combination of spatio-temporal patterns and specific oceanographic features, 

particularly those related to water mass characteristics (salinity, temperature) and ocean dynamics 

(EKE and productivity). This information is vital for developing spatial management tools. For 

instance, dynamic ocean management that considers real-time EKE or salinity fronts could be 

explored to predict sailfish fishing grounds, contributing to the ecosystem-based management of 

Sri Lanka's tuna longline fishery. 
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