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ABSTRACT 

 

This study presents the standardization of catch-per-unit-effort (CPUE) indices 

for blue marlin (Makaira nigricans) caught by the Taiwanese large-scale longline 

fishery in the Indian Ocean from 2005 to 2023. Daily logbook data were analyzed for 

the northwestern (NW) and northeastern (NE) regions, where blue marlin catches are 

most prevalent. Species targeting clusters were identified using hierarchical cluster 

analysis, and two CPUE standardization approaches were applied: delta-GLM with 

various distributions for positive catches, and the spatio-temporal mixed-effects 

model sdmTMB. Throughout the study period, a high proportion of zero-catch 

observations was recorded in both areas, highlighting the challenges of standardizing 

CPUE for bycatch species in this fishery. Both methods produced similar general 

trends in standardized CPUE, with a pronounced peak in the NW region during 2010–

2015 and a subsequent decline, while the NE region showed more stable indices over 

time. The sdmTMB model provided smoother CPUE trajectories and better accounted 

for spatial and temporal heterogeneity. 

 

 

1. INTRODUCTION 

Blue marlin (Makaira nigricans) is an ecologically and economically significant 

billfish species inhabiting tropical and subtropical waters of the Indian Ocean. 

Although blue marlin is generally regarded as a non-target species by both industrial 

and artisanal fisheries, it remains an important component of regional catches due to 

its high market value. According to the most recent IOTC assessments, longline 
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fisheries accounted for approximately 43.8% of the total blue marlin catch in the 

Indian Ocean between 2019 and 2023, followed by line fisheries (27.4%) and gillnets 

(23%). The remainder of the catch was attributed to other minor gears, contributing 

5.8% of the total catch during this period. The principal fleets included those flagged 

to Sri Lanka (32%), Taiwan (22%), and India (21%), with the remaining 26 fleets 

collectively responsible for 34.8% of the recent total catch (IOTC, 2024). 

Over the past several decades, blue marlin catches in the Indian Ocean have 

exhibited marked variability. Drifting longline catches were relatively stable at 3,000 

to 4,000 metric tons until the late 1970s, after which they increased steadily, 

surpassing 8,000 metric tons since the early 1990s. More recently, the average annual 

catch from 2019 to 2023 was estimated at 7,049 metric tons, which remains below the 

most recent estimate of maximum sustainable yield (MSY) at 8,740 metric tons 

(IOTC, 2024). However, the 2022 stock assessment indicated that the Indian Ocean 

blue marlin stock is overfished and subject to overfishing (IOTC, 2022). 

The standardization of catch-per-unit-effort (CPUE) indices is essential for 

robust stock assessments and effective resource management. Historically, CPUE 

standardization for the Taiwanese large-scale longline fishery in the Indian Ocean 

primarily employed generalized linear models (GLMs) (Lin et al., 2022). However, 

recent methodological advances have enabled the integration of spatial and 

spatiotemporal variability, which are increasingly recognized as important for 

accurately modeling relative abundance. In response to these developments, this study 

aims to standardize CPUE for blue marlin caught by the Taiwanese large-scale 

longline fishery in the Indian Ocean using both GLM and the spatial dynamic 

modeling framework sdmTMB. The resulting abundance indices are intended to 

support future stock assessments and inform management decisions regarding blue 

marlin in the Indian Ocean. 

 

 

2. MATERIALS AND METHODS 

2.1. Catch and Effort data 

This study utilized daily operational catch and effort logbook data for the 

Taiwanese longline fishery, provided by the Oversea Fisheries Development Council 

of Taiwan (OFDC). The data were spatially stratified by 1° × 1° longitude and latitude 

grids and covered the period from 1979 to 2023. For spatial analysis, the four-area 

stratification originally developed for swordfish by Wang and Nishida (2011) was 

adopted (Fig. 1). 

Consistent with recommendations from previous IOTC meetings (IOTC, 2021), 

Taiwanese data prior to 2005 were excluded from analyses of fishing operation 
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targeting and from CPUE standardization for billfish, due to concerns about data 

quality. These quality issues could have affected not only the accuracy of reported 

catches of major tropical tunas, but also introduced uncertainties in the catch and 

effort data for other species, including billfish. Therefore, CPUE standardizations in 

this study were based on data collected from 2005 to 2023, as recommended by 

previous IOTC scientific discussions. 

 

2.2. Cluster analysis 

The cluster analysis procedures followed the methodology described by Wang et 

al. (2021). A direct hierarchical clustering approach was used, employing an 

agglomerative algorithm for efficient computation and memory usage, as 

implemented in the "fastcluster" package in R (Müllner, 2013; Müllner, 2021). 

Specifically, Ward's minimum variance method (“ward.D” in the “hclust.vector” 

function) was applied to squared Euclidean distances calculated from the species 

composition data. 

The optimal number of clusters was determined using the elbow method, which 

evaluates the change in deviance between and within clusters as the number of 

clusters increases. The number of clusters was selected when the improvement in the 

sum of within-cluster variation was less than 10%. 

 

2.3. CPUE Standardization 

2.3.1 delta GLM approach 

In the Taiwanese large-scale longline fishery, blue marlin is not a primary target 

species, resulting in a high proportion of zero-catch observations in the operational 

data. In the context of CPUE standardization, it has been common practice to either 

exclude zero-catch records or substitute them with a constant. However, recent 

literature recommends the use of delta methods to address the predominance of zeros. 

The delta approach consists of two components: a binomial model for the probability 

of a nonzero catch, and a separate model for the positive catch rates. This 

methodology is widely recognized as appropriate for datasets characterized by a high 

frequency of zero catches (Pennington, 1983; Lo et al., 1992; Pennington, 1996; 

Hinton and Maunder, 2004; Maunder and Punt, 2004; Andrade, 2008; Lauretta et al., 

2016; Langley, 2019). 

For the standardization of blue marlin CPUE in the Indian Ocean, the positive 

catch rates were modeled using generalized linear models (GLMs) with alternative 

skewed error distributions. Model covariates included year, quarter, vessel 

identification, spatial grid (5° longitude × 5° latitude), and the targeting effect as 

defined by clusters identified through hierarchical cluster analysis. Significant 
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interactions among the main effects were also considered in the modeling process. 

CPUE standardizations were performed separately for each area (Fig. 1). 

For positive CPUE observations, the following candidate distributions and link 

functions were evaluated:  

⚫ Lognormal model: The natural logarithm of CPUE was used as the response 

variable, with an identity link function: 

log(CPUE) = μ + Y + VesselID + Q + LonLat5 + Cluster + interaction + ε,  

ε ~ N(0, σ²) 

 

⚫ Gamma and inverse Gaussian models: CPUE was modeled as the response 

variable with a log link function: 

E[CPUE] = exp(μ + Y + VesselID + Q + LonLat5 + Cluster + interaction) 

 

or equivalently, 

 

log(E[CPUE]) = μ + Y + VesselID + Q + LonLat5 + Cluster + interaction 

 

For the binomial component of the delta model (presence or absence of catches): 

 

PA = μ + Y + VesselID + Q + LonLat5 + Cluster + interaction + interaction + ε,  

ε ~ Binomial distribution 

 

where: 

CPUE is defined as the number of fish caught per 1,000 hooks. 

μ is the model intercept. 

Y is the year effect, 

VesselID denotes the vessel effect, 

Q is the quarter (seasonal) effect, 

LonLat5 represents the effect of the 5° longitude × 5° latitude spatial grid, 

Cluster indicates the targeting effect derived from cluster analysis, 

interaction refers to significant interaction terms among main effects. 

 

Stepwise regression was performed for model selection based on the Akaike 

information criterion (AIC), employing both forward selection and backward 

elimination to determine the optimal set of covariates for each model. The coefficient 

of determination (R²) was also calculated to further assess model fit. The AIC values 

produced by the glm() and glm.nb() functions in R, which are based on the full 

likelihood including constant terms, permit comparison between models with different 
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error distributions. 

Due to differences in link functions among the candidate models, AIC values 

from the lognormal model (identity link) are not directly comparable to those from 

models with log link functions. Therefore, a Jacobian correction was applied to the 

AIC of the lognormal model to ensure comparability: 

 

AICJ = AIC + ∑log(CPUE) 

 

where: 

AIC is the original value from the lognormal model, 

AICJ is the Jacobian-corrected AIC, 

CPUE represents the observed CPUE values. 

 

The standardized CPUE series were calculated as the product of the estimated 

least square means of the year effect from the positive CPUE and delta GLM models. 

Specifically, the annual index was computed as the product of the standardized CPUE 

for positive catches and the predicted probability of a nonzero catch: 

log( )

1

PA

index CPUE

PA

e
DL e
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where: DLindex is the standardized CPUE index. 

 

2.3.2 Spatio-temporal modelling approach 

The sdmTMB R package (Anderson et al., 2024) was used to fit generalized linear 

mixed-effects models (GLMMs) that incorporate both spatial and spatio-temporal 

random fields. This method requires the construction of a stochastic partial differential 

equation (SPDE) mesh, which enables estimation of a Gaussian random field (GRF) 

with a Matérn covariance structure (Lindgren et al., 2011). The mesh is composed of 

triangular elements, and the SPDE is estimated at mesh vertices using integrated nested 

Laplace approximation (INLA; Rue et al., 2009). 

Model structures were implemented in sdmTMB through the Template Model 

Builder (TMB; Kristensen et al., 2016) framework, with SPDE meshes generated via 

INLA. This approach enables efficient spatial and spatio-temporal modeling and is well 

suited for deriving standardized CPUE indices from fishery-dependent data. 

A delta-lognormal model structure was applied, consisting of two components: a 

binomial model for encounter probability and a lognormal model for positive catch 

rates. Fixed effects included year, quarter, and cluster (as an indicator of targeting 

behavior) to account for systematic variation in catchability. Spatial random effects and 
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spatio-temporal interaction terms were included in both components and modeled as 

Gaussian Markov random fields (GMRFs) defined by the SPDE mesh. 

The encounter probability 𝑝𝑖 was modeled as: 

 logit(𝑝𝑖) = 𝛽1(𝑡𝑖) + 𝜔1(𝑠𝑖) + 𝜀1(𝑠𝑖, 𝑡𝑖) + 𝛿1(𝑣𝑖)  

The positive catch rate λ𝑖 was modeled as: 

 log(λ𝑖) = 𝛽2(𝑡𝑖) + 𝜔2(𝑠𝑖) + 𝜀2(𝑠𝑖, 𝑡𝑖) + 𝛿2(𝑣𝑖)  

where: 

𝛽(𝑡𝑖): the intercept for each time 𝑡 as a fixed effect, 

𝜔(𝑠𝑖): spatial random field at location 𝑠𝑖, 

𝜀(𝑠𝑖, 𝑡𝑖): spatio-temporal random field at location 𝑠𝑖 and time 𝑡𝑖, 

𝛿(𝑣𝑖): vessel effect on catchability. 

 

This modeling framework enables flexible estimation of spatial and temporal 

patterns in relative abundance, providing robust standardized CPUE indices for 

subsequent stock assessment and management applications. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Fishing trends 

Figs. 2 and 3 illustrate the temporal trends in catch (number of fish) and the 

proportional distribution of blue marlin catches by area, based on logbook data from 

the Taiwanese large-scale longline fishery operating in the Indian Ocean. The results 

indicate that blue marlin were predominantly caught in the tropical and subtropical 

regions of the Indian Ocean, with the majority of the catch consistently originating 

from the northwestern area (Area NW). 

Annual catches varied substantially during the study period, with a notable peak 

observed around 2014 (Fig. 2). Although catches have generally declined in recent 

years, the northwestern area continued to contribute the largest proportion of the total 

catch each year. The northeastern area (Area NE) represented the second most 

important fishing ground, while catches from the southwestern (Area SW) and 

southeastern (Area SE) regions remained comparatively low throughout the study 

period. 
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The proportional distribution of catch by area (Fig. 3) further demonstrates the 

dominance of Area NW, which accounted for over 70% of the total annual catch in 

most years. The relative contribution of Area NE fluctuated between 10% and 40%, 

while the combined proportion of Areas SW and SE rarely exceeded 5%. These 

patterns reflect the spatial heterogeneity in blue marlin abundance and fishing effort, 

with the majority of Taiwanese longline operations concentrated in the northern 

Indian Ocean. 

Figs. 4 and 5 present the temporal changes in fishing effort (number of hooks) 

and the proportional distribution of effort by area for the Taiwanese large-scale 

longline fishery in the Indian Ocean. While the total fishing effort was highest in the 

northwestern area (Area NW) throughout the study period, considerable effort was 

also allocated to the northeastern (Area NE), southwestern (Area SW), and 

southeastern (Area SE) regions, especially in recent years. The proportion of effort 

devoted to the SW and SE areas increased over time, reflecting a gradual spatial 

expansion of fishing activities. 

Despite the widespread distribution of fishing effort, the spatial pattern of blue 

marlin catches remained highly concentrated. As shown in Figs. 1 and 2, the vast 

majority of blue marlin were consistently caught in the northern Indian Ocean, 

particularly in Area NW, with Area NE contributing a smaller but still notable 

proportion. In contrast, blue marlin catches from the SW and SE regions were 

minimal across all years, regardless of effort allocation. 

This pronounced spatial disparity between fishing effort and catch indicates that 

blue marlin are predominantly distributed in the northern Indian Ocean. Therefore, 

subsequent CPUE standardization analyses in this study were restricted to data from 

the NW and NE areas, where both catch and effort were substantial and the data were 

considered sufficiently informative for robust modeling. 

 

3.2. Cluster analysis 

    Cluster analysis was conducted separately for each sub-area using species 

composition data. The optimal number of clusters was determined by the elbow 

method, which evaluates the reduction in within-cluster sum of squares as the number 

of clusters increases. As illustrated in Fig. 6 both the relative sum of squares and the 

improvement in sum of squares indicated that four clusters represented an appropriate 

solution for both the northwestern (NW) and northeastern (NE) areas. The criterion 

for selection was based on the point where the incremental improvement in within-

cluster variation fell below 10%, which is consistent with established practices for 

cluster determination. 

The multivariate dispersion plots further visualize the partitioning of fishing sets 
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into four distinct clusters in each area, as shown in Fig. 7. These plots display the 

distribution of fishing sets along the first two principal component axes, with each 

cluster represented by a unique color and confidence ellipse. The resulting clusters 

reflect differences in species composition and likely correspond to different targeting 

strategies or fishing grounds utilized by the Taiwanese longline fleet in the Indian 

Ocean. The identification of four distinct clusters in both NW and NE areas provides a 

basis for incorporating cluster membership as a proxy for targeting effect in the 

subsequent CPUE standardization models.  

The species compositions exhibited clear differences among clusters (Fig. 8). In 

the northwestern (NW) area, Cluster 1 was marked by high catches in the early years, 

mainly of yellowfin tuna and bigeye tuna, along with notable amounts of swordfish 

and other species. Cluster 2 maintained relatively stable catches over time, with 

yellowfin tuna and bigeye tuna as the dominant species, supplemented by albacore, 

swordfish, and sharks. Cluster 3 was unique, with most of the catch classified as 

"other species," and only minor contributions from yellowfin tuna and bigeye tuna, 

suggesting different targeting or higher bycatch. Cluster 4 was dominated by 

yellowfin tuna, which consistently accounted for the largest share of the catch, while 

other species made up only a small proportion. 

In the northeastern (NE) area, each cluster also showed distinct patterns. Cluster 

1 had relatively high catches in recent years with a balanced mix of yellowfin tuna, 

bigeye tuna, albacore, swordfish, and other species. Cluster 2 was characterized by 

higher catches in the early years, gradually declining and dominated by yellowfin tuna 

with some bigeye tuna, albacore, and swordfish. Cluster 3 showed a predominance of 

yellowfin tuna in both total catch and proportion, especially before 2012. Cluster 4 

had higher catches before 2010, after which catch levels declined; in this cluster, 

yellowfin tuna and bigeye tuna together were the main species, but the proportion of 

yellowfin tuna varied over time, with other species also contributing in some years. 

    Fig. 9 shows the annual trends in blue marlin catch and fishing effort for the 

northwestern (NW) and northeastern (NE) areas, grouped by cluster. In both areas, 

blue marlin catches remained low relative to total fishing effort, consistent with their 

bycatch status in the fishery. The contribution of each cluster to total catch and effort 

varied across years, reflecting shifts in fishing strategy or targeting patterns. In the 

NW area, Cluster 2 generally contributed the most to both catch and effort, while 

other clusters, such as Cluster 4, showed notable increases during certain years. In the 

NE area, catch and effort were more evenly distributed among clusters in earlier 

years, with Clusters 3 and 4 becoming more prominent before 2010. After 2012, both 

catch and effort decreased across all clusters in both regions. 

Despite relatively higher catches of blue marlin in the northern areas, the 
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proportion of zero-catch observations consistently exceeded 60 percent across all 

years and clusters (Fig. 10). From 2005 to 2023, both the NW and NE areas exhibited 

persistently high rates of zero-catch records for blue marlin, regardless of cluster 

membership. While the proportion of zero-catch declined somewhat between 2011 

and 2016, it increased again in recent years and remained substantial throughout the 

time series. This pattern underscores the challenge of modeling blue marlin as a 

bycatch species, emphasizing the need for statistical approaches specifically designed 

for zero-inflated data. Incorporating these considerations into CPUE standardization is 

essential for producing robust indices for stock assessment and management. 

 

3.3. CPUE standardization 

3.3.1 delta GLM approach 

    CPUE standardizations were separately conducted for only northern areas (NW 

and NE, Fig. 1) since the catches and CPUE of blue marlin in the southern areas were 

much lower than those in the northern areas (Figs. 2-10).  

Model selection results based on the Akaike Information Criterion (AIC) 

indicated that the inverse Gaussian error distribution provided the best fit for both the 

NW and NE areas, as these models yielded the lowest AIC values among the 

candidate distributions (Table 1). Although the R² values for the inverse Gaussian 

models were slightly lower than those for the gamma models, the inverse Gaussian 

models demonstrated superior overall performance according to AIC. 

Although the inverse Gaussian models were selected based on the lowest AIC 

values, the residual diagnostic plots (Fig. 11) indicate that model residuals still exhibit 

some patterns and deviations from ideal model assumptions. While the inverse 

Gaussian model shows relatively less pronounced trends or heteroscedasticity than the 

lognormal and gamma models, none of the candidate models achieved fully 

satisfactory residual diagnostics. These results highlight the inherent challenges of 

modeling highly zero-inflated bycatch data such as blue marlin. Despite these 

limitations, the delta-inverse Gaussian model was retained as the most appropriate 

option among those tested, providing a reasonable basis for standardizing CPUE in 

both areas for further stock assessment. 

    The ANOVA results for each area are summarized in Table 2. In both NW and 

NE regions, year, vessel ID, spatial grid (Lonlat5), cluster, and their interactions were 

significant factors influencing CPUE. However, the quarter effect was not significant 

in either the positive catch or delta models. This suggests that after accounting for the 

main factors such as year, vessel, and spatial effects, seasonal variation no longer 

plays a major role in explaining CPUE variability. The results indicate that spatial and 

operational characteristics of the fishery are more important than seasonal changes in 
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determining blue marlin catch rates.  

The standardized CPUE series with 95% confidence intervals from the delta-

inverse Gaussian model are presented in Figure 12. In the NW area, CPUE increased 

steadily from 2005 and peaked in 2015, then declined sharply and remained at lower 

levels in recent years. In the NE area, CPUE gradually increased until about 2019, 

followed by a decreasing trend in the most recent years. These results reflect 

substantial interannual variation in both areas. 

 

3.3.2 Spatio-temporal modelling approach 

Spatial prediction maps for the NW region from 2005 to 2023 show that higher 

blue marlin densities mainly occurred between 10°S and 10°N, especially in the 

central and western Indian Ocean. These high-density areas were most evident during 

2011 and 2015, corresponding to the years with higher standardized CPUE. After 

2016, predicted densities generally declined and the distribution became less 

concentrated. 

For the NE region, predicted densities were much lower throughout the study 

period. Only in the earlier years were there localized high-density patches near the 

equatorial zone. In recent years, these high-density areas have become rare and 

scattered, with most of the region showing very low predicted densities. 

    Overall, blue marlin in the NW region exhibited more pronounced temporal and 

spatial variation, while the NE region consistently had lower and more dispersed 

densities across years. 

The standardized CPUE time series estimated by the sdmTMB spatial-temporal 

models for both NW and NE areas are shown in the Fig. 14. In the NW region, CPUE 

exhibited substantial year-to-year fluctuations, with a clear increase from 2005 that 

peaked around 2011 and again in 2015, followed by a continuous decline in 

subsequent years. The confidence intervals were noticeably wider during years with 

higher CPUE variability, especially during the peak periods, reflecting greater 

uncertainty in those annual estimates. These pronounced changes may relate to shifts 

in fishing effort, environmental conditions, or spatial distribution of blue marlin. 

In contrast, the NE area demonstrated a more stable trend over time. The CPUE 

gradually increased from 2005, reached a relatively modest peak around 2015, and 

then slightly declined and stabilized in recent years. The confidence intervals in the 

NE area were relatively narrower and more consistent, suggesting lower interannual 

variability and more stable fishing conditions compared to the NW. 

Overall, these results highlight that spatial and temporal variability is critical in 

CPUE standardization, and that the two areas may experience different population 

dynamics or fishery impacts, which supports the use of area-specific management and 
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assessment strategies for blue marlin in the Indian Ocean. 

 

3.4 Comparison of Standardized CPUE Indices 

The standardized CPUE time series estimated by the delta-GLM (with inverse 

Gaussian distribution for positive CPUE) and the sdmTMB spatio-temporal model 

showed generally similar trends in both the NW and NE regions (Fig. 15). However, 

several important differences were observed in the details of the trajectories and in the 

annual fluctuations. 

In the NW region, both methods identified pronounced fluctuations and a clear 

peak in CPUE between 2010 and 2015, followed by a sharp decline in recent years. 

The delta-GLM results exhibited higher peaks and larger year-to-year variability, 

while the sdmTMB estimates were more smoothed and less influenced by extreme 

values. This difference suggests that the sdmTMB model better accounts for spatial 

and temporal heterogeneity and is less sensitive to anomalously high CPUE values 

that may result from localized or sporadic fishing events. 

In the NE region, both methods produced more stable CPUE trends compared to 

the NW. The trajectories generally increased from 2005 and then showed a modest 

decline in recent years. Again, the delta-GLM results exhibited slightly larger annual 

variability, whereas the sdmTMB estimates were more consistent across years. 

The observed differences between the two approaches may be attributed to 

several key factors, such as spatial and temporal random effects, handling of zero-

inflated and extreme data, and model robustness. The sdmTMB model incorporates 

spatial and spatio-temporal random fields, which allow it to explicitly account for 

spatial structure and non-independence in the data. This improves its ability to address 

uneven sampling and heterogeneous fishing effort distributions, especially when 

vessel distributions change over time. While both methods are designed to handle 

zero-inflated data, the sdmTMB model's mixed-effects framework provides more 

flexibility in capturing the complex patterns typical of bycatch species such as blue 

marlin, especially in the presence of high zero-catch rates and outliers. The delta-

GLM is more sensitive to extreme CPUE values, which can amplify short-term 

fluctuations in the standardized index. In contrast, sdmTMB distributes this variance 

across random effects, resulting in smoother, and arguably more reliable, CPUE 

trajectories. 

Based on the current results, sdmTMB is clearly more appropriate for 

standardizing CPUE in this context. The method provides more robust and 

interpretable trends, effectively addresses spatial and temporal heterogeneity, and is 

less affected by extreme or anomalous catch events. Given the advantages in both 

theoretical justification and empirical performance, we recommend using the 
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sdmTMB-based standardized CPUE indices as the primary basis for future stock 

assessment and management advice. The delta-GLM approach may be retained for 

comparison purposes if required by management bodies, but is no longer necessary as 

a routine part of the analysis. In light of these findings and the demonstrated 

performance of sdmTMB, we recommend that future standardization of CPUE for 

blue marlin in the Indian Ocean be based primarily on the sdmTMB framework, with 

delta-GLM results reserved only as supplementary references if needed. 
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Fig. 1. Area stratification for swordfish in the Indian Ocean. 
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Fig. 2. Blue marlin catch distribution of Taiwanese large-scale longline fishery in the 

Indian Ocean. 
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Fig. 3. Blue marlin CPUE distribution of Taiwanese large-scale longline fishery in the 

Indian Ocean. 

 

  



IOTC–2025–WPB23–17 
 

Page 17 of 36 

 

 

Fig. 4. Annual blue marlin catches of Taiwanese large-scale longline fishery in the 

Indian Ocean. 
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Fig. 5. Annual efforts (number of hooks) of Taiwanese large-scale longline fishery in 

the Indian Ocean. 

 

  



IOTC–2025–WPB23–17 
 

Page 19 of 36 

NW 

  

 

NE 

  

 

Fig. 6. Sum of squares within clusters for the data of Taiwanese large-scale longline 

fishery in billfish area of the Indian Ocean. 
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Fig. 7. Multivariate dispersions of the centroids by clusters derived from PCA for the 

data of Taiwanese large-scale longline fishery in billfish area of the Indian Ocean. 
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Fig. 8. Annual catches and compositions by species for each cluster of Taiwanese 

large-scale longline fishery in billfish area of the Indian Ocean.  
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Fig. 8. (Continued).  



IOTC–2025–WPB23–17 
 

Page 23 of 36 

NW 

 

Fig. 9. Annual blue marlin catches and efforts for each cluster of Taiwanese large-

scale longline fishery in billfish area of the Indian Ocean. 
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Fig. 9. (Continued). 
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Fig. 10. Annual zero proportion of blue marlin catches for each cluster of Taiwanese  

large-scale longline fishery in billfish area of the Indian Ocean. 
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Fig. 10. (Continued). 
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Fig. 11. Diagnostic plots for GLMs with inverse gaussian error distribution 

assumption for blue marlin caught by Taiwanese large-scale longline fishery in the 

Indian Ocean from 2005 to 2021.  
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Fig. 11. (Continued). 
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Fig. 12. Standardized CPUE series with 95% confidence intervals based on selected 

model for blue marlin caught by Taiwanese large-scale longline fishery in the Indian 

Ocean from 2005 to 2021. 
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Fig. 13. Spatio-temporal distribution of predicted log density from 2005 to 2023. 
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Fig. 13. (Continued). 
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Fig. 14. Standardized CPUE series based on sdmTMB for blue marlin caught by 

Taiwanese large-scale longline fishery in the Indian Ocean from 2005 to 2023. 
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Fig. 15. Standardized CPUE indices for blue marlin in the NW and NE Indian Ocean 

from 2005 to 2023, estimated using delta-GLM and sdmTMB models. 
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Table 1. Diagnostic statistics for standardized CPUE series based on various models 

for positive catches of blue marlin caught by Taiwanese large-scale longline fishery in 

the Indian Ocean from 2005 to 2021. 

 

Area Model R2 AIC 

NW lognormal 0.192 73,531 

NW gamma 0.271 99,874 

NW inverse.gaussian 0.257 60,876 

NE lognormal 0.186 5,060 

NE gamma 0.252 10,509 

NE inverse.gaussian 0.244 2,758 
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Table 2. ANOVA table for selected standardized CPUE series based on selected 

GLMs for blue marlin caught by Taiwanese large-scale longline fishery in the Indian 

Ocean from 2005 to 2021. 

 

Area NW 

Positive catch model: 

 SumSq Df Fvalues Pr(>F)  

Year 5,084 18 319.3 < 2.2e-16 *** 

VesselID 7,722 377 23.2 < 2.2e-16 *** 

Quarter 0.7 3 0.233 0.852 
 

Lonlat5 758 41 20.9 < 2.2e-16 *** 

Cluster 1,570 3 591.7 < 2.2e-16 *** 

Quarter:Lonlat5 607 109 6.3 < 2.2e-16 *** 

Residuals 115,710 130,801 
   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Delta model 

 LRChisq Df Pr(>Chisq)  

Year 15,694 18 <2.2e-16 *** 

VesselID 12,244 387 <2.2e-16 *** 

Quarter 0.4 3 0.547 
 

Lonlat5 1,709 41 <2.2e-16 *** 

Cluster 1,175 3 <2.2e-16 *** 

Quarter:Lonlat5 1,574 116 <2.2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 2. (Continued). 

 

Area NE 

Positive catch model: 

 SumSq Df Fvalues Pr(>F)  

Year 173 18 13.036 < 2.2e-16 *** 

VesselID 2,406 288 11.304 < 2.2e-16 *** 

Quarter 0.4 3 0.173 0.915- 
 

Lonlat5 240 34 9.531 < 2.2e-16 *** 

Cluster 348 3 156.935 < 2.2e-16 *** 

Quarter:Lonlat5 181 87 2.820 < 2.2e-16 *** 

Residuals 21,776 29464 NA 
  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Delta model 

 LRChisq Df Pr(>Chisq)  

Year 841 18 <2.2e-16 *** 

VesselID 4,050 313 <2.2e-16 *** 

Quarter 3 3 0.216 
 

Lonlat5 629 35 <2.2e-16 *** 

Cluster 788 3 <2.2e-16 *** 

Quarter:Lonlat5 544 93 <2.2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 


