
IOTC–2025–WPB2–18 

Page 1 of 32  

Stock assessment of blue marlin (Makaira nigricans) in the Indian 

Ocean using JABBA 

 

 

Chih-Yu Lin, Wen-Qi Xu, Sheng-Ping Wang* 

 

Department of Environmental Biology and Fisheries Science, National Taiwan Ocean 

University, Keelung, Taiwan. 

* Corresponding author: wsp@mail.ntou.edu.tw 

 

 

ABSTRACT 

 

    This study assessed the stock status of blue marlin (Makaira nigricans) in the 

Indian Ocean using the Bayesian state–space biomass dynamic model JABBA. 

Updated catch data (1950–2023) and standardized CPUE indices from Taiwanese, 

Japanese, and Indonesian longline fleets were analyzed under ten scenarios combining 

alternative CPUE series, production model types (Schaefer or Fox), and treatments of 

process error variance. Posterior diagnostics and residual analyses indicated that the 

Fox model with the Taiwanese sdmTMB index and process error standard deviation 

(σ.proc) fixed at 0.15 (S10) provided the most robust and internally consistent fit. 

Biomass declined across scenarios since the mid-1980s, with depletion falling below 

BMSY and fishing mortality exceeding FMSY in recent decades. Kobe plots indicated 

probabilities exceeding 95% that the stock is both overfished and subject to 

overfishing, although the Fox model with fixed process error variance produced 

slightly less pessimistic outcomes compared to the Schaefer alternatives. Projections 

under constant catch levels further confirmed that rebuilding prospects depend on 

reducing catches. Overall, the assessment concludes that the Indian Ocean blue marlin 

stock is overfished and undergoing overfishing, with findings intended to inform 

future IOTC WPB discussions and management advice. 

 

 

1. INTRODUCTION 

The stock status of blue marlin (Makaira nigricans) in the Indian Ocean was 

evaluated based on the results of the 2022 benchmark assessment, which applied both 

the Bayesian state-space biomass production model JABBA and the integrated age-

structured model Stock Synthesis (SS). Both models produced consistent results, 

indicating that the stock was overfished (B2020/BMSY = 0.73) and subject to overfishing 
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(F2020/FMSY = 1.13). According to the weight of evidence, the stock was placed in the 

red quadrant of the Kobe plot, with an estimated 72% probability of being subject to 

overfishing and overfished (IOTC, 2022; 2024). 

The biomass trajectory (B/BMSY) has shown a long-term declining trend since the 

mid-1980s. A temporary increase occurred between 2007 and 2012, which coincided 

with the period of reduced fishing activity in the northwestern Indian Ocean due to 

piracy, after which the biomass declined again in recent years. Fishing mortality 

(F/FMSY) has remained above 1 since the mid-1980s, despite some short-term 

fluctuations. 

Based on this evidence, the stock is currently considered to be both overfished 

and subject to overfishing. Average catches from 2019 to 2023 (7,049 t) were lower 

than the estimated MSY (8,740 t), although the probability of rebuilding depends on 

further catch reductions. 

This study conducted the stock assessment for blue marlin in the Indian Ocean 

using the base-case specifications adopted by the IOTC Working Party on Billfish 

(WPB), consistent with the 2022 assessment. In addition to the reference case, 

supplementary scenarios were developed using the most recent catch data and updated 

standardized CPUE indices in order to evaluate the robustness of the assessment 

outcomes. 

 

 

2. MATERIALS AND METHODS 

 

2.1. Data used 

Catch data from 1950 to 2023 were obtained from the IOTC Secretariat, and the 

aggregated total catch from all fleets was used in the assessment (Fig. 1). 

The standardized CPUE series from Taiwanese, Japanese, and Indonesian 

longline fleets served as the primary abundance indices for the assessments presented 

to the IOTC WPB in 2022 and 2025 (Fig. 2). In this study, standardized CPUE indices 

were available from three sources: 

⚫ Taiwanese longline fishery (TWN), separated into two areas and covering 

the period 2005–2023 (Lin et al., 2025), 

⚫ Japanese longline fishery (JPN), separated into two time periods, 1979–

2010 and 2011–2023 (Kai, 2025), 

⚫ Indonesian longline fishery (IDN), covering 2006–2023 (Setyadji et al., 

2025). 

For the Taiwanese fleet, CPUE standardization was conducted using both delta-

GLM and sdmTMB approaches. Both indices were included in sensitivity analyses, 
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while the delta-GLM index was adopted as the reference case to ensure continuity 

with Parker (2022). 

 

2.2. Assessment model 

The stock assessment analysis was conducted using JABBA (version 2.3.0), which 

is implemented as an R package available at github.com/jabbamodel/JABBA. JABBA 

is a Bayesian state-space biomass production model that integrates catch data and 

abundance indices within a flexible prior specification framework. A comprehensive 

description of the model formulation, state-space implementation, prior specification, 

and diagnostic tools is provided in Winker et al. (2018). 

 

2.3. Model specifications 

Following the recommendations of the IOTC WPB, the assessment time series 

began in 1950, when the stock was assumed to be close to its unfished biomass level 

(IOTC, 2022). All catchability parameters were specified as uninformative uniform 

priors. For the continuity scenario adopted in the 2022 stock assessment (IOTC, 2022; 

Parker et al., 2022), the same range of plausible prior distributions for key parameters 

was assumed, including carrying capacity (K), intrinsic growth rate (r), Initial depletion 

(ψ, i.e. B1/K) and observations error variance, consistent with scenario S3 of Parker 

(2022) (Table 2).: 

    In the 2022 assessment, only the Schaefer production model (BMSY/K = 0.5) was 

applied, and the process error standard deviation (σ.proc) was estimated using an 

inverse-gamma prior distribution with both scaling parameters set to 0.001. In this study, 

we extended the model framework to also include the Fox production model (BMSY/K = 

0.38), as recommended by the IOTC WPB (IOTC, 2022). In addition, we conducted 

sensitivity analyses in which the σ.proc was fixed at plausible values rather than 

estimated, recognizing that estimating process error variance can sometimes lead to 

unrealistically large fluctuations in annual biomass trajectories (Ono et al., 2012). 

Accordingly, a total of ten scenarios were developed by combining alternative 

model specifications. These scenarios incorporated different Taiwanese CPUE indices 

(delta-GLM or sdmTMB), model types (Schaefer or Fox), and treatments of process 

error variance (either estimated or fixed). The full set of scenarios is summarized in 

Table 3. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Posterior distribution diagnostics 

The marginal posterior and prior distributions for scenarios S1 to S4 were 
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examined to evaluate the information content of the data under alternative treatments 

of process error variance (σ.proc) (Fig. 3). For the carrying capacity (K), the posterior 

distributions were consistently narrower than their priors, and the prior-to-posterior 

variance ratios (PPVRs) were relatively small. This indicates that the data were 

moderately informative for K. However, the occurrence of multimodal posterior shapes 

across scenarios suggests that substantial uncertainty remains in estimating this 

parameter. 

For the intrinsic growth rate (r), the posterior distributions shifted away from the 

priors, with posterior-to-prior mean ratios (PPMRs) ranging from approximately 0.9 to 

1.2. These shifts demonstrate that the data provided meaningful updates to the prior 

assumptions for r. In contrast, the initial depletion parameter (ψ) showed strong prior 

influence, as the posterior distributions closely resembled the priors. Both PPMR and 

PPVR values were close to unity, indicating that ψ was largely constrained by the prior 

rather than informed by the data. 

The treatment of process error variance (σ²) had a notable influence on model 

behavior. When σ² was estimated (S1), the posterior distribution of σ² was centered 

around 0.02 with substantial uncertainty, and the posterior of K exhibited more 

pronounced multimodality. By contrast, when σ² was fixed at plausible values of 0.15, 

0.10, or 0.20 (S2–S4), the posterior distributions of other parameters became narrower 

and more stable. Fixing σ² reduced uncertainty in K and r, as indicated by smaller PPVR 

values, although multimodality in K persisted across all scenarios. 

Other scenarios that estimated or fixed the process error variance produced similar 

qualitative results, and therefore only representative scenarios (S1–S4) are presented 

here. 

 

3.2. Goodness-of-fit 

The model fits to the CPUE data varied across scenarios, as reflected by the root 

mean squared error (RMSE) values (Fig. 4). Among the Schaefer production model 

scenarios, S5 (TWN-sdmTMB CPUE with the σ.proc fixed at σ.proc = 0.15) provided 

the best fit, with an RMSE of 19.9%. In contrast, S1–S4 (based on TWN-GLM CPUE) 

showed relatively poorer fits, with RMSE values generally exceeding 20%, particularly 

when the process error variance was estimated rather than fixed. 

The Fox production model scenarios generally exhibited improved fits compared 

with the Schaefer model. In particular, S10 (TWN-sdmTMB CPUE with σ.proc fixed 

at 0.15) yielded the lowest RMSE at 18.5%, representing the best fit across all scenarios. 

Other Fox scenarios, such as S7 and S9, also demonstrated relatively low RMSE values, 

further indicating that the Fox model framework tends to better capture the CPUE 

dynamics. 
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Overall, the results suggest that the Fox production model provides more robust 

fits to the CPUE data than the Schaefer model, and that fixing the process error variance 

yields consistently stable performance. Within the Schaefer framework, S5 appears to 

be the most reliable configuration. When considering all scenarios, however, S10 

represents the optimal fitting configuration, achieving the lowest RMSE and offering 

the most consistent agreement with the observed CPUE trends. 

 

3.3. Runs tests of CPUE residuals 

Runs tests were conducted to evaluate whether the time series of CPUE residuals 

were randomly distributed across fleets under three representative scenarios (Fig. 5): 

S1 (the continuity setting from the 2022 assessment, Schaefer model with process error 

variance estimated), S6 (Schaefer model with σ.proc fixed at 0.15, identified as the best-

performing Schaefer case), and S10 (Fox model with σ.proc fixed at 0.15, identified as 

the overall optimal scenario). 

The runs tests of CPUE residuals revealed clear differences among these scenarios. 

In S1, significant departures from randomness were evident for the Taiwanese western 

CPUE index derived from the delta-GLM and for the Japanese early-period index, 

suggesting temporal structure in these residuals. By contrast, the Taiwanese eastern 

CPUE index and the Indonesian index were consistent with randomness. When σ.proc 

was fixed at 0.15 in S6, residual diagnostics improved, as the Taiwanese western index 

no longer displayed significant departures from randomness, although the Japanese 

early-period index continued to exhibit temporal correlation. Other indices (Taiwanese 

eastern, Japanese later-period, and Indonesian) remained consistent with random 

variation. The most favorable outcomes were observed in S10, which applied the Fox 

production model with σ.proc fixed at 0.15. In this scenario, all CPUE indices except 

the Japanese early-period index passed the randomness test, indicating that the Fox 

model combined with a fixed process error variance provided the most robust fit with 

minimal signs of temporal structure compared to the Schaefer alternatives. 

Overall, these results suggest that the Japanese early-period CPUE series is the 

primary source of non-random residual structure across scenarios, whereas both 

Taiwanese and Indonesian indices demonstrated greater stability. Moreover, the Fox 

model framework combined with a fixed σ.proc = 0.15 (S10) provided the most 

consistent residual diagnostics across fleets. 

 

3.4. Estimates of key quantities 

The temporal trajectories of biomass, fishing mortality, process deviations, and 

management reference ratios (B/B0, B/BMSY, and F/FMSY) displayed consistent overall 

patterns across scenarios S1–S10, although notable differences were evident depending 
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on the model type and treatment of process error variance (Fig. 6). 

Biomass estimates showed a gradual decline from the 1950s, with more 

pronounced reductions after the mid-1980s, driven by the sustained increase in fishing 

mortality. Depletion (B/B0) and B/BMSY followed similar trajectories, indicating a 

decline below the MSY-based reference level in the late 1990s to early 2000s, after 

which both indices remained at low levels across all scenarios. Conversely, fishing 

mortality and F/FMSY increased steadily after the 1980s, with F/FMSY consistently above 

unity in recent decades, suggesting persistent overfishing. 

Comparisons across model configurations revealed that the Fox production model 

generally produced higher and more stable biomass trajectories and smoother estimates 

of process deviations compared to the Schaefer model. Within the Schaefer framework, 

scenarios with fixed process error variance, particularly S6 (σ.proc = 0.15), provided 

more stable trajectories relative to those in which σ.proc was estimated. The Fox 

scenarios (S7–S10) exhibited greater consistency, with S10 (Fox model with σ.proc 

fixed at 0.15) emerging as the most stable and reliable configuration, characterized by 

reduced variability in biomass, depletion, and process deviations. 

Table 4 provides quantitative estimates of key parameters, including MSY, F2023, 

FMSY, B0, B2023, BMSY, and ratios of B2023/B0, B/BMSY, and F2023/FMSY across scenarios. 

The results indicate that while absolute values varied with model assumptions, the 

overall patterns were consistent with biomass depletion and elevated fishing mortality. 

The Schaefer scenarios with estimated process error variance (e.g., S1) tended to 

produce more variable estimates, whereas fixing σ.proc (e.g., S6) improved stability. In 

contrast, the Fox scenarios (S7–S10) generally yielded lower estimates of MSY and B0 

but provided more stable and internally consistent outputs. Among them, S10 (Fox 

model with σ.proc fixed at 0.15) offered the most balanced and robust estimates across 

key quantities. 

The Kobe plot (Fig. 7) further illustrates the stock status across scenarios. All 

scenarios consistently placed the stock in the overfished and overfishing quadrant 

(B/BMSY < 1 and F2023/FMSY > 1). However, outcomes differed between model 

frameworks: the Schaefer scenarios typically indicated more pessimistic conditions, 

while the Fox scenarios provided slightly more optimistic outcomes, particularly S10, 

which placed the stock closest to the boundary line. Taken together, these findings 

suggest that while uncertainty remains regarding the absolute scale of biomass and MSY, 

the weight of evidence strongly indicates that the Indian Ocean blue marlin stock is 

both overfished and subject to ongoing overfishing. 

Kobe plots with confidence surfaces around the 2023 estimates (Fig. 8) reinforced 

these findings, showing probabilities greater than 95% that the stock is simultaneously 

overfished (B2023 < BMSY) and subject to overfishing (F2023 > FMSY). Among scenarios, 
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the Fox model with the sdmTMB index and fixed process error variance (S10) yielded 

slightly less pessimistic outcomes than the Schaefer alternatives (S1 and S6), placing 

the stock marginally closer to the threshold. 

 

3.5 Hindcasting cross-validation 

Hindcasting cross-validation (HCxval) was conducted for three representative 

scenarios (Fig. 9): S1 (the continuity baseline from the 2022 assessment, Schaefer 

model with the Taiwanese delta-GLM index and estimated process error variance), 

S6(Schaefer model with the Taiwanese sdmTMB index and σ.proc fixed at 0.15, 

identified as the optimal-performing Schaefer case), and S10 (Fox model with the 

Taiwanese sdmTMB index and σ.proc fixed at 0.15, identified as the overall optimal 

scenario). One-year-ahead forecasts of CPUE values (2010–2023) were compared with 

observed data, and prediction skill was evaluated using the mean absolute scaled error 

(MASE). Results showed that S1 produced mixed performance, with good predictive 

skill for the Taiwanese western index but poor accuracy for the eastern index. In S6 the 

use of sdmTMB indices improved stability for the western index, but prediction errors 

for the eastern index remained high, suggesting structural limitations of the Schaefer 

framework. By contrast, S10 produced the most consistent predictive performance 

across fleets, with all indices except the Taiwanese eastern series achieving MASE 

values below or close to 1.0. 

The comparisons reveal three insights. First, sdmTMB-based CPUE indices 

generally yield more stable predictions than delta-GLM, although their performance 

differs by fleet. Second, the Fox production model provides structurally more robust 

fits than the Schaefer model, particularly in reducing systematic prediction bias. Third, 

fixing σ.proc at 0.15 improves predictive reliability compared with estimating the 

variance. Compared to S1, which represents the 2022 continuity baseline, S10 offers a 

more balanced and consistent predictive framework. These findings support the use of 

sdmTMB-standardized CPUE indices in combination with the Fox model and fixed 

σ.proc = 0.15 as the optimal configuration for providing robust scientific advice in 

future assessments. Importantly, these hindcasting results are consistent with the 

goodness-of-fit and residual diagnostics, further reinforcing S10 as the most reliable 

reference case scenario. 

 

3.6 Projections of future stock status 

Projections of blue marlin stock status under constant future catch levels ranging 

from 40% to 160% of the recent catch (2020–2023 average) revealed consistent 

outcomes across scenarios S1, S6 and S10, although the magnitude of recovery or 

decline varied depending on the model specification (Fig. 10). 
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Under the current catch level (100%), the stock is projected to remain in an 

overfished and overfishing state, with biomass (B/BMSY) staying below unity and 

fishing mortality (F/FMSY) above unity throughout the projection period. Catch levels 

at or above 120% are expected to further exacerbate stock depletion, driving biomass 

to lower levels and pushing fishing mortality well above the sustainable threshold. By 

contrast, catch reductions to 80% or lower lead to gradual stock rebuilding, with the 

potential for B/BMSY to exceed unity after 2030, particularly under the Fox model 

(S10). 

Comparisons among scenarios highlighted the influence of model type and 

process error variance specification. S1 (Schaefer with estimated process error 

variance) projected relatively slower rebuilding and greater variability in outcomes, 

reflecting higher uncertainty. S6 (Schaefer with σ.proc fixed at 0.15) provided more 

stable trajectories but still indicated limited potential for rebuilding under current 

catch levels. In contrast, S10 (Fox model with σ.proc fixed at 0.15) consistently 

produced the most optimistic projections, showing faster recovery of biomass and 

earlier declines in fishing mortality under reduced catch scenarios. 

These projections suggest that meaningful recovery of blue marlin in the Indian 

Ocean is conditional on substantial reductions in catch, and that differences in model 

structure and process error treatment strongly influence the projected rebuilding 

potential. 
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Fig. 1. Time-series of estimated catch in metric tons (t) for Indian Ocean blue marlin. 
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Taiwanese fleet 

 

 

Fig. 2. Standardized CPUE series from Taiwanese, Japanese, and Indonesian longline 

fleets used in the stock assessments of blue marlin in the Indian Ocean for the IOTC 

WPB in 2022 and 2025. 
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Japanese fleet 

 

Indonesian fleet 

 

Fig. 2. (Continued). 
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S1 

 

S2 

 

Fig. 3. Prior and posterior distributions for scenario S1~S4 for blue marlin in the 

Indian Ocean. PPRM: Posterior to Prior Ratio of Means; PPRV: Posterior to Prior 

Ratio of Variances. 
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S3 

 

S4 

 

Fig. 3. (Continued). 
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S1 S2 

  

S3 S4 

  

S5 S6 

  

Fig. 4. Residual diagnostic plots of JABBA for all scenarios for CPUE indices for 

blue marlin in the Indian Ocean. Boxplots indicating the median and quantiles of all 

residuals available for any given year, and solid black lines indicate a loess smoother 

through all residuals. 
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Fig. 4. (continued). 

  

S7 S8 

  

S9 S10 
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S1 

 

Fig. 5. Runs tests of JABBA for the randomness of the time series of CPUE residuals 

by fleet for blue marlin in the Indian Ocean under scenarios S1, S6 and S10. Green 

panels indicate no evidence of lack of randomness of time series residuals (p>0.05) 

while red panels indicate the opposite. The inner shaded area shows three standard 

errors from the overall mean and red circles identify a specific year with residuals 

greater than this threshold value (3x sigma rule). 
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S6 

 

Fig. 5. (Continued). 
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S10 

 

Fig. 5. (Continued). 
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Fig. 6. Temporal trajectories of biomass, fishing mortality, process deviations, and 

management reference ratios (B/B0, B/BMSY, and F/FMSY) for blue marlin in the Indian 

Ocean, estimated by JABBA under all scenarios. 
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Fig. 7. Kobe plot of 2023 estimates of spawning biomass and fishing mortality 

relative to their MSY reference points from all scenarios for blue marlin in the Indian 

Ocean. The error bars represent the 80% confidence interval of the estimates. 
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S1 

 

S6 

 

Fig. 8. Kobe plot with confidence surfaces around the 2023 estimates of stock status 

for blue marlin in the Indian Ocean, obtained from JABBA under scenarios S1, S6 

and S10. 
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S10 

 

Fig. 8. (Continued). 
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S1 

 

Fig. 9. Hindcasting cross-validation (HCxval) of JABBA for blue marlin in the Indian 

Ocean under scenarios S1, S6, and S10, showing one-year-ahead forecasts of CPUE 

values (2010–2023) with observed CPUE indices indicated as color-coded points and 

95% confidence intervals. 
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S6 

 

Fig. 9. (Continued).  
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S10 

 

Fig. 9. (Continued).  
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S1 

 

Fig. 10. Projections with 95% confidence intervals of JABBA based on the future 

catch set at constant levels from 40% to 160% for blue marlin in the Indian Ocean 

from scenarios S1, S6and S10. 
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S6 

 

Fig. 10. (Continued). 
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S10 

 

Fig. 10. (Continued). 
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Table 1. Summary of standardized CPUE indices used in the JABBA assessment of 

blue marlin in the Indian Ocean.  

Fleet and area Period Abbreviation 

Taiwan, North-West Indian Ocean (GLM) 2005-2023 TW_W_GLM 

Taiwan, North-East Indian Ocean (GLM) 2005-2023 TW_E_GLM 

Taiwan, North-West Indian Ocean (sdmTMB) 2005-2023 TW_W_sdmTMB 

Taiwan, North-East Indian Ocean (sdmTMB) 2005-2023 TW_N_sdmTMB 

Japan 1979-2010 JP_early 

Japan 2011-2023 JP_later 

Indonesia 2006-2023 IDN 
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Table 2. Prior distributions for key parameters (K, r, ψ, and observation error 

variance) applied in the JABBA assessment of blue marlin in the Indian Ocean. 

Parameter Distribution Specification 

Carrying capacity (K) Lognormal μ = 106,557; CV = 300% 

Intrinsic growth rate (r) Lognormal 
μ = 0.3; CV = 40% 

(equivalent to log.sd = 0.385) 

Initial depletion (ψ = B1/K) Beta μ = 0.95; CV = 5% 

Observation error variance Fixed σ² = 0.25 

Process error variance Inverse-gamma 
α = 0.001; β = 0.001 

(estimated in 2022) 

 

 

 

Table 3. Summary of model scenarios (S1–S10) combining alternative CPUE indices, 

production model types, and treatments of process error standard deviation (σ.proc) in 

the JABBA assessment of blue marlin in the Indian Ocean. 

Scenario Alternative Taiwanese CPUE Model type σ.proc 

1 TWN-GLM Schaefer 
Estimated 

(igamma=c(0.001,0.001)) 

2 TWN-GLM Schaefer Fixed (0.15) 

3 TWN-GLM Schaefer Fixed (0.20) 

4 TWN-GLM Schaefer Fixed (0.10) 

5 TWN-sdmTMB Schaefer 
Estimated 

(igamma=c(0.001,0.001)) 

6 TWN-sdmTMB Schaefer Fixed (0.15) 

7 TWN-GLM Fox 
Estimated 

(igamma=c(0.001,0.001)) 

8 TWN-GLM Fox Fixed (0.15) 

9 TWN-sdmTMB Fox 
Estimated 

(igamma=c(0.001,0.001)) 

10 TWN-sdmTMB Fox Fixed (0.15) 
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Table 4. Estimates of key management quantities from JABBA all scenarios for blue 

marlin in the Indian Ocean. 

Scenario MSY F2023 FMSY B0 B2023 BMSY B/B0 B2023/BMSY F2023/FMSY 

S1 8,849  0.283 0.178 98,666  27,978  49,333  0.288 0.577 1.557 

S2 8,958  0.280 0.176 107,266  28,100  53,633  0.282 0.564 1.566 

S3 10,629  0.293 0.177 126,149  27,001  63,075  0.226 0.452 1.662 

S4 8,292  0.239 0.147 115,557  32,904  57,778  0.295 0.589 1.620 

S5 8,836  0.307 0.184 92,038  25,712  46,019  0.257 0.515 1.749 

S6 9,275  0.289 0.158 123,236  27,288  61,618  0.237 0.474 1.798 

S7 8,161  0.420 0.315 68,514  18,858  25,218  0.258 0.702 1.390 

S8 8,166  0.470 0.351 63,216  16,880  23,268  0.271 0.737 1.317 

S9 8,095  0.525 0.377 58,315  15,044  21,464  0.256 0.696 1.408 

S10 8,380  0.403 0.259 87,763  19,563  32,302  0.222 0.604 1.561 

 


