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SUMMARY

Assessing the status of the Indo-Pacific (IP) sailfish (Istiophorus platypterus) in the Indian Ocean
remains challenging due to limited data availability. There is lack of reliable information on stock
structure, abundance and biological parameters. This report details the ongoing stock assessment
for IP sailfish in the Indian Ocean, building upon the methodological framework established in the
2022 assessment. Given the persistent data constraints for this highly migratory species, this
assessment employs alternative approaches suitable for data-limited scenarios. The primary
objective is to evaluate stock status relative to sustainability reference points to provide
science-based management advice.

The core methodology replicates the 2022 approach. Fleet-specific annual length-frequency data
are used to estimate the annual Spawning Potential Ratio (SPR), which serves as a key indicator of
reproductive health. The normalized annual SPR estimates from major fleets are combined into a
single time series, and subsequently used as an index of relative abundance. This derived
abundance index forms the primary input to the Bayesian State-Space Surplus Production Model
(JABBA). The JABBA framework allows for the estimation of historical and current stock
biomass relative to the biomass that can produce Maximum Sustainable Yield (B/Busy) and fishing
mortality relative to the level consistent with MSY (F/Fsy),

The results indicate that there has been a 45.5% decline in SPR since 1970. In the base model
(S1), MSY was 34.3 kt (25.8-47.7 kt), the 2023 estimate of B/Busy was 1.34, and F/Fysy was 0.69.
The trajectory of B/Busy declined consistently from the early-1980s to the most recent estimate in
2023, while F/Fusy gradually increased from 1980, peaking at 0.8 in 2020. Across all scenarios
(S1-S9), B/Bysy ranged 1.10-1.85 and F/Fusy < 1 in eight of nine scenarios, with only the S4
indicating a borderline F/Fysy =1.07, which indicating a high probability of being not overfished
nor subject to overfishing for the IP sailfish stock. Sensitivity analyses showed limited influence
of £20% observation error changes but clearer effects of alternative » priors on MSY and risk.
Ten-year constant catch projections suggest catches at or below approximately 33-34 kt maintain
biomass clearly above Busy with modest stock rebuilding, 34-38 kt keeps the stock near the
threshold with rising risk, and catches at or above 40 kt is unlikely to sustain biomass above Bssy.
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1. Introduction

Indo-Pacific sailfish (Istiophorus platypterus) is a large, highly migratory apex predator inhabiting
tropical and subtropical regions of the Pacific and Indian Oceans, primarily within surface waters
above the thermocline (0-200m depth) near coasts and islands (Nakamura, 1983). Renowned for
its exceptional burst swimming speed (exceeding 110 km/h) and acrobatic jumping behavior, this
species exhibits sexual dimorphism in growth and longevity. Females grow faster, reach larger
sizes (up to 300cm lower-jaw fork length [LJFL] and >50 kg), and live longer (11-13 years),
compared with males (200cm LJFL, >40 kg; and 7-8 years) (Hoolihan, 2006, Ndegwa & Herrera,
2011). Spawning in the Indian Ocean occurs seasonally, peaking in February and June in Indian
waters and during warmer months (e.g., December) in subtropical regions such as the
Mozambique Channel and Réunion Island (Nakamura, 1983). Stock structure remains uncertain.
While evidence suggests the presence of isolated populations in the Persian Gulf, limited genetic
differentiation elsewhere has led to the assumption of a single pan-ocean stock (Hoolihan et al.,

2004). For the purposes of assessment, this assumption is maintained.

In 2023, the IP sailfish is primarily caught using gillnets, which accounted for 71.2% of total
catches in the Indian Ocean, followed by line (24.4%) and Ilongline (2.2%)
(https://iotc.org/ WPB/23/Data/02-RC). The majority of reported catches are attributed to vessels
flagged to the Islamic Republic of Iran (47%), India (19.3%), and Sri Lanka (6.4%), with the
remaining 27.3% distributed across 28 other fleets. According to official statistics and the 2022
stock assessment by the Indian Ocean Tuna Commission (IOTC), the current catches (31,898 t)
are substantially higher than the current MSY estimate of 25,905 t (Figure 1).

Assessing the status of the IP sailfish in the Indian Ocean is challenging due to the paucity of data.
There is lack of reliable information on stock structure and biological parameters (e.g., Maturity,
Natural mortality), while catch statistics are classified by the IOTC Secretariat as “best scientific
estimates”. Furthermore, stock assessments in the region generally rely on abundance indices to
track biomass over time. However, no such index is available for IP sailfish. Consequently, the
“data-limited” Catch-MSY method (Froese et al. 2017) was applied in 2015 and 2019 (Sharma
2015, IOTC Secretariat 2019).

In 2015, the IP sailfish stock was considered to be subject to overfishing and, if catches remained
constant, the stock would likely deplete to overfished levels in 2024 ( Kobe II Strategy Matrix). It
was recommended that target yield levels should not exceed 24,000 t. In the 2019 assessment,
estimated management quantities suggested that the stock was not overfished but overfishing was
occurring. However, these estimates were associated with very large uncertainty as estimates of
MSY ranged from 14,310 to 65,040 t. Consequently, the stock status could not be determined, and
it was categorised as “uncertain”. Given the uncertainty in the catch estimates, the management
advice was that catches should remain below MSY level of 23,900 t.

To address the absence of abundance indices for IP sailfish, the 2022 assessment incorporated
length-frequency data to estimate annual SPR. Normalized annual SPR estimates were assumed to
be proportional to biomass and were used as a relative abundance index in the JABBA model,
under the assumption of no long-term trends in annual recruitment (Parker et al., 2022). This
represents a novel technique developed to mitigate the scarcity of abundance data for this species.
The results indicated a 41% decline in SPR since 1970. B/Busy declined steadily from the early



1980s through the most recent estimate in 2019, while F/Fusy increased gradually over the same
period, peaking at 1.1 in 2018. In 2019, B/Busy was estimated at 1.17 and F/Fysy at 0.98. Based on
the weight of evidence available in 2022, the IP sailfish stock is determined not to be overfished

nor subject to overfishing, with a 53.7% probability of falling within the “green quadrant”.

This paper provides an updated assessment of the IP sailfish stock using the most recent catch and
length-frequency data available from the IOTC. The assessment employs an alternative approach
developed by Parker et al. (2022), which uses length-frequency data to estimate annual SPR.
Normalized annual SPR estimates from two fleets are combined into a single time series, treated
as proportional to biomass, and used as an index of relative abundance. This index is then
incorporated into the Bayesian state-space surplus production model (JABBA). Building on this
validated framework, the present assessment refines the application of the approach with updated
data.

2. Materials and methods
2.1 Data sources

The catch data were obtained from the IOTC stock assessment dataset repository of the 23rd
Working Party on Billfish, covering the period 1950-2023 (https://iotc.org/ WPB/23/Data/03-CE).
As no Indices of relative abundance are available for IP sailfish in the Indian Ocean, annual
fleet-specific length-frequency data were instead obtained from the IOTC website
(https://iotc.org/ WPB/23/Data/05-sfsfa). For this assessment, data from only two fleets were

considered in this assessment, both of which are longline: Japan and Taiwan, China.

When required, lengths of IP sailfish were converted from measured units (FL) to lower-jaw fork
length (LJFL) using the relationship defined by the IOTC (IOTC, 2018). Any lengths reported but
considered to be strong outliers, e.g., size was 500 cm, were removed. Furthermore, years with
low samples number (i.e., < 200 samples) were removed from the analysis (Parker et al., 2022).
Accordingly, data from 1990-2016, and 2020 were removed from the Japanese dataset, while data
from 2013-2014 were excluded from the Taiwan, China dataset. The final dataset comprised a
total of 12,552 samples from Japan and 25,797 from Taiwan, China.

2.2. Methodologies
2.2.1 Length-Based Spawning Potential Ratio (LBSPR)

The length based spawning potential ratio (LBSPR) method has been developed for data-limited
fisheries (Hordyket al., 2016), where few data are available other than a representative sample of
the size structure of the vulnerable portion of the population (i.e., the catch) and a limited
understanding of the life history of the species. The LBSPR method does not require knowledge of
the natural mortality rate (M), but instead uses the ratio of natural mortality and the von
Bertalanffy growth coefficient (K) (M/K), which is believed to vary less across stocks and species
than M (Hordyket al., 2015).

As with other stock assessment methods, the LBSPR model relies on several simplifying
assumptions. Simulation studies have shown that the performance of length-based methods
broadly depends primarily on three factors: (i) life-history characteristics, (ii) exploitation



patterns, and (iii) suitability of the size sample. LBSPR is an equilibrium based model that
assumes that the length composition data are representative of the exploited population at steady
state. While the steady state assumption is often violated in practice, simulations indicate that the
SPR metric remains informative under such conditions. Effective application of the LBSRP
method requires length data of adequate sample size that accurately represent the size structure of
the exploited stock, along with reliable life-history information.

Biological information on IP sailfish in the Indian Ocean is limited. Given that the LBSPR method
relies on the ratio of M/K, which is considered more robust to variability in life history than M
alone, life-history parameters were obtain from other ocean basins. Nevertheless, the absence of
ocean-specific life-history information introduces uncertainty into annual SPR estimates. The
parameter values used for the LBSPR analysis are presented in Table 1. Another source of
uncertainty in length-based methods arises from differences between the size composition of
samples and the selectivity pattern of the main fishery (Pons et al. 2020). Such discrepancies often
result from differences in capture methods or gear configuration (e.g., smaller mesh sizes in
surveys compared with the fishery being assessed). In this study, length data were restricted to two

loneline fleets (Japan and Taiwan, China).

Furthermore, the default assumption of the LBSPR model is that natural mortality is constant for
all size classes and that the selectivity curve is asymptotic (Hordyk et al., 2016). However, it is
generally assumed that species-specific selectivity for gillnets is domed-shaped (Huse et al., 1999,
Madsen et al., 1999; Stergiou and Erzini 2002), but this phenomenon is difficult to identify from
size data alone; as is size-dependant natural mortality (Hordyk et al., 2016).

To mitigate the potential error associated with violating the aforementioned fleet selectivity
assumptions, as well as overcome the lack of accurate ocean-specific life-history information, the
resultant SPR estimates were used as an indicator of relative abundance as opposed to an
instantaneous estimate of stock status. This was done by iteratively running the LBSPR analysis
over many years to produce a SPR trend and then applying an additional analysis (see JARA
section below) to provide Bayesian posterior probabilities of percentage change in annual SPR

levels relative to the SPR level estimated in the first year data were available.
2.2.2 JARA trend analysis

By estimating annual SPR values and considering these to be a time series of relative abundance,
species-specific population change (relative to the first year of available data) could be estimated
using ‘JARA’(Just Another Red-List Assessment ). JARA is a Bayesian state-space tool (Winker
and Shirley 2019, https://github.com/henning-winker/JARA) that was developed as an [IUCN Red
List decision-support tool that utilizes formal stock assessment outputs (e.g., trends in SPR), or
standardized or nominal CPUE, to calculate the Bayesian posterior probability of the percentage
change in a population (Daly et al., 2020, Winker, Pacoureau & Sherley, 2020). While the JARA
option to calculate a probability of satisfying each of the Criterion A categories adopted by the
IUCN Red List procedure was not applied in this analysis, the distribution of the posterior
probability was used to estimated relative change in the population. Here, the JARA approach was
applied to IP sailfish using the annual SPR estimates and their associated standard errors,
calculated from length data derived from two fleets. Following the procedure set out by Skerley et

al., (2019) - based on the original stochastic growth and extinction model by Dennis et al., (1991)



- each fleet-specific SPR time series was assumed to follow an exponential growth model of the

form:
tH1=t+rt

Where ¢ is the logarithm of the expected abundance in year ¢, and 7¢ is the normally distributed
annual rate of change with the mean ¢ and process variance 2. A noninformative normal prior for
r ~Normal (0, 1000) was used and priors for the process error variance were 2 ~1/gamma (0.001,
0.001), or approximately uniform in log space, as per Sherley et al., (2019). Finally, the median of
the posterior distribution was taken as the percentage change in SPR over the observed period.

2.2.3 JABBA model

The stock assessment model uses the most updated version (v1.1) of JABBA (Winker et al. 2018),
which can be found online at: https:/github.com/jabbamodel/JABBA. JABBA’s inbuilt options
include: 1) automatic fitting of multiple CPUE time series and associated standard errors; 2)

estimating or fixing the process variance, 3) optional estimation of additional observation variance
for individual or grouped CPUE (abundance index) time series, and 4) specifying a Fox, Schaefer,
or Pella-Tomlinson production function by setting the inflection point Busy/K and converting this

ratio into shape a parameter m.

The prior and input parameter assumptions used for JABBA are the same as those applied in the
2019 assessment and 2022 assessment (Froese and Pauly 2015; Parker et al., 2022) (Table 2).
For the unfished equilibrium biomass K, the probable range of values estimated from the 2019
assessment was also used as a prior: 162,000-412,000 t. The input  value was provided as a range
of 0.28 - 0.48, which was the probable range of » values estimated from the 2019 assessment. The
initial depletion was input as a “beta” prior (p= B950/K) with mean = 0.95 and CV of 5%. This
distribution is considered more appropriate than a lognormal for initial depletion, given the
understanding that there was very little fishing before the starting year of 1950. All catchability
parameters were formulated as uninformative uniform priors, while additional observation
variances were estimated for index by assuming inverse-gamma priors to enable model internal
variance weighting. Instead, the process error of log(By) in year y was estimated “freely” by the
model using an uninformative inverse-gamma distribution with both scaling parameters setting at

0.001. Observation error for relative abundance index estimates were fixed at 0.25.

JABBA is implemented in R (R Development Core Team, https://www.r-project.org/) with JAGS
interface (Plummer, 2003) to estimate the Bayesian posterior distributions of all quantities of
interest by means of a Markov Chains Monte Carlo (MCMC) simulation. In this study, three
MCMC chains were used. Each model was run for 30,000 iterations, sampled with a burn-in
period of 5,000 for each chain and thinning rate of five iterations. Basic diagnostics of model
convergence included visualization of the MCMC chains using MCMC trace-plots as well as
Heidelberger and Welch (Heidelberger and Welch, 1992) and Geweke (1992) and Gelman and
Rubin (1992) diagnostics as implemented in the coda package (Plummer et al., 2006). Log
Residual Diagnostic Plots were used to compare the goodness of fit between CPUE observations
and estimates in the model. The Root Mean Squared Error (RMSE) and the Deviation Information
Criteria (DIC) were used to judge the goodness of fit between CPUE and different model
scenarios. The smaller the RMSE and DIC values, the better the model fitting effect.
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A retrospective problem (RP) refers to a systematic deviation in estimates of a resource variable
(e.g. biomass) for the same year as the time series of the evaluated data increases, manifesting as
persistent overestimation or underestimation. To evaluate potential systematic bias of the model, a
retrospective analysis was conducted. The model was re-fitted sequentially, removing one year of
data at a time for a total of 5 years, and the Mohn’s p statistic was calculated to cquantify bias
between the models. The calculation formula is:

X(tl:t),t_X(tlztz), t

p:
X(tl:t), t

t
Where, ¢1 and 2 represent the first and last year of the catch data. ¢ is a year between ¢1 and 2. X
represents an estimated variable, in this case the amount of biomass. When p value is 0, there is no
RP, that is, there is no systematic bias estimation, when p value is positive, there is a positive RP,
that is, the short time series of resources in the same year is greater than the long time series,
otherwise, it is negative RP.

2.3 Scenarios

To maintain continuity with previous work, the 2022 assessment model (Schaefer ) was retained
as the base model (S1) and augmented with targeted refinements based on preliminary diagnostics.
These changes were designed to improve performance and probe key structural assumptions
without altering the fundamental structure. Specifically (Table 3):

1) Examined production-function shape uncertainty by adding a Fox model (S2) and two
Pella—Tomlinson variants with Busy/K=0.40 and 0.60 (S3, S4);

2) Tested alternative observation-error assumptions for relative abundance index by varying
the fixed observation error (fixed.obsE) to 0.20 and 0.30 (S5, S6);

3) Evaluated productivity sensitivity by revising the prior for the intrinsic growth rater:
lower-centered (0.20-0.40), higher-centered (0.40-0.60), and a wide prior (0.20-0.60) (S7-S9).

3. Results and analysis
3.1 JARA

SPR is a well-established fisheries indicator, defined as the proportion of unfished reproductive
potential that remains under a given level of fishing pressure (Walters and Martell, 2004). Thus, in
a pristine fishery the SPR equals 100%, whereas in a stock where no spawning occurs (e.g., all
mature fish have been removed), SPR equals zero (Hordyk et al., 2015). In this assessment, the
resultant SPR estimates were not emphasized, but rather the novel combination of SPR and JARA
allowed for a reliable estimate of change in SPR for IP sailfish, indicating a 45.5% decrease since
1970 (Figure 3). This decline is reflected in a consistent negative trend that, despite missing data
(1990-2014), provided sufficient information to serve as a “relative abundance index” for surplus
production modeling. The underlying assumption that the SPR trend is proportional to biomass
remains to be further validated.

3.2 JABBA Model fitting and diagnosis

The diagnostic analysis of the JABBA assessment for IP sailfish in the Indian Ocean showed



reliable convergence and satisfactory model fitting across all model configurations (S1-S9). The
MCMC convergence tests by Heidelberger and Welch (Heidelberger and Welch, 1992) and
Geweke (1992) and Gelman and Rubin (1992), as well as visual inspection of trace plots, indicate
adequate convergence in all models. Furthermore, replicate model runs produced consistent
results, further demonstrating model stability (Figure 4). The model fit to the combined index is
shown in Figure 5. The fit to the data was reasonable for the base model (S1), with a
goodness-of-fit estimated at RMSE = 27.2% (Figure 6). For comparability across scenarios, we
summarized the RMSE of the combined index fit and the DIC for all models (Table 4). Run tests
on the log-residuals indicated that the index residuals were randomly distributed with no apparent
outliers. However, a substantial period (1990-2014) without reliable length-frequency data

resulted in no index information for those years.

Marginal posterior distributions along with prior densities are shown in Figure 8. The model
successfully integrated data and priors, demonstrating a highly informative dataset and a robust fit.
The posterior for K was sharply concentrated and substantially shifted from its broad, diffuse
prior, indicating that the data provided precise information for estimating this parameter. In
contrast, the posterior for 7 is also notably updated and concentrated relative to its prior, reflecting
a data-informed estimate. To further examine productivity, we evaluated sensitivity by revising the
prior for thethe intrinsic growth rate » which showed varying degrees of influence on the
assessment results. However, the change is less pronounced than for K. The marginal posterior for
@ had a posterior to prior ratio of means and variances value close to 1, which suggests that this

parameter was largely informed by the prior, instead of the data.

Retrospective analysis conducted by sequentially removing the most recent years of data, revealed
limited retrospective bias. For the base model (S1), Mohn’s p values for biomass (B) and B/Busy
were centered around -0.047, indicating minor underestimation bias (Table 5). Comparable
patterns were observed across the alternative scenarios (S2-S9), which likewise showed small,
near-zero p values for biomass-related metrics. These results suggest that the JABBA model
predictions are robust over time, consistently estimating biomass levels with minimal systematic
bias (Figure 9).

However, the analysis highlighted a more notable impact on F/Fwmsy, with Mohn’s p value of 0.128
under S1, suggesting some fluctuation in fishing mortality estimates attributable to observation
error. A similar tendency-greater variability in F/Fusy than in biomass metrics-was also evident
across scenarios S2-S9, consistent with the broader pattern in fisheries assessments whereby
observation error inflates variability in F/Fwmsy relative to biomass-related parameters, thereby

influencing assessments of overfishing risk.
3.3 Stock status

The summaries of posterior quantiles for parameters and management quantities for 9 scenarios
are presented in Table 6. In the base model (S1), the MSY was 34,341 t (25,841-47,671), the Busy
had a median of 174,181 t, and K was 348,362 (262,418-477,488). The trajectory of B/Busy
showed an overall decline from the early 1980s through 2023, whereas the F/Fuysy trajectory
increased gradually from 1980 and peaked at 0.8 in 2020, before declining sharply the following
year (Figure 10). The 2023 estimate of B/Bysy was 1.34, while the F/Fysy estimate was 0.69. The
Kobe plot for S1 (Figure 11) indicates that the IP sailfish stock most likely falls within the green



quadrant (92.3%), suggesting that it is not overfished nor subject to overfishing.

Across all scenarios (S1-S9), 2023 status is consistently above the Busy (B/Busy=1.10-1.85).
Fishing pressure is below Fusy in eight of 9 scenarios (£/Fusy= 0.38-0.82), with only the S4
indicating a borderline F/Fysy =1.07. Additionally, the stock status all yielded in the green
quadrant, except for S4, indicating the IP sailfish population has not been overfished or subject to
overfishing (Figure 12). Varying the assumed observation error by +20% shifts the estimated
2023 status modestly toward to the orange quadrant on the Kobe plot. Revising the prior for the
intrinsic growth rate r exerts a clearer influence on MSY and the 2023 stock status. A
lower-centered prior (0.20-0.40) has low MSY and the probability falling within green quadrant
decline (higher F/Fusy), whereas a higher-centered prior (0.40-0.60) increases MSY and the
probability falling within green quadrant increase; the wide prior (0.20-0.60) has no significant
effect.

3.4 Projection

Projections (2024-2033) based on S1 over a range of future catches from 28,800 to 43,200 t
(£20%), with the 2024 catch set at the 2021-2023 average, are shown in Figure 13, where the
dashed line denotes Busy. Across nine scenarios, the magnitude of change varies with model
specification. Overall, these projections indicate that catches at or below approximately
33,000-34,000 t are consistent with maintaining biomass clearly above Busy and fostering modest
stock rebuilding. The catches between 34,000-38,000 t expected to maintain the stock near the the
threshold with increasing risk over time. And catches at or above 40,000 t are unlikely to sustain

biomass above Busy over the 10-year projection period.
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Tables

Table 1. Parameters used for the LBSPR analysis of IP sailfish. Some of the parameters were

sourced from FishBase and are the same as those applied in the 2019 assessment and 2022

assessment (Froese and Pauly 2015; Parker et al., 2022).

Parameter Description Value Unit
Linf Maximum length 260 cm
L50 Length-at-50 percent maturity 160 cm
L95 Length-at-95 percent maturity 175 cm
SL50 Length-at-50 percent selectivity 110 cm
SL95 Length-at-50 percent selectivity 125 cm
M/K M/K ratio 1.275 -

Table 2. The prior and input parameter assumptions used for JABBA.

Parameter Description Prior m CvV
K Unfished biomass Range*  162,000-412,000 -
r Population growth rate Range 0.28-0.48 -
w(psi) Initial depletion (B19s50/K) Beta 0.95 5%
Busy/K ~ Ratio Biomass at MSY to K Fixed 0.5 -

* For parameters marked “Range”, the values L, U are implemented as the approximate

95% central interval of a lognormal prior. This prior is not truncated and has support on

(0, 0); therefore, the stated range does not impose hard bounds, and posterior estimates

can lie outside L,U. The “Range” should be interpreted as a high-probability prior

interval rather than fixed limits.

Table 3. Scenarios setting for Indian Ocean IP sailfish.

Scenarios ~ Model type Busv/K  fixed.obsE r Prior Purpose
S1* Schaefer 0.5 0.25 0.28-0.48  Base model
S2 Fox — 0.25 0.28-0.48  Shape sensitivity (left-skew)
S3 Pella 0.4 0.25 0.28-0.48 Shape sensitivity (Fox-like)

S4 Pella 0.6 0.25 0.28-0.48  Shape sensitivity (right-skew)
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Obs. error —20%
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r low (lower-center, narrow)

r high (upper-center, narrow)

r wide (uninformative)

Table 4. Goodness of fitting of S1—S9 scenarios in JABBA for Indian Ocean IP sailfish

Scenarios RMSE DIC
S1* 27.2 -365.9
S2 27.3 -366.1
S3 27.3 -366.4
S4 26.9 -366
S5 27.9 -366.2
S6 28.7 -361.3
S7 217.5 -366.9
S8 27.5 -367.6
S9 27.5 -367.2

Table 5. Retrospective patterns of JABBA model for Indian Ocean IP sailfish (S1).

Year B MSY Bwmsy Fusy B/Busy F/Fmsy
2022 -0.012 -0.009 -0.007 -0.004 -0.004 0.017
2021 -0.031 -0.021 -0.013 -0.008 -0.017 0.04
2020 -0.1 -0.065 -0.051 -0.014 -0.05 0.127
2019 -0.15 -0.101 -0.078 -0.024 -0.08 0.21
2018 -0.177 -0.124 -0.102 -0.026 -0.082 0.246
Mean -0.094 -0.064 -0.05 -0.015 -0.047 0.128




Table 6. Summary of posterior quantiles presented in the form of marginal posterior medians and

key management quantities from JABBA.

Estimates S1 S2 S3 S4 S5 S6 S7 S8 S9
K 348,362 320,183 326,658 384,969 341,460 328,976 375,509 306,432 325,778
r 0.395 0.39 0.392 0.4 0.394 0.391 0.325 0.506 0.451
w(psi) 0.952 0.952 0.964 0.961 0.961 0.964 0.962 0.964 0.959
Oproc 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045
Fusy 0.198 0.39 0.33 0.118 0.197 0.195 0.163 0.253 0.225
Busy 174,181 117,848 130,657 230,985 170,730 164,488 187,755 153,216 162,889
MSY 34,341 45,744 42,983 27,257 33,433 32,049 30,603 38,650 36,324
Biyso/K 0.951 0.951 0.963 0.96 0.961 0.963 0.961 0.963 0.958
Bao2s/K 0.669 0.679 0.679 0.66 0.649 0.618 0.638 0.694 0.681
B2023/Busy  1.338 1.846 1.699 1.1 1.299 1.236 1.275 1.388 1.361
Fap23/Fusy — 0.694 0.377 0.437 1.068 0.735 0.805 0.818 0.595 0.647
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Figure 1. Available catch times series in metric tons (t) for Indian Ocean IP sailfish for the period
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Figure 2. Observed and predicted Spawning Potential Ratio (SPR) trends (left) and associated
runs tests (right) for IP sailfish in the Indian Ocean. The top represents the Japanese fleet, while
the bottom represents the Taiwan, China fleet. On the left, the circles indicate annual SPR



estimates, the black line is the predicted SPR trend, and the grey area is the 95% confidence

intervals.
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Figure 3. The combined index for IP sailfish, derived from the individual fleet annual SPR

estimates.
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Figure 4. MCMC diagnosis of Indian Ocean IP sailfish for the JABBA model (S1).
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Figure 5. Time-series of combined (circle) and predicted (solid line) Index of Indian Ocean IP
sailfish for the JABBA model (S1).
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Figure 6. Runs tests to evaluate the randomness of the time series of Index residuals (S1).
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Figure 7. Process error deviates (median: solid line) of Indian Ocean IP sailfish for the JABBA
model. Shaded grey area indicates 95% credibility intervals (S1).
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Figure 8. Priors (dark) and posteriors (light) of parameters of Indian Ocean IP sailfish for the
JABBA model (S1).
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Figure 9. Retrospective analysis of B, B/Bwmsy, F/Fumsy and surplus production for JABBA model
of Indian Ocean IP sailfish (S1).
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Figure 10. Trends in biomass relative to Busy (B/Busy) and fishing mortality relative to Fusy

(F/Fusy) for JABBA model of Indian Ocean IP sailfish (S1).
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Figure 11. Kobe plot showing estimated trajectories (1950-2023) of B/Busy and F/Fusy for
JABBA model of Indian Ocean IP sailfish (S1). Different grey shaded areas denote the 50%, 80%,
and 95% credibility interval for the terminal assessment year. The probability of terminal year

points falling within each quadrant is indicated in the figure legend.
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Figure 12. Kobe plots from different scenarios (S1-S9) for JABBA stock assessment of Indian



Ocean IP sailfish.
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Figure 13. 10-year projections from base model S1 for JABBA model of Indian Ocean IP sailfish.



