
IOTC WORKING PARTY ON METHODS (WPM16) 

 

A Stratified Baseline-Anchored Simulator for Precision and Reliability Metric 

for Longline Fisheries Observer Programs’ Coverage Design and Validation by 

Integrating the Coefficient of Variation: A Case Study of Kenya. 

Kelvin Wachira1, Stephen Ndegwa1, Elizabeth Mueni1, Alex Lukwendah1, Benedict Kiilu1, 

Zachary Ogari1, Donald Obiero1, Collins Ndoro1 

Kenya Fisheries Service, State Department for Blue Economy and Fisheries 

 

Abstract 

Effective fisheries management relies on accurate, unbiased, and spatially resolved 

information on catch, effort, and bycatch composition. This study integrates longline 

observer datasets collected along the Kenyan coastline with advanced analytical 

frameworks to standardize Catch Per Unit Effort (CPUE), quantify uncertainty through the 

Coefficient of Variation (CV), and evaluate sampling biases that influence bycatch 

estimates. The study employed modern statistical, spatial, and computational tools to 

improve the precision, transparency, and interpretability of observer-based indices of 

abundance and mortality. 

At the core of the methodology, set-level and sample-level data were harmonized and 

validated using the R ecosystem (tidyverse, sf, lubridate, ggplot2). Each observed set 

was assigned a 1° × 1° grid cell based on midpoints between setting and hauling 

coordinates, forming the spatial foundation for analysis. Nominal CPUE was calculated as 

kilograms per 1,000 hooks and subsequently standardized through generalized linear 

models (GLMs) and delta-lognormal frameworks, adjusting for spatiotemporal and 

operational covariates. Variability in CPUE estimates was quantified using both analytical 

and bootstrap-derived CVs, providing a measure of precision across years, species, and 

strata. 

Species composition and sampling uncertainty were addressed using nested resampling 

approaches that simultaneously captured variation in catch proportions and sampling 

effort. This dual-layer resampling allowed realistic propagation of uncertainty, improving 

the reliability of standardized indices. Data validation modules within the workflow flagged 

statistical and protocol deviations—such as outlier catches, under-sampling, and 

inconsistent spatial coverage—ensuring data integrity before downstream analysis. 



Spatial analyses were performed using the sf and rnaturalearth packages to construct 

numbered coastal grids, overlaying observer data on Kenya’s Exclusive Economic Zone 

(EEZ). Grid-level summaries were developed to show (1) numbered 1° × 1° grids along 

the coastline; (2) species distribution and relative abundance per grid; and (3) total 

allocated catches by grid, visualized as heatmaps. These maps highlighted species-

specific spatial hotspots and potential bycatch concentration zones, providing visual 

insight into effort distribution and catch dynamics. 

In connection with broader fisheries management objectives, the study aligns strongly 

with contemporary debates on observer coverage, bycatch bias, and sampling precision. 

Bycatch remains a significant source of unaccounted mortality for commercial, 

recreational, and ecologically sensitive species. Although observers provide the most 

reliable data on at-sea mortality, the assumption of random sampling within observer 

programs is often violated. Opportunistic or voluntary participation by vessels introduces 

non-random sampling bias, compromising the accuracy of bycatch and CPUE estimates. 

The present framework incorporates diagnostic modules to assess representativeness and 

to compare observed versus unobserved vessel behavior—critical steps for bias correction 

in longline fisheries data. 

Simulation and literature evidence suggested that achieving at least 20% observer 

coverage yields acceptable precision for common species, whereas rare or infrequently 

encountered species require coverage levels of 50% or more to reduce uncertainty to 

acceptable levels. In the Kenyan longline fishery context, spatial heterogeneity in effort 

and species composition implies that coverage requirements may vary substantially 

across grid cells and seasons (Southeast Monsoon vs. Northeast Monsoon). The 

integrated CV-based approach provides a quantitative benchmark for designing efficient 

sampling strategies that balance logistical constraints and statistical rigor. 

Ultimately, this study demonstrated a reproducible, transparent, and scalable approach 

to fisheries observer data analysis. It bridges operational sampling design with modern 

computational analytics, ensuring that observer-derived indices of CPUE and bycatch are 

both statistically robust and ecologically meaningful. The combined use of standardization 

models, spatial stratification, and resampling-based uncertainty quantification enhances 

the credibility of bycatch and effort estimates in data-limited regions such as the Western 

Indian Ocean. The resulting methodology not only supports precision-based observer 

allocation but also strengthens the foundation for sustainable fisheries management, 

adaptive monitoring, and regional stock assessment frameworks. 
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Introduction 

The management of longline fishery is complex due to an ever-present challenge of 

bycatch that are caught in substantial quantities, which involve non-target species, 

sharks, rays, seabirds, turtles and cetaceans. Therefore, it becomes paramount to 

strengthen monitoring of the fishery in order to account for these incidental catches and 

safeguard progress to sustainable management of the fisheries resources as well as fulfill 

conservation mandates (Kiilu et al., 2025). 

Kenya has a functional national observer program that deploys fisheries staff as scientific 

observers onboard national and foreign flagged vessels in the Kenyan Exclusive Economic 

Zone (EEZ) and the high seas (Fondo & Omukoto, 2021). The implementation of the 

observer program is critical function by the Kenya Fisheries Service as stipulated in the 

Fisheries Act Cap 378 and forms part of the backbone in the monitoring, control and 

surveillance (MCS) functions (Kiilu et al., 2025). However, as evidenced in literature and 

national observer reports, the program suffers constraints ranging from finances, 

logistical operations, knowledge and capacity among others that often contribute to gaps 

in data coverage (Babcock et al., 2003). The strive for balance by fisheries observer 

programs between capped observer efforts and the necessity for precise estimates of 

target, bycatch and protected, endangered and threatened (PET) species for the longline 

fisheries has become unbearably inevitable (Gray & Kennelly, 2018). The coefficient of 

variation (CV) is a global technique that has been applied as a scale-free metric of relative 

precision to set monitoring targets and validation of core indices and estimates relevant 

to management of longline fisheries (Thompson, 2012). 

The observer program in Kenya implements training techniques from the IOTC and the 

SWIOFC that has structured data collection forms and reporting templates for catch and 

effort, biological sampling, and compliance information. This study focused on catch and 

effort data in order to review and assess precision estimates at the primary sampling unit, 

which in this case is the basket (hooks between floats/radio buoys). In order to 

comprehensively assess precision, it was inevitable to compile all data and simulate 

sampling techniques and finally review the statistics involved. 

Therefore, study aimed to assess the efficiency of alternative stratification schemes 

unique to longline fishery in addition to estimates of CV for a given defined stratum, and 



thus, demonstrates proof to select the most statistically efficient strata for fisheries 

managers need to understand the marginal gains in precision for every new stratification 

scheme. 

Objectives 

1. To Build per-stratum baseline standardised CPUE templates from vessel logbook 

and observer data. 

2. Simulate observer sampling under alternative set-coverage and basket-sampling 

schemes  

3. Compute per-stratum CV of CPUE (catch rate estimates) and 95% confidence 

bounds 

4. Identify minimal coverage and within-set sampling fraction that meets 

management targets. This identifies which species/strata estimates are statistically 

reliable and which suffer from insufficient sampling effort due to high variance or 

low coverage. 

5. To validate that the current operational stratification scheme is statistically 

appropriate for the longline fishery by verifying that the strata successfully partition 

the fishing effort into relatively homogenous units, whereby catch rates within a 

stratum are less variable than across the entire fishery. 

Justification and Rationale 

Therefore, aggregating catch totals of vessel logbooks with basket-level fishing behaviour 

from observer data has potential to generate an authentic baseline population that 

conserves both reported catch totals and within-set heterogeneity (Kesavan Nair & 

Alagaraja, 1988). In addition, the simulation of sampling techniques for observer 

candidate set and basket across different strata allows for proof-based design of coverage 

levels for sets and basket sampling efforts. In essence, this procedure is critical because 

it manages the phenomenon of potential uncertainty intrinsic in proportionate sampling 

of increasingly unstable natural patterns like quantifying the variation in sampling 

(Thompson, 2012). The strive to attain 100% coverage over the whole fishery for 

observer program steadily continues and with that reality, estimated total catches for 

target, bycatch and PET species becomes a random estimate, which is conditional to 

inaccuracies (Babcock et al., 2003). For example, reported observer data particularly for 

elusive catches of PET species, usually demonstrate highly overdispersed distribution 

whereby, a majority of fishing sets tend to report zero bycatch or PET species while only 

a few sets record extremely high levels of these species (Curtis & Carretta, 2020). It is 

due to this high uncertainty in the fishery that causes conventional simple sampling 

techniques unreliable (Little & Rubin, 2019). 



Stratified random sampling schemes based on factors that drive catches such as fishing 

area, target species, depth or seasons is more efficient than simple random sampling 

(SRS), which fails to validate whether sampled vessel effort is truly representative of the 

unobserved effort by rigorously assessing the statistical efficiency of various stratification 

and allocation strategies (Babcock et al., 2003). This study aimed to correct that by 

comparing both logbook data and observer data for species category totals and imputed 

by mean for unobserved sets and baskets per stratum. Then acknowledged Newton and 

Geyer’s (1994) technique in a simulation through nested bootstrap and Monte Carlo (MC) 

propagation (Manly, 2018) as well as deployment of the Horvitz-Thompson (HT) 

estimator (Gokpinar & Arzu Ozdemir, 2012) to apply the CV as the definitive metric for 

quantifying the uncertainty property of estimated total catches of target, bycatch and 

PET species categories (Wakefield et al., 2018; Hulliger, 1995). Therefore, the techniques 

were then invested to demonstrate a probabilistic evaluation of the precision of estimated 

catches by confirming that a low CV denotes a statistically stable estimate whereas a high 

CV would then signal that the monitoring program is statistically deficient for that 

particular species category or stratum (Mclnerny, 2014; Babcock et al., 2003). 

Furthermore, the simulation permits for the testing of different stratification and 

allocation schemes such as placing more observers in areas known for high bycatch 

(Babcock et al., 2003). Also, the technique creates opportunities for advanced model-

based and inclusion of the finite population correction (FPC) (Thompson, 2012) the 

current simulation abstracts away from complex design-based and FPC.  

Materials and Methods 

The positions for start setting and end hauling were obtained from the logbook dataset, 

which contained the catches for both reported and species categories. The line, 

theoretically set to haul, denotes the location of the longline fishing gear and 

consequently, establishes a spatial distribution of the catches (Francis, 1984). Thereafter, 

we made a LINESTRING for every set accurately with dateline for one geometry per set 

(Pebesma & Bivand, 2023) in order to allow distribution of every set that is positioned in 

each 5° cell. Then a polygon of 5° x 5° grid, which was cropped into the Western Indian 

Ocean FAO Area 51 in order to create a stratification of grid cells required for area of 

management (FAO, 2002). 

Consequently, each LINESTRING was intersected with the FAO cropped grid to generate 

a line segment of per combination of set and cell and computed the length of every set 

segment within individual cells (Jolly & Hampton, 1990). The set segments were split into 

geodetic length fractions as follows: 



Construction of the line segment from setting to hauling: 𝐿𝑖. Intersect 𝐿𝑖with the 5° grid, 

then the fraction of line length inside each cell was used to supply set catches to those 

cells: 

𝑤𝑡𝑖𝑐 = totalwti
𝑥
𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑖∩𝑐𝑒𝑙𝑙𝑐)

𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑖)
, (Pebesma & Bivand, 2023; Francis, 1984) 

This process was possible because of the absence of hooks at the basket-level (discussed 

above) and thus, hook locations along individual cells was not possible hence, use of 

catches for baskets so as to preserve supply of catch and effort (adjusted CPUE) by length 

fraction in limited or missing positions of baskets. Finally, reported catches of species and 

species categories were distributed along each intersected cell by fraction and combined 

for every grid cell. The output was a logbook table eventually had cell-level data that was 

used for the area stratification as well as generate templates for the ‘true’ population 

(Pebesma, 2018). 

The computation of the sum of species type in a basket derived the basket-weight-total 

and also, per set calculation involved summation of total weight of species composition 

per observed basket and therefore, sampled total weights of species composition per 

basket was validated to be less than or equal to the observed total weight per set (Francis, 

1984). This outcome confirmed that there were missing basket-level data particularly 

from unobserved baskets per set. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comprehensive Overview of Catch Composition Per 1°x1° Grid Cell from 
Kenya's Observer Catch and Effort Data 2018-2015 (Developed in R base 4.4.3) 



Data sourcing, Incorporation and Validation 

The fisheries observer dataset involves sampled data of catch and effort data 𝑛 = 6928 

from 2018 to 2025, which represents the historical dataset of fisheries observer program 

onboard longline fishing vessels. Similarly, vessel logbook data 𝑛 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑡𝑠 that reflects 

fishing sets of the observer data was used to provide total catches and total number of 

hooks for every set for validation of with those exact observed total of sets captured in 

the observer data. Therefore, we combined the two datasets to generate a schema of 

the following fields per row: date, start-setting positions, end-hauling positions, season 

(NEM and SEM), set unique identification (id), basket index, species type, species 

category (target, bycatch, PET), total weight per species composition (kg), observed total 

weight per set (calculated catch) and observed total number of hooks per set. Generally, 

data cleaning was performed in R (R Core Team, 2024) with packages tidyverse and dplyr 

(Wickham, 2014; Wickham et al., 2023) and vectorisation of spatial coordinates 

(Pebesma, 2018). 

Proportion of Weight Raise and Imputation for unobserved Baskets 

Here the focus was on observed basket species weights in order to compute species 

proportions and raise to the total set weight. At the same time, impute (mean) for 

unobserved baskets to generate complete basket templates for a ‘true’ population (Quinn 

& Deriso, 1999). Thus, due to the limitation of absence of number of observed hooks per 

basket, sampled basket weights proportions within set were used to allocate total weight 

of sets proportionally to observed baskets as well as species categories whereby, the 

approach becomes: for set 𝑖 let sampled basket species weights be  𝑤𝑖𝑏𝑠 for sampled 

baskets 𝑏 ∈ 𝑆𝑖 (Harley et al., 2001): sampled weight of species composition is calculated 

as 𝑤𝑖𝑠 
𝑠𝑎𝑚𝑝𝑙𝑒 = ∑ 𝑤𝑖𝑏𝑠𝑏∈𝑆𝑖

 and total sampled weight of baskets per set 𝑖 (including species 

composition in baskets) as 𝑊𝑖
𝑠𝑎𝑚𝑝𝑙𝑒 =  ∑ ∑ 𝑤𝑖𝑏𝑠𝑠𝑏∈𝑆𝑖

 (Quinn & Deriso, 1999). In addition, 

the proportion of sampled weight (per basket) for species was calculated as 𝑠: 𝑃̅𝑖𝑏𝑠 =

𝑤𝑖𝑏𝑠
𝑠𝑎𝑚𝑝𝑙𝑒

𝑊
𝑖
𝑠𝑎𝑚𝑝𝑙𝑒 , and showed the ratio of how much of sampled catch each basket contributed. 

Then, estimates were done for the total number of baskets in a set, whereby, 𝐵𝑖 refers 

to total number of baskets hauled per set. 

Thereafter, we estimated the total number of baskets per set by conducting a mean 

imputation to generate weights for unobserved baskets and was achieved by inferring 

reasonable number of baskets from observed total weights per set or logbook set totals 

(kgs) 𝑊𝑖
(𝑠𝑒𝑡)

 as  𝐵𝑖 =
𝑊𝑖

(𝑠𝑒𝑡)

𝑤̅𝑖
𝑠𝑎𝑚𝑝𝑙𝑒 , whereby, 𝑤̅𝑖

(𝑠𝑎𝑚𝑝𝑙𝑒)
 becomes the mean weight of sampled 

basket (Kimura, 1981). 



Furthermore, we normalised proportions and expanded to total weights per set using, 

∑ 𝑃̅𝑖𝑏
(𝑎𝑙𝑙)

= 1
𝐵𝑖
𝑏=1  in order to ensure that summation of proportions becomes 1 (Quinn & 

Deriso, 1999). Then, calculated the total weights for a set by scaling the basket weights 

as: 𝑤̅𝑖𝑏
𝑎𝑙𝑙 = 𝑃̅𝑖𝑏

𝑎𝑙𝑙 ∗ 𝑊𝑖
𝑠𝑒𝑡 this confirmed that both observed baskets and imputed baskets 

were combined to represent the expanded total catch for that set.  

Similarly, the same computation was repeated for estimating species composition per 

basket since the observed baskets have total weights of species types and was imputed 

for basket-level species composition by, calculating the proportion of species type per 

observed basket as  

𝑝𝑖𝑠 = ∑ 𝑤𝑖𝑏𝑠𝑏∈𝑜𝑏𝑠 /𝑊𝑖
(𝑠𝑎𝑚𝑝𝑙𝑒)

 , then for imputed baskets utilise the same ratio: 

𝑤̅𝑖𝑏𝑠
(𝑖𝑚𝑝𝑢𝑡𝑒𝑑) = 𝑝𝑖𝑠 ∗  𝑤̅𝑖𝑏

(𝑎𝑙𝑙)
 and consequently, the summation over all baskets will generate 

the expanded total weights of species composition per set (Thompson, 2012). According 

to previous literature, the imputation fortifies variance when coverage is less than 100% 

whereas, the ratio of weight expansion reduces bias because it safeguards proportional 

heterogeneity within sets (Thompson, 2012; Pennington, 2001; Cotter, 1998). The ratio 

estimation of the total catch per set 𝑌̅𝑖 under an unbiased proportional sampling then 

became: 

𝑌 ̅𝑖 = 𝑊𝑖
𝑠𝑒𝑡 ∗

∑ 𝑤𝑖𝑏𝑠𝑏∈𝑠𝑎𝑚𝑝𝑙𝑒

∑ 𝑤𝑖𝑏𝑏∈𝑠𝑎𝑚𝑝𝑙𝑒
 (Cochran, 1977). 

CPUE standardisation at Set-Level 

The computation for expanded total catch per set and records of total number of hooks 

per set was done to generate nominal CPUE (kg/1000 hooks) and then applied a GLM 

model to standardised nominal CPUE into indices of abundance that was comparable 

across stratum (Lo et al., 1992). Then, summed totals into population sets and population 

baskets for stratum templates (Thompson, 2012). Standardisation of CPUE satisfies its 

comparison across sets and thus, nominal CPUE at set-level for species 𝑠 in set 𝑖 as:  

𝐶𝑃𝑈𝐸𝑖𝑠
𝑛𝑜𝑚 =

𝑌̅𝑖𝑠

𝐻𝑖
𝑜𝑏𝑠 ∗ 1000 , where, 𝑌̅𝑖𝑠 indicates the raised total catch (kg) for species 𝑠 in 

set 𝑖 whereas  𝐻𝑖
𝑜𝑏𝑠 , represents the total number of hooks observed per set. Thereafter, 

nominal CPUE was standardised using a gaussian GLM (Lo et al., 1992) to enhance 

comparability of CPUE across spatial and temporal strata and thus, ensured minimal bias 

due to non-uniform effort or sampling techniques (Hilborn & Walters, 1992). 

Consequently, GLM was computed as: let 𝑌 𝑖𝑠 be total catch of species type 𝑠 in set 𝑖 and 

adopted a Gamma-log, which ensures that responses are positive ad caters from 

multiplicative effects (Hilborn & Walters, 1992). 



Therefore, the model was performed as: 

𝐸[𝑌𝑖] = 𝐻𝑖
𝑜𝑏𝑠 ∗  𝜇𝑖, so that  𝐶𝑃𝑈𝐸𝑠,𝑖

𝑛𝑜𝑚𝑖𝑛𝑎𝑙  ~ 𝐺𝑎𝑚𝑚𝑎 (𝑚𝑒𝑎𝑛 =  𝜇𝑠,𝑖, 𝑙𝑖𝑛𝑘 = log), and model 

was fitted with an offset log (𝐻𝑖
𝑜𝑏𝑠) (Lo et al., 1992). Then standardisation was done by 

strata of area, season and species type. 

𝐸[𝑌𝑖𝑠] =  𝜇𝑖𝑠 = exp (𝛽0 + 𝛽1 log(𝐻𝑖
𝑜𝑏𝑠) + 𝛽2𝐴𝑟𝑒𝑎𝑖 + 𝛽3𝑆𝑒𝑎𝑠𝑜𝑛 + 𝛽4𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑠(𝑡𝑦𝑝𝑒) + 𝜖𝑖)  

The model parameters were defined as, 𝛽0 to indicate the intercept inferring to the 

abundance index of baseline and log (𝐻𝑖
𝑜𝑏𝑠) performs the offset for hooks to achieve 

adjusted effort. The model involved effects at stratum level such as 𝐴𝑟𝑒𝑎𝑖 as categorial 

that impacts spatial stratum developed for 5° grid cell, 𝑆𝑒𝑎𝑠𝑜𝑛𝑖 as a categorical outcome, 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑠(𝑡𝑦𝑝𝑒) to acknowledge basket-level species composition effects and 𝜖𝑖 to 

represent residual error (Hiborn & Walters, 1992). Thus, indices of CPUE standardization 

per stratum was generated as: 𝐶𝑃𝑈𝐸̅ℎ,𝑠
𝑠𝑡𝑑 = exp (𝛽 𝑜 + 𝛽 2,ℎ + 𝛽 3,𝑠 + 𝛽 4,𝑠 +⋯), which 

eliminates effort and sampling biases (Hiborn & Walters, 1992). 

Generate Baseline Templates for True Population 

This stage was important to introduce the standardised CPUE (𝐶𝑃𝑈𝐸̅ℎ,𝑠
𝑠𝑡𝑑) to generate a 

hypothetical but natural population, which the sampling simulation procedure MC will be 

undertaken (Thompson, 2012; Manly, 2018). The stage had two phases: (i) template for 

population sets, since each set represented a feature in the population with its 

parameters. (ii) template population baskets whereby, every set is expanded into total 

number of baskets 𝐵𝑖 to create 𝐵𝑖
𝑓𝑢𝑙𝑙

 and thereafter, assign individual weights of species 

composition for every basket by disaggregating raised total weights of species across the 

baskets using 𝐵𝑖
𝑓𝑢𝑙𝑙

 template (Cochran, 1977). 

Phase 1: Construction of template for population sets for every observed set was 

performed so that the output generated a set with rows bearing parameters as follows: 

unique identification (id) of set 𝑖, stratum (area * season), 𝐻𝑖
𝑜𝑏𝑠, 𝑌̅𝑖, 𝑤𝑖𝑠 

𝑠𝑎𝑚𝑝𝑙𝑒
and 𝑝𝑖𝑠 , 𝑌 𝑖𝑠 

and (𝐶𝑃𝑈𝐸̅ℎ,𝑠
𝑠𝑡𝑑) (already defined above). Therefore,  

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑡𝑠[𝑖] ∶= (𝑖, 𝑠𝑡𝑟𝑎𝑡𝑢𝑚,𝐻𝑖
𝑜𝑏𝑠, 𝑌̅𝑖, {𝑃̅𝑖𝑠}𝑠, {𝑌𝑖𝑠}𝑠, 𝐶𝑃𝑈𝐸̅𝑖

𝑠𝑡𝑑)   

Phase 2: Construction of template for population baskets were created by amplifying 

individual set 𝑖 into 𝐵𝑖 baskets and then assigned the weight of species composition into 

those baskets was done for each set 𝑖 : ∑ ∑ 𝑤𝑖𝑏𝑠
𝑝𝑜𝑝

𝑠
𝐵𝑖
𝑏=1 = 𝑌̅𝑖 (refer above)  and likewise, 

for each species 𝑠 in set 𝑖 : ∑ 𝑤𝑖𝑏𝑠
𝑝𝑜𝑝𝐵𝑖

𝑏=1  =  𝑌 𝑖𝑠 (refer above). In addition, the 𝑃𝑖𝑏 ratio 

output already derived for baskets in each set was considered to demonstrate observed 



pattern at basket-level. Thereafter, we distributed species 𝑠 across baskets through a 

deterministic disaggregation (Cochran, 1977): 𝑤𝑖𝑏𝑠
𝑝𝑜𝑝 = 𝑃𝑖𝑏 ∗  𝑌 𝑖𝑠 ,   𝑏 = 1,… , 𝐵𝑖. 

Thus, the totals for each basket assigned became: 

 𝑤𝑖𝑏,𝑡𝑜𝑡𝑎𝑙
𝑝𝑜𝑝 = ∑ 𝑤𝑖𝑏𝑠

𝑝𝑜𝑝
𝑠 = 𝑃𝑖𝑏  ∑ 𝑌 𝑖𝑠𝑠 = 𝑃𝑖𝑏 ∗ 𝑌̅𝑖 (Cochran, 1977). 

In order to confirm that the allocation was conservative, we computed ∑ 𝑤𝑖𝑏,𝑡𝑜𝑡𝑎𝑙
𝑝𝑜𝑝𝐵𝑖

𝑏=1  to 

confirm it was the same as ∑ 𝑃𝑖𝑏 ∗ 𝑌 𝑖𝑠 = 𝑌 𝑖 (Thompson, 2012). 

Eventually, the population basket template developed had features represented in every 

row as: (𝑖, 𝑏, 𝑠) and weight (kgs) 𝑤𝑖𝑏𝑠
𝑝𝑜𝑝

. 

Preparation for Stratified Statistics and Inclusion of Species Composition 

Uncertainty into Sampling Scheme 

This step was increasingly important to setup the required ingredients for a stratum-level 

configuration that comprised of inclusion probability that warrants the simulation of 

sampling schemes discussed above (stratified, PPS) and then evaluate Horvitz-Thompson 

values and approximate variance (Pebesma & Bivand, 2023). The parameters that were 

involved in the computation were derived from previous outputs as follows: stratum ℎ, 

sets 𝑖 ∈ ℎ, species 𝑠 and basket 𝑏. Accordingly, 𝑁ℎ represented the number of sets in 

stratum ℎ and for set 𝑖 it contained hooks 𝐻𝑖
𝑜𝑏𝑠, total raised catch  𝑌̅𝑖, total raised species 

catch 𝑌̅𝑖𝑠 and 𝐶𝑃𝑈𝐸̅𝑖
𝑠𝑡𝑑. In addition, total estimated number of hooks per stratum was 

calculated as: 𝐻ℎ = ∑ 𝐻𝑖
𝑜𝑏𝑠

𝑖∈ℎ  (Hiborn & Walters, 1992). 

As explained above, the technique adopted for PPS aimed to conduct deliberate 

oversampling of sets as opposed to SRS, so as to capture most of the total catch from 

those sets. The technique as argued by (Babcock et al., 2003), elevates the precision of 

calculated total catches since the uncertainty in population is attributed to a small number 

of sets that are have flourishing catches or increased CPUE (Kimura, 1981). Thus, the 

focus was the size measure 𝑠𝑖𝑧𝑒𝑖 in set 𝑖 was derived as the 𝑖𝑡ℎ set, which was adopted 

as 𝑌̅𝑖. The probability ratio of selecting 𝑖𝑡ℎ set in one (𝑚ℎ) draw with replacement was 

then computed as the 𝑠𝑖𝑧𝑒𝑖 divided by the summation of all other size measures 𝑠𝑖𝑧𝑒𝑗 

and denoted as: 

 𝑝𝑖
(𝑝𝑟𝑜𝑝) =

𝑠𝑖𝑧𝑒𝑖

∑ 𝑠𝑖𝑧𝑒𝑗
𝑁
𝑗=1

 , whereby 𝑁 represents the total number of sets in the population 

(Jolly & Hampton, 1990). 

The subsequent step was the sampling itself with-replacement boosted probability 𝜋𝑖 (). 

In essence, 𝑚ℎ units were sampled with replacement from the derived true population 



and thus, on the one hand, probability of not selecting a particular set 𝑖 for every 𝑚ℎ 

unique draw was denoted as: (1 − 𝑝𝑖
(𝑝𝑟𝑜𝑝))

𝑚ℎ

(Hulliger, 1995). On the hand, the 

probability of that particular set 𝑖 being picked at least once was denoted as: 

𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)

= 1 − (1 − 𝑝𝑖
(𝑝𝑟𝑜𝑝))

𝑚ℎ

 (Hulliger, 1995). Therefore, the features for this 

approximation were adopted such that if both 𝑝𝑖
(𝑝𝑟𝑜𝑝)

 and 𝑚ℎ became small, the output 

of 𝑚ℎ ∗  𝑝𝑖
(𝑝𝑟𝑜𝑝)

 was an acceptable approximation for 𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)

, which substantiated the 

assumption for PPSWR. However, in cases that 𝑠𝑖𝑧𝑒𝑖 prevailed with increased 𝑝𝑖
(𝑝𝑟𝑜𝑝)

, it 

meant that huge sets influenced 𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)

 to quicky arrive at 1, which inferred that there 

was a higher chance that the sets would be chosen in the sample (Thompson, 2012). 

According to (cite), the computational function for 𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)

 is inherently placed on caveat 

of 0 𝑎𝑛𝑑 1 (Cochran, 1977). 

The HT estimator discussed above was deployed in the sampling process as an unbiased 

estimator for the overall population due to uncertainty supplied in the PPSWR 

(Pennington, 1996). Hence, HT estimator for species 𝑠 was derived as: 𝑇̅𝐻𝑇
(𝑠) = ∑

𝑌̅𝑖𝑠

𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)𝑖∈𝑆  

, and 𝑌̅𝑖𝑠 as defined above, represented the set-level catch for species 𝑠 in set 𝑖 while the 

summation refers to sets 𝑆 for oversampled sets (FAO, 2011). In retrospect, the 

unbiasedness of HT is usually tied to 𝜋𝑖 as the authentic first-order inclusion probability 

derived from the true without-replacement sampling scheme (Pennington, 1996) while, 

its precise variance measure of the HT estimator relies upon second-order joint 

probabilities 𝜋𝑖𝑗 (Newton & Geyer, 1994; Hulliger, 1995). Thus, since 𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)

 used in 

this step was a derivative approximation from the authentic probability, the precision of 

the estimates is dependant on the properties of the approximation (Pennington, 1996). 

In that regard, the need to perform sampling process through bootstrap was paramount 

so that samples are resampled 𝑀 times in consideration of the sampling regime and 

evaluated the empirical variance of HT (Hulliger, 1995). The process of bootstrap or 

Monte Carlo resampling ensured that both sampling scheme complexities i.e. for both 

PPS and stratification as well as species composition uncertainty are accommodated 

inherently in the sampling procedure of sets and baskets, and generates an authentic 

variance associated with those schemes (Thompson, 2012). 

 

Species Composition and Scheme Variance Propagation Across Strata with 

Monte Carlo and HT Simulator 



The purpose of this approach was to determine how observed coverage and basket 

sampling could be synthesized into precision for CPUE of species composition, as well as 

translate into design-based planning of effort and targets. The simulation handled set 

observations and within-set basket sampling across various sampling scheme and then 

calculated HT values of totals for every stratum and finally aggregate resampled estimates 

for composition variations. Thus, to be able achieve the desired outcomes, the procedure 

was structured to perform computations for every replicate as follows: 

True Population per Stratum 

In the above analysis, already generated population templates for individual strata was: 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑢𝑚,ℎ: {𝐶𝑃𝑈𝐸𝑖𝑠
𝑠𝑡𝑑 , 𝑤𝑖, 𝐴𝑟𝑒𝑎𝑖, 𝑆𝑒𝑎𝑠𝑜𝑛𝑖 , 𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑠} 

whereby 𝐶𝑃𝑈𝐸𝑖𝑠
𝑠𝑡𝑑, is the standardised CPUE for species 𝑠 in set 𝑖  derived above and 𝑤𝑖,ℎ 

is the overall weight of a stratum obtained from total effort or total number of sets in 

population (Efron & Tibshirani, 1993).  

Therefore, mean CPUE of the true population for every stratum was calculated as:

 𝜇𝑡𝑟𝑢𝑒
𝐶𝑃𝑈𝐸 = ∑ 𝑤𝑖,ℎ ∗ 𝐶𝑃𝑈𝐸𝑖𝑠

𝑠𝑡𝑑𝑁
𝑖=1 /∑ 𝑤𝑖,ℎ

𝑁
𝑖=1   

and consequently, the overall catch estimates of the true population of stratum  ℎ is 

derived from: 𝑌𝑡𝑟𝑢𝑒,ℎ = ∑ 𝐶𝑃𝑈𝐸𝑖𝑠
𝑠𝑡𝑑 ∗ 𝐻ℎ

𝑁
𝑖=1 . 

Therefore, let 𝑁ℎ become number of sets per stratum, which is obtained from population 

sets computed. Thus, by selecting 𝑚ℎ = 𝑟𝑜𝑢𝑛𝑑(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑒𝑣𝑒𝑙 ∗ 𝑁ℎ) (Cochran, 1977), the 

simulator withdraws 𝑚ℎ sets according defined sampling scheme discussed above. The 

sampling scheme computed were random sampling conserved to be equivalent of equal-

probability sampling (Gokpinar & Arzu Ozdemir, 2012), stratified sampling was considered 

as similar to random although it was executed per individual stratum. Then, performed 

sampling with probability proportional to size with replacement and approximation for 

inclusion probability (Efron & Tibshirani, 1993) to generate expansion across sets with 

the estimator per species as 𝑇̅𝐻𝑇
(𝑠)

 (Hulliger, 1995).  

Monte Carlo Propagation 

Application of the Monte Carlo (MC) simulator (Manly, 2006) accounted for uncertainty in 

deriving species composition since proportions 𝑃̅𝑖𝑠 had been calculated from a subset of 

baskets. The technique for nested bootstrap (Manly, 2018), was adopted for individual 

MC replicates and for every sampled set as follows: 

• Observed baskets 𝑆𝑖 were resampled (with replacement) to generate a bootstrap 

sample 𝑆𝑖
(𝑟)

 at the basket level and this process of resampling whole baskets was 



vital to shield covariance of multi-species within a basket (Kunz et al., 2007). 

Thereby, we reworked proportions 𝑃̅𝑖𝑠
(𝑟)

 from baskets that were resampled as:  

𝑃̅𝑖𝑠
(𝑟) =

∑ 𝑤𝑖𝑏𝑠𝑏𝜖𝑺𝒊
(𝒓)

∑ ∑ 𝑤𝑖𝑏𝑠𝑠  
𝑏𝜖𝑺𝒊

(𝒓)
 

• Similarly, we recalculated the raised total catches for within-set expansion, which 

was accomplished by inflating basket-weights by proportion  𝑌̅𝑖𝑠
𝑟 = 𝐻𝑖

𝑜𝑏𝑠 ∗  𝑃̅𝑖𝑠
(𝑟)
 . 

The nested resampling was undertaken within individual replicates of MC so that 

uncertainty in species composition structure was supplied to the variance of across-

replicates (Hulliger, 1995; Hilborn & Walters, 1992). In addition, propagating uncertainty, 

baskets were resampled entirely (the basket-level vectors across species) when building 

population of species 𝑃̅𝑖𝑠 inside the MC replicates in order to capture composition sampling 

variance. This technique satisfied our objective of integrating both composition and 

design variability from the application of a nested bootstrap from basket sampling and 

MC set selection respectively. 

Compute CPUE and empirical CV over Monte Carlo replicates 

The MC draws samples of size 𝑛 = 𝑝 ∗ 𝑁𝑡𝑜𝑡𝑎𝑙 from the ‘true’ population according to 

specified sampling scenarios and the stratified ratio estimator calculates estimated totals 

as per species categories using HT. Then, the simulation calculates the distribution of CV 

after M iterations by calculating the mean of the estimates (Y̅) and the SE of the estimated 

total (the SD of the M estimates):  𝑆𝐸(𝑌̅) =  ⟨ 
1

𝑀−1
 ∑ (𝑌̅𝑖 − 𝑌̅)

2𝑀
𝑖=1  , and the overall 

CV simulation for particular sampling scheme was evaluated as: 𝐶𝑉𝑠𝑖𝑚 =
𝑆𝐸(𝑌̅)

𝑌̅
∗ 100. 

Conclusively, bootstrapped CV was computed to generate 95% CI. 

Assumptions 

Logbook reported set totals are treated as reliable baselines and within-set expansion, 

the ratio estimation assumed sampled baskets are representative. 

In the absence of sampled CPUE at basket level as discussed above, a true CPUE ratio 

raise (
sampledcatch

sampledhooks
) * 𝐻𝑖 and inference of total catch of baskets 𝐵𝑓𝑢𝑙𝑙 that would have been 

applied for within-set expansion patterns was not possible and therefore, the study 

assumed that the observed baskets are representative of the within-set species 

composition by weight. Consequently, those sampled baskets that represented the set 

composition, were then disaggregated from the set totals by sampled-weight proportions, 



which is an unbiased for species total since direct observed weights were used as basis 

for proportioning (Cochran, 1977). 

The proportion-based raising fails to acknowledge uncertainty between the relationship 

of sampled baskets and unobserved baskets, which may have been possible using hooks 

or basket positions. Therefore, due to this mismatch, the variance was included through 

bootstrap of basket-level resampling conducted for both basket and set-level in order to 

reflect uncertainty in true population. 

The loss of effort simple standardisation (per 1000 hook) rate at the basket-level was 

compensated at the set-level by adjusting the CPUE with effects originating at the basket-

level for species composition. Thus, since proportional raising at basket-level will only 

give species composition totals. After raising at basket-level totals, adjusted CPUE at set-

level was calculated for raising to total for sets. 

Tools and software 

As mentioned above, R base software was employed in the analysis and pakcages used 

were: sf, ggplot2, lubridate, boot, lme4, naturalearth among others (R Core Team, 2024) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results and Discussions 

 

Per-stratum precision vs coverage curves  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Precision vs Percentage of Basket Sampled (Stand-CPUE) per stratum 

The observer data in Kenya showed that basket-level sampling was conducted 

systematically without exhaustive sampling, which caused the CV to be high showing high 

variability of mean but as coverage increased at the basket-level, CV consequently 

increased towards 0.2 or 20% ±95% CI. 

 

 



 

Fisheries Management Perspective 

Rare species require high coverage: species with low encounter rates (like sea turtles or 

rare sharks) have a high inherent variance and require much higher coverage in order to 

achieve a desied CV target compared to common target species.  

Cost-Benefit Improvement: observer coverage is expensive and management agencies 

require to justify observer funding based on the data quality generated. The outputs from 

the simulator provides the answer to the critical question, of how much observer coverage 

is enough? Thus, by setting acceptable CV for the species categories, managers can use 

the simulation output to determine the minimum observer coverage percentage required 

to meet that target. Similarly, managers will then be able to assign limited resources 

effectively. For instance, the simulation might show that increasing coverage from 10% 

to 20% cuts the CV in half, but increasing it from 20% to 30% only cuts the CV by a 

small fraction. This guides the decision to stop at 20% coverage, achieving maximal 

statistical benefits for the marginal cost. 

Accomplish regulatory and conservation requirements: observer data captures meta data 

for PET species category, which is a mandate for regional through RFMOs and national 

regulations that for instance may require quantifiable and reliable estimates of their fate 

(mortality, survival rates or injury). Therefore, the simulation is vital for species that are 

rarely encountered but protected like sea turtles, some shark species or cetaceans. As 

the results indicate (fig) and previous studies (Curtis, 2020), rare events are associated 

with elevated variance, which the simulator reliably demonstrates that achieving an 

acceptable CV for these species will require potentially increased coverage levels, usually 

>50% more than target species (Babcock et al., 2003). The study also reinforces 

accountability of stock assessment or conservation measures adopted by scientists and 

managers since CV demonstrates measure of confidence in the data used to inform the 

decision. Therefore, by applying the simulator in design development of the observer 

program satisfies that the reports and datasets generate are defensible and scientifically 

authentic. 
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