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Abstract

Effective fisheries management relies on accurate, unbiased, and spatially resolved
information on catch, effort, and bycatch composition. This study integrates longline
observer datasets collected along the Kenyan coastline with advanced analytical
frameworks to standardize Catch Per Unit Effort (CPUE), quantify uncertainty through the
Coefficient of Variation (CV), and evaluate sampling biases that influence bycatch
estimates. The study employed modern statistical, spatial, and computational tools to
improve the precision, transparency, and interpretability of observer-based indices of
abundance and mortality.

At the core of the methodology, set-level and sample-level data were harmonized and
validated using the R ecosystem (tidyverse, sf, lubridate, ggplot2). Each observed set
was assigned a 1° x 1° grid cell based on midpoints between setting and hauling
coordinates, forming the spatial foundation for analysis. Nominal CPUE was calculated as
kilograms per 1,000 hooks and subsequently standardized through generalized linear
models (GLMs) and delta-lognormal frameworks, adjusting for spatiotemporal and
operational covariates. Variability in CPUE estimates was quantified using both analytical
and bootstrap-derived CVs, providing a measure of precision across years, species, and
strata.

Species composition and sampling uncertainty were addressed using nested resampling
approaches that simultaneously captured variation in catch proportions and sampling
effort. This dual-layer resampling allowed realistic propagation of uncertainty, improving
the reliability of standardized indices. Data validation modules within the workflow flagged
statistical and protocol deviations—such as outlier catches, under-sampling, and
inconsistent spatial coverage—ensuring data integrity before downstream analysis.



Spatial analyses were performed using the sf and rnaturalearth packages to construct
numbered coastal grids, overlaying observer data on Kenya’s Exclusive Economic Zone
(EEZ). Grid-level summaries were developed to show (1) numbered 1° x 1° grids along
the coastline; (2) species distribution and relative abundance per grid; and (3) total
allocated catches by grid, visualized as heatmaps. These maps highlighted species-
specific spatial hotspots and potential bycatch concentration zones, providing visual
insight into effort distribution and catch dynamics.

In connection with broader fisheries management objectives, the study aligns strongly
with contemporary debates on observer coverage, bycatch bias, and sampling precision.
Bycatch remains a significant source of unaccounted mortality for commercial,
recreational, and ecologically sensitive species. Although observers provide the most
reliable data on at-sea mortality, the assumption of random sampling within observer
programs is often violated. Opportunistic or voluntary participation by vessels introduces
non-random sampling bias, compromising the accuracy of bycatch and CPUE estimates.
The present framework incorporates diagnostic modules to assess representativeness and
to compare observed versus unobserved vessel behavior—critical steps for bias correction
in longline fisheries data.

Simulation and literature evidence suggested that achieving at least 20% observer
coverage Yields acceptable precision for common species, whereas rare or infrequently
encountered species require coverage levels of 50% or more to reduce uncertainty to
acceptable levels. In the Kenyan longline fishery context, spatial heterogeneity in effort
and species composition implies that coverage requirements may vary substantially
across grid cells and seasons (Southeast Monsoon vs. Northeast Monsoon). The
integrated CV-based approach provides a quantitative benchmark for designing efficient
sampling strategies that balance logistical constraints and statistical rigor.

Ultimately, this study demonstrated a reproducible, transparent, and scalable approach
to fisheries observer data analysis. It bridges operational sampling design with modern
computational analytics, ensuring that observer-derived indices of CPUE and bycatch are
both statistically robust and ecologically meaningful. The combined use of standardization
models, spatial stratification, and resampling-based uncertainty quantification enhances
the credibility of bycatch and effort estimates in data-limited regions such as the Western
Indian Ocean. The resulting methodology not only supports precision-based observer
allocation but also strengthens the foundation for sustainable fisheries management,
adaptive monitoring, and regional stock assessment frameworks.
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Introduction

The management of longline fishery is complex due to an ever-present challenge of
bycatch that are caught in substantial quantities, which involve non-target species,
sharks, rays, seabirds, turtles and cetaceans. Therefore, it becomes paramount to
strengthen monitoring of the fishery in order to account for these incidental catches and
safeguard progress to sustainable management of the fisheries resources as well as fulfill
conservation mandates (Kiilu et al., 2025).

Kenya has a functional national observer program that deploys fisheries staff as scientific
observers onboard national and foreign flagged vessels in the Kenyan Exclusive Economic
Zone (EEZ) and the high seas (Fondo & Omukoto, 2021). The implementation of the
observer program is critical function by the Kenya Fisheries Service as stipulated in the
Fisheries Act Cap 378 and forms part of the backbone in the monitoring, control and
surveillance (MCS) functions (Kiilu et al., 2025). However, as evidenced in literature and
national observer reports, the program suffers constraints ranging from finances,
logistical operations, knowledge and capacity among others that often contribute to gaps
in data coverage (Babcock et al., 2003). The strive for balance by fisheries observer
programs between capped observer efforts and the necessity for precise estimates of
target, bycatch and protected, endangered and threatened (PET) species for the longline
fisheries has become unbearably inevitable (Gray & Kennelly, 2018). The coefficient of
variation (CV) is a global technique that has been applied as a scale-free metric of relative
precision to set monitoring targets and validation of core indices and estimates relevant
to management of longline fisheries (Thompson, 2012).

The observer program in Kenya implements training techniques from the IOTC and the
SWIOFC that has structured data collection forms and reporting templates for catch and
effort, biological sampling, and compliance information. This study focused on catch and
effort data in order to review and assess precision estimates at the primary sampling unit,
which in this case is the basket (hooks between floats/radio buoys). In order to
comprehensively assess precision, it was inevitable to compile all data and simulate
sampling techniques and finally review the statistics involved.

Therefore, study aimed to assess the efficiency of alternative stratification schemes
unique to longline fishery in addition to estimates of CV for a given defined stratum, and



thus, demonstrates proof to select the most statistically efficient strata for fisheries
managers need to understand the marginal gains in precision for every new stratification
scheme.

Objectives

1. To Build per-stratum baseline standardised CPUE templates from vessel logbook
and observer data.

2. Simulate observer sampling under alternative set-coverage and basket-sampling
schemes

3. Compute per-stratum CV of CPUE (catch rate estimates) and 95% confidence
bounds

4. Identify minimal coverage and within-set sampling fraction that meets
management targets. This identifies which species/strata estimates are statistically
reliable and which suffer from insufficient sampling effort due to high variance or
low coverage.

5. To validate that the current operational stratification scheme is statistically
appropriate for the longline fishery by verifying that the strata successfully partition
the fishing effort into relatively homogenous units, whereby catch rates within a
stratum are less variable than across the entire fishery.

Justification and Rationale

Therefore, aggregating catch totals of vessel logbooks with basket-level fishing behaviour
from observer data has potential to generate an authentic baseline population that
conserves both reported catch totals and within-set heterogeneity (Kesavan Nair &
Alagaraja, 1988). In addition, the simulation of sampling techniques for observer
candidate set and basket across different strata allows for proof-based design of coverage
levels for sets and basket sampling efforts. In essence, this procedure is critical because
it manages the phenomenon of potential uncertainty intrinsic in proportionate sampling
of increasingly unstable natural patterns like quantifying the variation in sampling
(Thompson, 2012). The strive to attain 100% coverage over the whole fishery for
observer program steadily continues and with that reality, estimated total catches for
target, bycatch and PET species becomes a random estimate, which is conditional to
inaccuracies (Babcock et al., 2003). For example, reported observer data particularly for
elusive catches of PET species, usually demonstrate highly overdispersed distribution
whereby, a majority of fishing sets tend to report zero bycatch or PET species while only
a few sets record extremely high levels of these species (Curtis & Carretta, 2020). It is
due to this high uncertainty in the fishery that causes conventional simple sampling
techniques unreliable (Little & Rubin, 2019).



Stratified random sampling schemes based on factors that drive catches such as fishing
area, target species, depth or seasons is more efficient than simple random sampling
(SRS), which fails to validate whether sampled vessel effort is truly representative of the
unobserved effort by rigorously assessing the statistical efficiency of various stratification
and allocation strategies (Babcock et al., 2003). This study aimed to correct that by
comparing both logbook data and observer data for species category totals and imputed
by mean for unobserved sets and baskets per stratum. Then acknowledged Newton and
Geyer’s (1994) technique in a simulation through nested bootstrap and Monte Carlo (MC)
propagation (Manly, 2018) as well as deployment of the Horvitz-Thompson (HT)
estimator (Gokpinar & Arzu Ozdemir, 2012) to apply the CV as the definitive metric for
quantifying the uncertainty property of estimated total catches of target, bycatch and
PET species categories (Wakefield et al., 2018; Hulliger, 1995). Therefore, the techniques
were then invested to demonstrate a probabilistic evaluation of the precision of estimated
catches by confirming that a low CV denotes a statistically stable estimate whereas a high
CV would then signal that the monitoring program is statistically deficient for that
particular species category or stratum (Mclnerny, 2014; Babcock et al., 2003).

Furthermore, the simulation permits for the testing of different stratification and
allocation schemes such as placing more observers in areas known for high bycatch
(Babcock et al., 2003). Also, the technique creates opportunities for advanced model-
based and inclusion of the finite population correction (FPC) (Thompson, 2012) the
current simulation abstracts away from complex design-based and FPC.

Materials and Methods

The positions for start setting and end hauling were obtained from the logbook dataset,
which contained the catches for both reported and species categories. The line,
theoretically set to haul, denotes the location of the longline fishing gear and
consequently, establishes a spatial distribution of the catches (Francis, 1984). Thereafter,
we made a LINESTRING for every set accurately with dateline for one geometry per set
(Pebesma & Bivand, 2023) in order to allow distribution of every set that is positioned in
each 5° cell. Then a polygon of 5° x 5° grid, which was cropped into the Western Indian
Ocean FAO Area 51 in order to create a stratification of grid cells required for area of
management (FAO, 2002).

Consequently, each LINESTRING was intersected with the FAO cropped grid to generate
a line segment of per combination of set and cell and computed the length of every set
segment within individual cells (Jolly & Hampton, 1990). The set segments were split into
geodetic length fractions as follows:



Construction of the line segment from setting to hauling: L;. Intersect L;with the 5° grid,
then the fraction of line length inside each cell was used to supply set catches to those
cells:

Wti, = totaly X %, (Pebesma & Bivand, 2023; Francis, 1984)

This process was possible because of the absence of hooks at the basket-level (discussed
above) and thus, hook locations along individual cells was not possible hence, use of
catches for baskets so as to preserve supply of catch and effort (adjusted CPUE) by length
fraction in limited or missing positions of baskets. Finally, reported catches of species and
species categories were distributed along each intersected cell by fraction and combined
for every grid cell. The output was a logbook table eventually had cell-level data that was
used for the area stratification as well as generate templates for the ‘true’ population
(Pebesma, 2018).

The computation of the sum of species type in a basket derived the basket-weight-total
and also, per set calculation involved summation of total weight of species composition
per observed basket and therefore, sampled total weights of species composition per
basket was validated to be less than or equal to the observed total weight per set (Francis,
1984). This outcome confirmed that there were missing basket-level data particularly
from unobserved baskets per set.
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Figure 1. Comprehensive Overview of Catch Composition Per 1°x1° Grid Cell from
Kenya's Observer Catch and Effort Data 2018-2015 (Developed in R base 4.4.3)



Data sourcing, Incorporation and Validation

The fisheries observer dataset involves sampled data of catch and effort data n = 6928
from 2018 to 2025, which represents the historical dataset of fisheries observer program
onboard longline fishing vessels. Similarly, vessel logbook data n = total sets that reflects
fishing sets of the observer data was used to provide total catches and total number of
hooks for every set for validation of with those exact observed total of sets captured in
the observer data. Therefore, we combined the two datasets to generate a schema of
the following fields per row: date, start-setting positions, end-hauling positions, season
(NEM and SEM), set unique identification (id), basket index, species type, species
category (target, bycatch, PET), total weight per species composition (kg), observed total
weight per set (calculated catch) and observed total number of hooks per set. Generally,
data cleaning was performed in R (R Core Team, 2024) with packages tidyverse and dplyr
(Wickham, 2014; Wickham et al., 2023) and vectorisation of spatial coordinates
(Pebesma, 2018).

Proportion of Weight Raise and Imputation for unobserved Baskets

Here the focus was on observed basket species weights in order to compute species
proportions and raise to the total set weight. At the same time, impute (mean) for
unobserved baskets to generate complete basket templates for a ‘true’ population (Quinn
& Deriso, 1999). Thus, due to the limitation of absence of humber of observed hooks per
basket, sampled basket weights proportions within set were used to allocate total weight
of sets proportionally to observed baskets as well as species categories whereby, the
approach becomes: for set i let sampled basket species weights be w;;,, for sampled
baskets b € S; (Harley et al., 2001): sampled weight of species composition is calculated

sample

as w;, = Ypes; Wins and total sampled weight of baskets per set i (including species

composition in baskets) as W;°*"*¢ = Ypes; 2s Wips (Quinn & Deriso, 1999). In addition,
the proportion of sampled weight (per basket) for species was calculated as s: P, =

sample

Vvliisb;mple , and showed the ratio of how much of sampled catch each basket contributed.

1

Then, estimates were done for the total number of baskets in a set, whereby, B; refers
to total number of baskets hauled per set.

Thereafter, we estimated the total number of baskets per set by conducting a mean
imputation to generate weights for unobserved baskets and was achieved by inferring
reasonable number of baskets from observed total weights per set or logbook set totals

_(set)

(set) _
(kgs) W as B; =—

i
.sample 1
i

basket (Kimura, 1981).

whereby, w°**™'¥) becomes the mean weight of sampled



Furthermore, we normalised proportions and expanded to total weights per set using,

% P =1 in order to ensure that summation of proportions becomes 1 (Quinn &
Deriso, 1999). Then, calculated the total weights for a set by scaling the basket weights
as: will = PAx wset this confirmed that both observed baskets and imputed baskets

were combined to represent the expanded total catch for that set.

Similarly, the same computation was repeated for estimating species composition per
basket since the observed baskets have total weights of species types and was imputed
for basket-level species composition by, calculating the proportion of species type per
observed basket as

Dis = Xbeobs Wibs /Wl.(sample) , then for imputed baskets utilise the same ratio:

wimputed) — .+ w{ and consequently, the summation over all baskets will generate

the expanded total weights of species composition per set (Thompson, 2012). According
to previous literature, the imputation fortifies variance when coverage is less than 100%
whereas, the ratio of weight expansion reduces bias because it safeguards proportional
heterogeneity within sets (Thompson, 2012; Pennington, 2001; Cotter, 1998). The ratio
estimation of the total catch per set Y; under an unbiased proportional sampling then
became:

Y; = Weet « Zbesample Wibs (Cochran, 1977).

Ybesample Wib
CPUE standardisation at Set-Level

The computation for expanded total catch per set and records of total number of hooks
per set was done to generate nominal CPUE (kg/1000 hooks) and then applied a GLM
model to standardised nominal CPUE into indices of abundance that was comparable
across stratum (Lo et al., 1992). Then, summed totals into population sets and population
baskets for stratum templates (Thompson, 2012). Standardisation of CPUE satisfies its
comparison across sets and thus, nominal CPUE at set-level for species s in set i as:
CPUE[’™ = % * 1000 , where, Y;, indicates the raised total catch (kg) for species s in

1

set i whereas H?PPS , represents the total number of hooks observed per set. Thereafter,
nominal CPUE was standardised using a gaussian GLM (Lo et al., 1992) to enhance
comparability of CPUE across spatial and temporal strata and thus, ensured minimal bias
due to non-uniform effort or sampling techniques (Hilborn & Walters, 1992).
Consequently, GLM was computed as: let Y;, be total catch of species type s in set i and
adopted a Gamma-log, which ensures that responses are positive ad caters from
multiplicative effects (Hilborn & Walters, 1992).



Therefore, the model was performed as:

E[Y;] = H?YS * y;, so that CPUEQ{’mi"al ~ Gamma (mean = ug;, link = log), and model
was fitted with an offset log (H??) (Lo et al., 1992). Then standardisation was done by
strata of area, season and species type.

E[Ys] = wis = exp (Bo + B log(H{’bs) + B,Area; + B3Season + B,Speciesg(type) + €;)

The model parameters were defined as, B, to indicate the intercept inferring to the
abundance index of baseline and log (H?"S) performs the offset for hooks to achieve
adjusted effort. The model involved effects at stratum level such as Area; as categorial
that impacts spatial stratum developed for 5° grid cell, Season; as a categorical outcome,
Species;(type) to acknowledge basket-level species composition effects and ¢;to
represent residual error (Hiborn & Walters, 1992). Thus, indices of CPUE standardization
per stratum was generated as: CPUE;E =exp (B, + Pon + Bss+ Bas + ), which
eliminates effort and sampling biases (Hiborn & Walters, 1992).

Generate Baseline Templates for True Population

This stage was important to introduce the standardised CPUE (CPUE;'?) to generate a
hypothetical but natural population, which the sampling simulation procedure MC will be
undertaken (Thompson, 2012; Manly, 2018). The stage had two phases: (i) template for
population sets, since each set represented a feature in the population with its
parameters. (ii) template population baskets whereby, every set is expanded into total

number of baskets B; to create Bif U and thereafter, assign individual weights of species
composition for every basket by disaggregating raised total weights of species across the
baskets using B/*" template (Cochran, 1977).

Phase 1: Construction of template for population sets for every observed set was
performed so that the output generated a set with rows bearing parameters as follows:

unique identification (id) of set i, stratum (area * season), H?YS, ;, w™"*and p;; , Vs
and (CPUE;'®) (already defined above). Therefore,

Populationges(;) = (i, stratum, H??S, Y, {Pys}s, {Yis}s, CPUES)

Phase 2: Construction of template for population baskets were created by amplifying
individual set i into B; baskets and then assigned the weight of species composition into

those baskets was done for each set i : oL Y who = ¥, (refer above) and likewise,
for each species s in set i : Yo wh% = ¥, (refer above). In addition, the P, ratio
output already derived for baskets in each set was considered to demonstrate observed



pattern at basket-level. Thereafter, we distributed species s across baskets through a
deterministic disaggregation (Cochran, 1977): wh°F = P, = Y;, , b=1,..,B;.

Thus, the totals for each basket assigned became:

W'I;)?tgtal = Zs Wg;;p = Pib Zs Yis =rip * )71 (COChran, 1977)

L

In order to confirm that the allocation was conservative, we computed Zi;lwgfg,ml to
confirm it was the same as Y, P, * Y; = Y; (Thompson, 2012).

Eventually, the population basket template developed had features represented in every
row as: (i, b,s) and weight (kgs) w)°F.

Preparation for Stratified Statistics and Inclusion of Species Composition
Uncertainty into Sampling Scheme

This step was increasingly important to setup the required ingredients for a stratum-level
configuration that comprised of inclusion probability that warrants the simulation of
sampling schemes discussed above (stratified, PPS) and then evaluate Horvitz-Thompson
values and approximate variance (Pebesma & Bivand, 2023). The parameters that were
involved in the computation were derived from previous outputs as follows: stratum h,
sets i € h, species s and basket b. Accordingly, N, represented the number of sets in
stratum h and for set i it contained hooks H??S, total raised catch Y;, total raised species
catch Y;; and CPUE;™. In addition, total estimated number of hooks per stratum was
calculated as: H, = Y, H??S (Hiborn & Walters, 1992).

As explained above, the technique adopted for PPS aimed to conduct deliberate
oversampling of sets as opposed to SRS, so as to capture most of the total catch from
those sets. The technique as argued by (Babcock et al., 2003), elevates the precision of
calculated total catches since the uncertainty in population is attributed to a small number
of sets that are have flourishing catches or increased CPUE (Kimura, 1981). Thus, the
focus was the size measure size; in set i was derived as the i*"* set, which was adopted
as Y;. The probability ratio of selecting i*" set in one (m;,) draw with replacement was
then computed as the size; divided by the summation of all other size measures size;
and denoted as:

pl.(p”’p) = %ﬁl‘ze] , Whereby N represents the total number of sets in the population

j=

(Jolly & Hampton, 1990).

The subsequent step was the sampling itself with-replacement boosted probability m; ().
In essence, m;, units were sampled with replacement from the derived true population



and thus, on the one hand, probability of not selecting a particular set i for every m,,
unique draw was denoted as: (1 - pf”””’))mh(Hulliger, 1995). On the hand, the

probability of that particular set i being picked at least once was denoted as:

n.(PPSWR)=1—(1—pi(pr°”))mh (Hulliger, 1995). Therefore, the features for this

l

approximation were adopted such that if both pf”“’p) and m,, became small, the output

(PPSWR)
i

of my, * pi(”“’p) was an acceptable approximation for m , Which substantiated the

assumption for PPSWR. However, in cases that size; prevailed with increased pf”"’p), it
meant that huge sets influenced 7""*"® to quicky arrive at 1, which inferred that there
was a higher chance that the sets would be chosen in the sample (Thompson, 2012).
According to (cite), the computational function for 7***"® is inherently placed on caveat
of 0 and 1 (Cochran, 1977).

The HT estimator discussed above was deployed in the sampling process as an unbiased
estimator for the overall population due to uncertainty supplied in the PPSWR
(Pennington, 1996). Hence, HT estimator for species s was derived as: T‘,g‘;) = Zm%
, and Y, as defined above, represented the set-level catch for species s in set i while the
summation refers to sets S for oversampled sets (FAO, 2011). In retrospect, the
unbiasedness of HT is usually tied to r; as the authentic first-order inclusion probability
derived from the true without-replacement sampling scheme (Pennington, 1996) while,
its precise variance measure of the HT estimator relies upon second-order joint
probabilities 7;; (Newton & Geyer, 1994; Hulliger, 1995). Thus, since 7(""*""® used in
this step was a derivative approximation from the authentic probability, the precision of
the estimates is dependant on the properties of the approximation (Pennington, 1996).
In that regard, the need to perform sampling process through bootstrap was paramount
so that samples are resampled M times in consideration of the sampling regime and
evaluated the empirical variance of HT (Hulliger, 1995). The process of bootstrap or
Monte Carlo resampling ensured that both sampling scheme complexities i.e. for both
PPS and stratification as well as species composition uncertainty are accommodated
inherently in the sampling procedure of sets and baskets, and generates an authentic
variance associated with those schemes (Thompson, 2012).

Species Composition and Scheme Variance Propagation Across Strata with
Monte Carlo and HT Simulator



The purpose of this approach was to determine how observed coverage and basket
sampling could be synthesized into precision for CPUE of species composition, as well as
translate into design-based planning of effort and targets. The simulation handled set
observations and within-set basket sampling across various sampling scheme and then
calculated HT values of totals for every stratum and finally aggregate resampled estimates
for composition variations. Thus, to be able achieve the desired outcomes, the procedure
was structured to perform computations for every replicate as follows:

True Population per Stratum

In the above analysis, already generated population templates for individual strata was:

Populationgyqeymn: {CPUEiSStd, w;, Area;, Season;, Speciess}

whereby CPUES!?, is the standardised CPUE for species s in set i derived above and w;,

is the overall weight of a stratum obtained from total effort or total number of sets in
population (Efron & Tibshirani, 1993).

Therefore, mean CPUE of the true population for every stratum was calculated as:
UERDE = SiL wip * CPUES® [ XL, wip

and consequently, the overall catch estimates of the true population of stratum h is
derived from: Y,y n = XN, CPUES® « H,,.

Therefore, let N, become number of sets per stratum, which is obtained from population
sets computed. Thus, by selecting m;, = round(coverage;.,.; * Ny) (Cochran, 1977), the
simulator withdraws m,;, sets according defined sampling scheme discussed above. The
sampling scheme computed were random sampling conserved to be equivalent of equal-
probability sampling (Gokpinar & Arzu Ozdemir, 2012), stratified sampling was considered
as similar to random although it was executed per individual stratum. Then, performed
sampling with probability proportional to size with replacement and approximation for
inclusion probability (Efron & Tibshirani, 1993) to generate expansion across sets with

the estimator per species as T,gST) (Hulliger, 1995).
Monte Carlo Propagation

Application of the Monte Carlo (MC) simulator (Manly, 2006) accounted for uncertainty in
deriving species composition since proportions P;, had been calculated from a subset of
baskets. The technique for nested bootstrap (Manly, 2018), was adopted for individual
MC replicates and for every sampled set as follows:

e Observed baskets S; were resampled (with replacement) to generate a bootstrap
sample Si(r) at the basket level and this process of resampling whole baskets was



vital to shield covariance of multi-species within a basket (Kunz et al., 2007).
Thereby, we reworked proportions Pigr) from baskets that were resampled as:

Zbes(r) Wle
15

pr) —
© 2 hes™ 2s Wibs
14

e Similarly, we recalculated the raised total catches for within-set expansion, which
was accomplished by inflating basket-weights by proportion ¥ = H?>S « PO

The nested resampling was undertaken within individual replicates of MC so that
uncertainty in species composition structure was supplied to the variance of across-
replicates (Hulliger, 1995; Hilborn & Walters, 1992). In addition, propagating uncertainty,
baskets were resampled entirely (the basket-level vectors across species) when building
population of species P;, inside the MC replicates in order to capture composition sampling
variance. This technique satisfied our objective of integrating both composition and
design variability from the application of a nested bootstrap from basket sampling and
MC set selection respectively.

Compute CPUE and empirical CV over Monte Carlo replicates

The MC draws samples of size n = p * N,y from the ‘true’ population according to
specified sampling scenarios and the stratified ratio estimator calculates estimated totals
as per species categories using HT. Then, the simulation calculates the distribution of CV
after Miterations by calculating the mean of the estimates ( ¥) and the SE of the estimated

total (the SD of the M estimates): SE(Y) = <ﬁ YM.(¥Y,— Y)?, and the overall

CV simulation for particular sampling scheme was evaluated as: CVy,, = SE;Y)* 100.

Conclusively, bootstrapped CV was computed to generate 95% CI.
Assumptions

Logbook reported set totals are treated as reliable baselines and within-set expansion,
the ratio estimation assumed sampled baskets are representative.

In the absence of sampled CPUE at basket level as discussed above, a true CPUE ratio

sampledcatch

raise ( ) * H; and inference of total catch of baskets By, that would have been

sampledp goks

applied for within-set expansion patterns was not possible and therefore, the study
assumed that the observed baskets are representative of the within-set species
composition by weight. Consequently, those sampled baskets that represented the set
composition, were then disaggregated from the set totals by sampled-weight proportions,



which is an unbiased for species total since direct observed weights were used as basis
for proportioning (Cochran, 1977).

The proportion-based raising fails to acknowledge uncertainty between the relationship
of sampled baskets and unobserved baskets, which may have been possible using hooks
or basket positions. Therefore, due to this mismatch, the variance was included through
bootstrap of basket-level resampling conducted for both basket and set-level in order to
reflect uncertainty in true population.

The loss of effort simple standardisation (per 1000 hook) rate at the basket-level was
compensated at the set-level by adjusting the CPUE with effects originating at the basket-
level for species composition. Thus, since proportional raising at basket-level will only
give species composition totals. After raising at basket-level totals, adjusted CPUE at set-
level was calculated for raising to total for sets.

Tools and software

As mentioned above, R base software was employed in the analysis and pakcages used
were: sf, ggplot2, lubridate, boot, Ime4, naturalearth among others (R Core Team, 2024)



Results and Discussions

Per-stratum precision vs coverage curves

¥ (CPUE)

04
04
oz

]
0E
04

0E
04

Precision vs Percent Baskets Sampled (TOTAL CPUE)

a1 ona1 HEM a1 on22 HEM a2 onan HEM a3 on21 HEM am on23 SEM ar on23 HEM
04 04 03
& na 03 g [
(== Sy 08 '\%g‘ 0E g %
08 e e 0E 2
S 04 o gos oy s 04 .
———————— [ A (- 1 el LI
atil ond4 SEM a2 ondd SEM atla onds SEM atd onds SEM a3 ondg SEM a4 on3g SEM
04 . 04 5 08 g 04 L
han = S B H 08 T N—— g 14 h"“"hht. 0 % v ey
o4 04 04 04 04
———————— [ el A |- 1 el LA
a7 ondt SEM aiT on4d SEM atd ondd SEM arg ondd SEM am on24 SEM al on2s SEM
- 03 g g - L 06 forany,
ey 15 e U 2 05 TESe——y 07 L 05
04 %0 04 05 Ty 04
03 n3
———————— L L A -l T It e
az3 onds SEM ala ondg SEM a3 ondd SEM all ond7 SEM a4 ond7 SEM al4 ondd SEM
08 g 0 04 0a [
2 L = - S
== 0f P, 08 T g Ty 05 e g S
*"——-u.___\- | - |
04 04 n4 04 n4
———————— L A |- 1 el LI
al? anan SEM a3 onst1 SEM ag onad SEM atl on2s SEM ar on2e SEM arn onsd SEM
“‘“*——:;C 08 . 0d . o 04 . 03
Lam. 05 e 0f By 16 B 06 0f O
= ¥ o gy
04 04 04 i ) 04 P04 4
———————— Bl - At - 1 B el P A
a3l onsE SEM a4 ongg SEM a4 ona7T SEM aas ons7 SEM ar3s onsd SEM alg ongg SEM
04 04
=, 4 ==t na et na
= == gy ¥ 08 e 1 :':?_' ====§ 08 L =0 05 :.-H"'-'_‘-U
04 04 04 04 04
———————— [ L A - 11 el LA
a on2e SEM aw an27 SEM a0 ongs SEM an ongd SEM a1 angg SEM a3 ong7 SEM
0a 05 B a LE:] 1 04 g & 08 B
L FA S~ b | =
\"\‘_w______‘ op T gf :_'.’/ 08 e 0R e T i S
04 04 04 04 04
———————— L A - 1 el LIt
aue onga SEM aMe onvo SEM a7 on7o SEM a7 on7l SEM aa anv1 SEM aa onvd SEM
[E:] 10
[ 0g | S [ T [ 08 g P
F o /.»-"—— 0 h&__ﬁ—ﬂnﬁ%ﬁnﬁ ?h._‘i—_——_'ngg P
7 R A . o4 n4 04 04
———————— ] 02 - --——-- 0@ -------- 08 - - - Dd - - - - -
a7 ondo SEM ad ondo SEM 3 ondi SEM a ondi SEM am ond2 SEW 0 E 1o
0z na [iE:]
= 08 [ 08 s i e
ﬁi&,\m 05 Tty 15 P ng = 06 L
i 04 S I % 04 Ty
03 03 .
———————— 08 ------- 8- B -- - - — - - 08 - -
40 G0 A0 100 40 @0 30 100 40 G0 90 100 40 @0 30 100 40 G0 90 100

Percent backets sampled (%)

art on2d SEM

40 &0 490 100

04
0z

0A
o4
0z

05
04
02
oo

0A
04

arn ondd SEM

ats on3d SEM
| - 3

alg ondd SEM

R 4 .

40 60 G0 100

arn ondd SEW
oy

ag ong4 SEM

:_Q‘:i"""-ﬂ--__h?u

40 60 40 100

a1 ondd SEM

atig ondd SEM

e——

400 G0 G0 100

Set coverage

—-
—-
—

10%
0%
40%
ot

G0%

Figure 2. Precision vs Percentage of Basket Sampled (Stand-CPUE) per stratum

The observer data in Kenya showed that basket-level sampling was conducted
systematically without exhaustive sampling, which caused the CV to be high showing high
variability of mean but as coverage increased at the basket-level, CV consequently
increased towards 0.2 or 20% £95% CI.




Fisheries Management Perspective

Rare species require high coverage: species with low encounter rates (like sea turtles or
rare sharks) have a high inherent variance and require much higher coverage in order to
achieve a desied CV target compared to common target species.

Cost-Benefit Improvement: observer coverage is expensive and management agencies
require to justify observer funding based on the data quality generated. The outputs from
the simulator provides the answer to the critical question, of how much observer coverage
is enough? Thus, by setting acceptable CV for the species categories, managers can use
the simulation output to determine the minimum observer coverage percentage required
to meet that target. Similarly, managers will then be able to assign limited resources
effectively. For instance, the simulation might show that increasing coverage from 10%
to 20% cuts the CV in half, but increasing it from 20% to 30% only cuts the CV by a
small fraction. This guides the decision to stop at 20% coverage, achieving maximal
statistical benefits for the marginal cost.

Accomplish regulatory and conservation requirements: observer data captures meta data
for PET species category, which is a mandate for regional through RFMOs and national
regulations that for instance may require quantifiable and reliable estimates of their fate
(mortality, survival rates or injury). Therefore, the simulation is vital for species that are
rarely encountered but protected like sea turtles, some shark species or cetaceans. As
the results indicate (fig) and previous studies (Curtis, 2020), rare events are associated
with elevated variance, which the simulator reliably demonstrates that achieving an
acceptable CV for these species will require potentially increased coverage levels, usually
>50% more than target species (Babcock et al., 2003). The study also reinforces
accountability of stock assessment or conservation measures adopted by scientists and
managers since CV demonstrates measure of confidence in the data used to inform the
decision. Therefore, by applying the simulator in design development of the observer
program satisfies that the reports and datasets generate are defensible and scientifically
authentic.
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