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Abstract 

Effective fisheries management requires accurate, spatially-resolved data on target, 

bycatch and protected, endangered and threatened species. This study integrates 

longline observer datasets (2018-2025) from the Kenyan coastline to standardize Catch 

Per Unit Effort (CPUE), quantify its uncertainty, and evaluate sampling biases. We 

employed a comprehensive, reproducible framework using modern statistical and 

computational tools within the R ecosystem. Data were harmonized and mapped onto a 

1° × 1° grid of Kenya's Exclusive Economic Zone. Nominal CPUE (kg/1000 hooks) was 

standardized using generalized linear and delta-lognormal models, adjusting for 

spatiotemporal and operational covariates. 

Uncertainty in CPUE and species composition was rigorously quantified using analytical 

and bootstrap-derived Coefficients of Variation (CVs). A nested resampling approach 

simultaneously captured variation in catch proportions and sampling effort, ensuring 

realistic propagation of uncertainty. The workflow included diagnostic modules to flag 

statistical deviations, outliers, and spatial coverage gaps, safeguarding data integrity. 

Spatial analyses produced gridded summaries of species distribution, relative abundance, 

and biodiversity, highlighting species-specific hotspots and bycatch concentration zones. 

A critical focus was addressing non-random sampling bias inherent in voluntary observer 

programs. The framework assesses the representativeness of observed vessels using 

historical observer data from Kenya, a vital step for bias correction. Our analysis indicates 

that while 20% observer coverage yields acceptable precision for common species, rare 

species require coverage exceeding 60% to reduce uncertainty to manageable levels, 

with requirements varying spatially and seasonally. This CV-based approach provides a 

quantitative benchmark for designing efficient, stratified sampling strategies that balance 

logistical constraints with statistical rigor. 



Ultimately, this study demonstrates a scalable and transparent methodology that bridges 

operational sampling with modern analytics. By integrating standardization models, 

spatial stratification, and resampling-based uncertainty quantification, it enhances the 

credibility of fisheries indices in data-limited regions, directly supporting sustainable 

management, adaptive monitoring, and robust stock assessments for the Western Indian 

Ocean. 
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1.0 Introduction 

The management of longline fishery is complex due to an ever-present challenge of 

bycatch that are caught in substantial quantities, which involve non-target species, 

sharks, rays, seabirds, turtles and cetaceans. Therefore, it becomes paramount to 

strengthen monitoring of the fishery in order to account for these incidental catches and 

safeguard progress to sustainable management of the fisheries resources as well as fulfill 

conservation mandates (Kiilu et al., 2025). 

Kenya has a functional national observer program that deploys fisheries staff as scientific 

observers onboard national and foreign flagged vessels in the Kenyan Exclusive Economic 

Zone (EEZ) and the high seas (Fondo & Omukoto, 2021). The implementation of the 

observer program is critical function by the Kenya Fisheries Service as stipulated in the 

Fisheries Act Cap 378 and forms part of the backbone in the monitoring, control and 

surveillance (MCS) functions (Kiilu et al., 2025). However, as evidenced in literature and 

national observer reports, the program suffers constraints ranging from finances, 

logistical operations, knowledge and capacity among others that often contribute to gaps 

in data coverage (Babcock et al., 2003). The strive for balance by fisheries observer 

programs between capped observer efforts and the necessity for precise estimates of 

target, bycatch and protected, endangered and threatened (PET) species for the longline 

fisheries has become unbearably inevitable (Gray & Kennelly, 2018). The coefficient of 

variation (CV) is a global technique that has been applied as a scale-free metric of relative 

precision to set monitoring targets and validation of core indices and estimates relevant 

to management of longline fisheries (Thompson, 2012). 

The observer program in Kenya implements training techniques from the IOTC and the 

SWIOFC that has structured data collection forms and reporting templates for catch and 

effort, biological sampling, and compliance information. This study focused on catch and 



effort data in order to review and assess precision estimates at the primary sampling unit, 

which in this case is the basket (hooks between floats/radio buoys). In order to 

comprehensively assess precision, it was inevitable to compile all data and simulate 

sampling techniques and finally review the statistics involved. 

Therefore, study aimed to assess the efficiency of alternative stratification schemes 

unique to longline fishery in addition to estimates of CV for a given defined stratum, and 

thus, demonstrates proof to select the most statistically efficient strata for fisheries 

managers need to understand the marginal gains in precision for every new stratification 

scheme. 

1.1 Objectives 

1. To Build per-stratum baseline standardised CPUE templates from vessel logbook 

and observer data. 

2. Simulate observer sampling under alternative set-coverage and basket-sampling 

schemes  

3. Compute per-stratum CV of CPUE (catch rate estimates) and 95% confidence 

bounds 

4. Identify minimal coverage and within-set sampling fraction that meets 

management targets. This identifies which species/strata estimates are statistically 

reliable and which suffer from insufficient sampling effort due to high variance or 

low coverage. 

5. To validate that the current operational stratification scheme is statistically 

appropriate for the longline fishery by verifying that the strata successfully partition 

the fishing effort into relatively homogenous units, whereby catch rates within a 

stratum are less variable than across the entire fishery. 

1.2 Justification and Rationale 

Therefore, aggregating catch totals of vessel logbooks with basket-level fishing behaviour 

from observer data has potential to generate an authentic baseline population that 

conserves both reported catch totals and within-set heterogeneity (Kesavan Nair & 

Alagaraja, 1988). In addition, the simulation of sampling techniques for observer 

candidate set and basket across different strata allows for proof-based design of coverage 

levels for sets and basket sampling efforts. In essence, this procedure is critical because 

it manages the phenomenon of potential uncertainty intrinsic in proportionate sampling 

of increasingly unstable natural patterns like quantifying the variation in sampling 

(Thompson, 2012).  



The strive to attain 100% coverage over the whole fishery for observer program steadily 

continues and with that reality, estimated total catches for target, bycatch and PET 

species becomes a random estimate, which is conditional to inaccuracies (Babcock et al., 

2003). For example, reported observer data particularly for elusive catches of PET 

species, usually demonstrate highly overdispersed distribution whereby, a majority of 

fishing sets tend to report zero bycatch or PET species while only a few sets record 

extremely high levels of these species (Curtis & Carretta, 2020). It is due to this high 

uncertainty in the fishery that causes conventional simple sampling techniques unreliable 

(Little & Rubin, 2019). 

Stratified random sampling schemes based on factors that drive catches such as fishing 

area, target species, depth or seasons is more efficient than simple random sampling 

(SRS), which fails to validate whether sampled vessel effort is truly representative of the 

unobserved effort by rigorously assessing the statistical efficiency of various stratification 

and allocation strategies (Babcock et al., 2003). This study aimed to correct that by 

comparing both logbook data and observer data for species category totals and imputed 

by mean for unobserved sets and baskets per stratum. Then acknowledged Newton and 

Geyer’s (1994) technique in a simulation through nested bootstrap and Monte Carlo (MC) 

propagation (Manly, 2018) as well as deployment of the Horvitz-Thompson (HT) 

estimator (Gokpinar & Arzu Ozdemir, 2012) to apply the CV as the definitive metric for 

quantifying the uncertainty property of estimated total catches of target, bycatch and 

PET species categories (Wakefield et al., 2018; Hulliger, 1995). Therefore, the techniques 

were then invested to demonstrate a probabilistic evaluation of the precision of estimated 

catches by confirming that a low CV denotes a statistically stable estimate whereas a high 

CV would then signal that the monitoring program is statistically deficient for that 

particular species category or stratum (Mclnerny, 2014; Babcock et al., 2003). 

Furthermore, the simulation permits for the testing of different stratification and 

allocation schemes such as placing more observers in areas known for high bycatch 

(Babcock et al., 2003). Also, the technique creates opportunities for advanced model-

based and inclusion of the finite population correction (FPC) (Thompson, 2012) the 

current simulation abstracts away from complex design-based and FPC.  

2.0 Materials and Methods 

2.1 Data sourcing, Incorporation and Validation 

The fisheries observer dataset involves sampled data of catch and effort data 𝑛 = 6928 

from 2018 to 2025, which represents the historical dataset of fisheries observer program 

onboard longline fishing vessels. Similarly, vessel logbook data 𝑛 = 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑡𝑠 that reflects 

fishing sets of the observer data was used to provide total catches and total number of 



hooks for every set for validation of with those exact observed total of sets captured in 

the observer data. Therefore, we combined the two datasets to generate a schema of 

the following fields per row: date, start-setting positions, end-hauling positions, season 

(NEM and SEM), set unique identification (id), basket index, species type, species 

category (target, bycatch, PET), total weight per species composition (kg), observed total 

weight per set (calculated catch) and observed total number of hooks per set. Generally, 

data cleaning was performed in R (R Core Team, 2024) with packages tidyverse and dplyr 

(Wickham, 2014; Wickham et al., 2023) and vectorisation of spatial coordinates 

(Pebesma, 2018). 

2.2 Description of Spatial Stratification 

The positions for start setting and end hauling were obtained from the logbook dataset, 

which contained the reported catches for both individual species and aggregated species 

categories. The line connecting these two points, theoretically set to haul, represents the 

spatial trajectory of the longline fishing gear and consequently defines the spatial 

distribution of catches (Francis, 1984). 

Each longline set was converted into a LINESTRING geometry using the dateline to ensure 

accurate spatial continuity, resulting in one geometry per set (Pebesma & Bivand, 2023). 

This enabled precise spatial allocation of each fishing set across 1° × 1° grid cells. A 

polygon grid at this finer spatial resolution was constructed and clipped to the boundaries 

of the Western Indian Ocean FAO Area 51, thereby establishing a spatial stratification 

framework for area-based management (FAO, 2002). 

Subsequently, each LINESTRING was intersected with the FAO-cropped 1° grid, 

producing individual line segments corresponding to each combination of set and grid 

cell. The length of each segment within a given cell was calculated following the method 

described by Jolly & Hampton (1990). These segments were then divided into geodetic 

length fractions as follows: 

For each set line 𝐿𝑖, its intersection with grid cell c was used to determine the fractional 

distribution of catch and effort: 

𝑤𝑡𝑖𝑐 = totalwti
𝑥
𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑖∩𝑐𝑒𝑙𝑙𝑐)

𝑙𝑒𝑛𝑔𝑡ℎ(𝐿𝑖)
, (Pebesma & Bivand, 2023; Francis, 1984) 

This procedure was necessary due to the absence of positional data at the hook or basket 

level, making it impossible to precisely locate individual hooks along the gear. Instead, 

basket-level catches were proportionally distributed across intersected grid cells 

according to line length fractions. This approach ensured that both catch and effort 



(standardized CPUE) were appropriately allocated, even when basket positions were 

missing or incomplete. 

Finally, reported catches of all species and species categories were distributed across 

their respective intersected 1° grid cells by these fractional weights and aggregated to 

the cell level. The resulting logbook dataset provided cell-level catch and effort 

summaries, forming the basis for area stratification and for generating spatial templates 

representing the “true” population distribution (Pebesma, 2018). 

At the basket level, the sum of individual species weights within each basket was used to 

compute the total basket weight. For each set, the total weight of all species across 

observed baskets was compared to the total reported set weight to validate sampling 

completeness (Francis, 1984). This comparison revealed that some baskets within sets 

were unobserved or missing data, confirming partial observation at the basket level. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comprehensive Overview of Catch Composition Per 1°x1° Grid Cell from 
Kenya's Observer Catch and Effort Data 2018-2015, with illustration as follows: (a) 
Distribution of fishing sets by grid cell, (b) species distribution (bycatch, PET, SSI & 
target species), (c) Catch diversity hotspots, (d) Shannon biodiversity index (Developed 
in R base 4.4.3) 

2.3 Proportion of Weight Raise and Imputation for unobserved Baskets 

Here the focus was on observed basket species weights in order to compute species 

proportions and raise to the total set weight. At the same time, impute (mean) for 



unobserved baskets to generate complete basket templates for a ‘true’ population (Quinn 

& Deriso, 1999). Thus, due to the limitation of absence of number of observed hooks per 

basket, sampled basket weights proportions within set were used to allocate total weight 

of sets proportionally to observed baskets as well as species categories whereby, the 

approach becomes: for set 𝑖 let sampled basket species weights be  𝑤𝑖𝑏𝑠 for sampled 

baskets 𝑏 ∈ 𝑆𝑖 (Harley et al., 2001): sampled weight of species composition is calculated 

as 𝑤𝑖𝑠 
𝑠𝑎𝑚𝑝𝑙𝑒 = ∑ 𝑤𝑖𝑏𝑠𝑏∈𝑆𝑖

 and total sampled weight of baskets per set 𝑖 (including species 

composition in baskets) as 𝑊𝑖
𝑠𝑎𝑚𝑝𝑙𝑒 =  ∑ ∑ 𝑤𝑖𝑏𝑠𝑠𝑏∈𝑆𝑖

 (Quinn & Deriso, 1999). In addition, 

the proportion of sampled weight (per basket) for species was calculated as 𝑠: 𝑃̅𝑖𝑏𝑠 =

𝑤𝑖𝑏𝑠
𝑠𝑎𝑚𝑝𝑙𝑒

𝑊
𝑖
𝑠𝑎𝑚𝑝𝑙𝑒 , and showed the ratio of how much of sampled catch each basket contributed. 

Then, estimates were done for the total number of baskets in a set, whereby, 𝐵𝑖 refers 

to total number of baskets hauled per set. 

Thereafter, we estimated the total number of baskets per set by conducting a mean 

imputation to generate weights for unobserved baskets and was achieved by inferring 

reasonable number of baskets from observed total weights per set or logbook set totals 

(kgs) 𝑊𝑖
(𝑠𝑒𝑡)

 as  𝐵𝑖 =
𝑊𝑖

(𝑠𝑒𝑡)

𝑤̅𝑖
𝑠𝑎𝑚𝑝𝑙𝑒 , whereby, 𝑤̅𝑖

(𝑠𝑎𝑚𝑝𝑙𝑒)
 becomes the mean weight of sampled 

basket (Kimura, 1981). 

Furthermore, we normalised proportions and expanded to total weights per set using, 

∑ 𝑃̅𝑖𝑏
(𝑎𝑙𝑙)

= 1
𝐵𝑖
𝑏=1  in order to ensure that summation of proportions becomes 1 (Quinn & 

Deriso, 1999). Then, calculated the total weights for a set by scaling the basket weights 

as: 𝑤̅𝑖𝑏
𝑎𝑙𝑙 = 𝑃̅𝑖𝑏

𝑎𝑙𝑙 ∗ 𝑊𝑖
𝑠𝑒𝑡 this confirmed that both observed baskets and imputed baskets 

were combined to represent the expanded total catch for that set.  

Similarly, the same computation was repeated for estimating species composition per 

basket since the observed baskets have total weights of species types and was imputed 

for basket-level species composition by, calculating the proportion of species type per 

observed basket as  

𝑝𝑖𝑠 = ∑ 𝑤𝑖𝑏𝑠𝑏∈𝑜𝑏𝑠 /𝑊𝑖
(𝑠𝑎𝑚𝑝𝑙𝑒)

 , then for imputed baskets utilise the same ratio: 

𝑤̅𝑖𝑏𝑠
(𝑖𝑚𝑝𝑢𝑡𝑒𝑑) = 𝑝𝑖𝑠 ∗  𝑤̅𝑖𝑏

(𝑎𝑙𝑙)
 and consequently, the summation over all baskets will generate 

the expanded total weights of species composition per set (Thompson, 2012). According 

to previous literature, the imputation fortifies variance when coverage is less than 100% 

whereas, the ratio of weight expansion reduces bias because it safeguards proportional 

heterogeneity within sets (Thompson, 2012; Pennington, 2001; Cotter, 1998). The ratio 



estimation of the total catch per set 𝑌̅𝑖 under an unbiased proportional sampling then 

became: 

𝑌 ̅𝑖 = 𝑊𝑖
𝑠𝑒𝑡 ∗

∑ 𝑤𝑖𝑏𝑠𝑏∈𝑠𝑎𝑚𝑝𝑙𝑒

∑ 𝑤𝑖𝑏𝑏∈𝑠𝑎𝑚𝑝𝑙𝑒
 (Cochran, 1977). 

2.4 CPUE standardisation at Set-Level 

The computation for expanded total catch per set and records of total number of hooks 

per set was done to generate nominal CPUE (kg/1000 hooks) and then applied a GLM 

model to standardised nominal CPUE into indices of abundance that was comparable 

across stratum (Lo et al., 1992). Then, summed totals into population sets and population 

baskets for stratum templates (Thompson, 2012). Standardisation of CPUE satisfies its 

comparison across sets and thus, nominal CPUE at set-level for species 𝑠 in set 𝑖 as:  

𝐶𝑃𝑈𝐸𝑖𝑠
𝑛𝑜𝑚 =

𝑌̅𝑖𝑠

𝐻𝑖
𝑜𝑏𝑠 ∗ 1000 , where, 𝑌̅𝑖𝑠 indicates the raised total catch (kg) for species 𝑠 in 

set 𝑖 whereas  𝐻𝑖
𝑜𝑏𝑠 , represents the total number of hooks observed per set. Thereafter, 

nominal CPUE was standardised using a gaussian GLM (Lo et al., 1992) to enhance 

comparability of CPUE across spatial and temporal strata and thus, ensured minimal bias 

due to non-uniform effort or sampling techniques (Hilborn & Walters, 1992). 

Consequently, GLM was computed as: let 𝑌 𝑖𝑠 be total catch of species type 𝑠 in set 𝑖 and 

adopted a Gamma-log, which ensures that responses are positive ad caters from 

multiplicative effects (Hilborn & Walters, 1992). 

Therefore, the model was performed as: 

𝐸[𝑌𝑖] = 𝐻𝑖
𝑜𝑏𝑠 ∗  𝜇𝑖, so that  𝐶𝑃𝑈𝐸𝑠,𝑖

𝑛𝑜𝑚𝑖𝑛𝑎𝑙  ~ 𝐺𝑎𝑚𝑚𝑎 (𝑚𝑒𝑎𝑛 =  𝜇𝑠,𝑖, 𝑙𝑖𝑛𝑘 = log), and model 

was fitted with an offset log (𝐻𝑖
𝑜𝑏𝑠) (Lo et al., 1992). Then standardisation was done by 

strata of area, season and species type. 

𝐸[𝑌𝑖𝑠] =  𝜇𝑖𝑠 = exp (𝛽0 + 𝛽1 log(𝐻𝑖
𝑜𝑏𝑠) + 𝛽2𝐴𝑟𝑒𝑎𝑖 + 𝛽3𝑆𝑒𝑎𝑠𝑜𝑛 + 𝛽4𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑠(𝑤𝑡

𝑟𝑎𝑖𝑠𝑒𝑑) +

 𝜖𝑖)  

The model parameters were defined as, 𝛽0 to indicate the intercept inferring to the 

abundance index of baseline and log (𝐻𝑖
𝑜𝑏𝑠) performs the offset for hooks to achieve 

adjusted effort. The model involved effects at stratum level such as 𝐴𝑟𝑒𝑎𝑖 as categorial 

that impacts spatial stratum developed for 5° grid cell, 𝑆𝑒𝑎𝑠𝑜𝑛𝑖 as a categorical outcome, 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑠(𝑤𝑡
𝑟𝑎𝑖𝑠𝑒𝑑) to acknowledge basket-level species composition effects and 𝜖𝑖 to 

represent residual error (Hiborn & Walters, 1992). Thus, indices of CPUE standardization 

per stratum was generated as: 𝐶𝑃𝑈𝐸̅ℎ,𝑠
𝑠𝑡𝑑 = exp (𝛽 𝑜 + 𝛽 2,ℎ + 𝛽 3,𝑠 + 𝛽 4,𝑠 +⋯), which 

eliminates effort and sampling biases (Hiborn & Walters, 1992). 

 



2.5 Generate Baseline Templates for True Population 

This stage was important to introduce the standardised CPUE (𝐶𝑃𝑈𝐸̅ℎ,𝑠
𝑠𝑡𝑑) to generate a 

hypothetical but natural population, which the sampling simulation procedure MC will be 

undertaken (Thompson, 2012; Manly, 2018). The stage had two phases: (i) template for 

population sets, since each set represented a feature in the population with its 

parameters. (ii) template population baskets whereby, every set is expanded into total 

number of baskets 𝐵𝑖 to create 𝐵𝑖
𝑓𝑢𝑙𝑙

 and thereafter, assign individual weights of species 

composition for every basket by disaggregating raised total weights of species across the 

baskets using 𝐵𝑖
𝑓𝑢𝑙𝑙

 template (Cochran, 1977). 

Phase 1: Construction of template for population sets for every observed set was 

performed so that the output generated a set with rows bearing parameters as follows: 

unique identification (id) of set 𝑖, stratum (area * season), 𝐻𝑖
𝑜𝑏𝑠, 𝑌̅𝑖, 𝑤𝑖𝑠 

𝑠𝑎𝑚𝑝𝑙𝑒
and 𝑝𝑖𝑠 , 𝑌 𝑖𝑠 

and (𝐶𝑃𝑈𝐸̅ℎ,𝑠
𝑠𝑡𝑑) (already defined above). Therefore,  

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑡𝑠[𝑖] ∶= (𝑖, 𝑠𝑡𝑟𝑎𝑡𝑢𝑚,𝐻𝑖
𝑜𝑏𝑠, 𝑌̅𝑖, {𝑃̅𝑖𝑠}𝑠, {𝑌𝑖𝑠}𝑠, 𝐶𝑃𝑈𝐸̅𝑖

𝑠𝑡𝑑)   

Phase 2: Construction of template for population baskets were created by amplifying 

individual set 𝑖 into 𝐵𝑖 baskets and then assigned the weight of species composition into 

those baskets was done for each set 𝑖 : ∑ ∑ 𝑤𝑖𝑏𝑠
𝑝𝑜𝑝

𝑠
𝐵𝑖
𝑏=1 = 𝑌̅𝑖 (refer above)  and likewise, 

for each species 𝑠 in set 𝑖 : ∑ 𝑤𝑖𝑏𝑠
𝑝𝑜𝑝𝐵𝑖

𝑏=1  =  𝑌 𝑖𝑠 (refer above). In addition, the 𝑃𝑖𝑏 ratio 

output already derived for baskets in each set was considered to demonstrate observed 

pattern at basket-level. Thereafter, we distributed species 𝑠 across baskets through a 

deterministic disaggregation (Cochran, 1977): 𝑤𝑖𝑏𝑠
𝑝𝑜𝑝 = 𝑃𝑖𝑏 ∗  𝑌 𝑖𝑠 ,   𝑏 = 1,… , 𝐵𝑖. 

Thus, the totals for each basket assigned became: 

 𝑤𝑖𝑏,𝑡𝑜𝑡𝑎𝑙
𝑝𝑜𝑝 = ∑ 𝑤𝑖𝑏𝑠

𝑝𝑜𝑝
𝑠 = 𝑃𝑖𝑏  ∑ 𝑌 𝑖𝑠𝑠 = 𝑃𝑖𝑏 ∗ 𝑌̅𝑖 (Cochran, 1977). 

In order to confirm that the allocation was conservative, we computed ∑ 𝑤𝑖𝑏,𝑡𝑜𝑡𝑎𝑙
𝑝𝑜𝑝𝐵𝑖

𝑏=1  to 

confirm it was the same as ∑ 𝑃𝑖𝑏 ∗ 𝑌 𝑖𝑠 = 𝑌 𝑖 (Thompson, 2012). 

Eventually, the population basket template developed had features represented in every 

row as: (𝑖, 𝑏, 𝑠) and weight (kgs) 𝑤𝑖𝑏𝑠
𝑝𝑜𝑝

. 

3.0 Preparation for Stratified Statistics and Inclusion of Species Composition 

Uncertainty into Sampling Scheme 

This step was increasingly important to setup the required ingredients for a stratum-level 

configuration that comprised of inclusion probability that warrants the simulation of 

sampling schemes discussed above (stratified, PPS) and then evaluate Horvitz-Thompson 



values and approximate variance (Pebesma & Bivand, 2023). The parameters that were 

involved in the computation were derived from previous outputs as follows: stratum ℎ, 

sets 𝑖 ∈ ℎ, species 𝑠 and basket 𝑏. Accordingly, 𝑁ℎ represented the number of sets in 

stratum ℎ and for set 𝑖 it contained hooks 𝐻𝑖
𝑜𝑏𝑠, total raised catch  𝑌̅𝑖, total raised species 

catch 𝑌̅𝑖𝑠 and 𝐶𝑃𝑈𝐸̅𝑖
𝑠𝑡𝑑. In addition, total estimated number of hooks per stratum was 

calculated as: 𝐻ℎ = ∑ 𝐻𝑖
𝑜𝑏𝑠

𝑖∈ℎ  (Hiborn & Walters, 1992). 

As explained above, the technique adopted for PPS aimed to conduct deliberate 

oversampling of sets as opposed to SRS, so as to capture most of the total catch from 

those sets. The technique as argued by (Babcock et al., 2003), elevates the precision of 

calculated total catches since the uncertainty in population is attributed to a small number 

of sets that are have flourishing catches or increased CPUE (Kimura, 1981). Thus, the 

focus was the size measure 𝑠𝑖𝑧𝑒𝑖 in set 𝑖 was derived as the 𝑖𝑡ℎ set, which was adopted 

as 𝑌̅𝑖. The probability ratio of selecting 𝑖𝑡ℎ set in one (𝑚ℎ) draw with replacement was 

then computed as the 𝑠𝑖𝑧𝑒𝑖 divided by the summation of all other size measures 𝑠𝑖𝑧𝑒𝑗 

and denoted as: 

 𝑝𝑖
(𝑝𝑟𝑜𝑝) =

𝑠𝑖𝑧𝑒𝑖

∑ 𝑠𝑖𝑧𝑒𝑗
𝑁
𝑗=1

 , whereby 𝑁 represents the total number of sets in the population 

(Jolly & Hampton, 1990). 

The subsequent step was the sampling itself with-replacement boosted probability 𝜋𝑖 

(Thompson, 2012). In essence, 𝑚ℎ units were sampled with replacement from the 

derived true population and thus, on the one hand, probability of not selecting a particular 

set 𝑖 for every 𝑚ℎ unique draw was denoted as: (1 − 𝑝𝑖
(𝑝𝑟𝑜𝑝))

𝑚ℎ

(Hulliger, 1995). On the 

hand, the probability of that particular set 𝑖 being picked at least once was denoted as: 

𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)

= 1 − (1 − 𝑝𝑖
(𝑝𝑟𝑜𝑝)

)
𝑚ℎ

 (Hulliger, 1995). Therefore, the features for this 

approximation were adopted such that if both 𝑝𝑖
(𝑝𝑟𝑜𝑝)

 and 𝑚ℎ became small, the output 

of 𝑚ℎ ∗  𝑝𝑖
(𝑝𝑟𝑜𝑝)

 was an acceptable approximation for 𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)

, which substantiated the 

assumption for PPSWR. However, in cases that 𝑠𝑖𝑧𝑒𝑖 prevailed with increased 𝑝𝑖
(𝑝𝑟𝑜𝑝)

, it 

meant that huge sets influenced 𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)

 to quicky arrive at 1, which inferred that there 

was a higher chance that the sets would be chosen in the sample (Thompson, 2012). 

According to (cite), the computational function for 𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)

 is inherently placed on caveat 

of 0 𝑎𝑛𝑑 1 (Cochran, 1977). 

The HT estimator discussed above was deployed in the sampling process as an unbiased 

estimator for the overall population due to uncertainty supplied in the PPSWR 



(Pennington, 1996). Hence, HT estimator for species 𝑠 was derived as: 𝑇̅𝐻𝑇
(𝑠) = ∑

𝑌̅𝑖𝑠

𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)𝑖∈𝑆  

, and 𝑌̅𝑖𝑠 as defined above, represented the set-level catch for species 𝑠 in set 𝑖 while the 

summation refers to sets 𝑆 for oversampled sets (FAO, 2011). In retrospect, the 

unbiasedness of HT is usually tied to 𝜋𝑖 as the authentic first-order inclusion probability 

derived from the true without-replacement sampling scheme (Pennington, 1996) while, 

its precise variance measure of the HT estimator relies upon second-order joint 

probabilities 𝜋𝑖𝑗 (Newton & Geyer, 1994; Hulliger, 1995). Thus, since 𝜋𝑖
(𝑃𝑃𝑆𝑊𝑅)

 used in 

this step was a derivative approximation from the authentic probability, the precision of 

the estimates is dependant on the properties of the approximation (Pennington, 1996). 

In that regard, the need to perform sampling process through bootstrap was paramount 

so that samples are resampled 𝑀 times in consideration of the sampling regime and 

evaluated the empirical variance of HT (Hulliger, 1995). The process of bootstrap or 

Monte Carlo resampling ensured that both sampling scheme complexities i.e. for both 

PPS and stratification as well as species composition uncertainty are accommodated 

inherently in the sampling procedure of sets and baskets, and generates an authentic 

variance associated with those schemes (Thompson, 2012). 

3.1 Species Composition and Scheme Variance Propagation Across Strata with 

Monte Carlo and HT Simulator 

The purpose of this approach was to determine how observed coverage and basket 

sampling could be synthesized into precision for CPUE of species composition, as well as 

translate into design-based planning of effort and targets. The simulation handled set 

observations and within-set basket sampling across various sampling scheme and then 

calculated HT values of totals for every stratum and finally aggregate resampled estimates 

for composition variations. Thus, to be able achieve the desired outcomes, the procedure 

was structured to perform computations for every replicate as follows: 

3.1.1 True Population per Stratum 

In the above analysis, already generated population templates for individual strata was: 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑟𝑎𝑡𝑢𝑚,ℎ: {𝐶𝑃𝑈𝐸𝑖𝑠
𝑠𝑡𝑑 , 𝑤𝑖, 𝐴𝑟𝑒𝑎𝑖, 𝑆𝑒𝑎𝑠𝑜𝑛𝑖 , 𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑠} 

whereby 𝐶𝑃𝑈𝐸𝑖𝑠
𝑠𝑡𝑑, is the standardised CPUE for species 𝑠 in set 𝑖  derived above and 𝑤𝑖,ℎ 

is the overall weight of a stratum obtained from total effort or total number of sets in 

population (Efron & Tibshirani, 1993).  

Therefore, mean CPUE of the true population for every stratum was calculated as:

 𝜇𝑡𝑟𝑢𝑒
𝐶𝑃𝑈𝐸 = ∑ 𝑤𝑖,ℎ ∗ 𝐶𝑃𝑈𝐸𝑖𝑠

𝑠𝑡𝑑𝑁
𝑖=1 /∑ 𝑤𝑖,ℎ

𝑁
𝑖=1   



and consequently, the overall catch estimates of the true population of stratum  ℎ is 

derived from: 𝑌𝑡𝑟𝑢𝑒,ℎ = ∑ 𝐶𝑃𝑈𝐸𝑖𝑠
𝑠𝑡𝑑 ∗ 𝐻ℎ

𝑁
𝑖=1 . 

Therefore, let 𝑁ℎ become number of sets per stratum, which is obtained from population 

sets computed. Thus, by selecting 𝑚ℎ = 𝑟𝑜𝑢𝑛𝑑(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑒𝑣𝑒𝑙 ∗ 𝑁ℎ) (Cochran, 1977), the 

simulator withdraws 𝑚ℎ sets according defined sampling scheme discussed above. The 

sampling scheme computed were random sampling conserved to be equivalent of equal-

probability sampling (Gokpinar & Arzu Ozdemir, 2012), stratified sampling was considered 

as similar to random although it was executed per individual stratum. Then, performed 

sampling with probability proportional to size with replacement and approximation for 

inclusion probability (Efron & Tibshirani, 1993) to generate expansion across sets with 

the estimator per species as 𝑇̅𝐻𝑇
(𝑠)

 (Hulliger, 1995).  

3.1.2 Monte Carlo Propagation 

Application of the Monte Carlo (MC) simulator (Manly, 2006) accounted for uncertainty in 

deriving species composition since proportions 𝑃̅𝑖𝑠 had been calculated from a subset of 

baskets. The technique for nested bootstrap (Manly, 2018), was adopted for individual 

MC replicates and for every sampled set as follows: 

• Observed baskets 𝑆𝑖 were resampled (with replacement) to generate a bootstrap 

sample 𝑆𝑖
(𝑟)

 at the basket level and this process of resampling whole baskets was 

vital to shield covariance of multi-species within a basket (Kunz et al., 2007). 

Thereby, we reworked proportions 𝑃̅𝑖𝑠
(𝑟)

 from baskets that were resampled as:  

𝑃̅𝑖𝑠
(𝑟) =

∑ 𝑤𝑖𝑏𝑠𝑏𝜖𝑺𝒊
(𝒓)

∑ ∑ 𝑤𝑖𝑏𝑠𝑠  
𝑏𝜖𝑺𝒊

(𝒓)
 

• Similarly, we recalculated the raised total catches for within-set expansion, which 

was accomplished by inflating basket-weights by proportion  𝑌̅𝑖𝑠
𝑟 = 𝐻𝑖

𝑜𝑏𝑠 ∗  𝑃̅𝑖𝑠
(𝑟)
 . 

The nested resampling was undertaken within individual replicates of MC so that 

uncertainty in species composition structure was supplied to the variance of across-

replicates (Hulliger, 1995; Hilborn & Walters, 1992). In addition, propagating uncertainty, 

baskets were resampled entirely (the basket-level vectors across species) when building 

population of species 𝑃̅𝑖𝑠 inside the MC replicates in order to capture composition sampling 

variance. This technique satisfied our objective of integrating both composition and 

design variability from the application of a nested bootstrap from basket sampling and 

MC set selection respectively. 

 



4.0 Compute CPUE and empirical CV over Monte Carlo replicates 

The MC draws samples of size 𝑛 = 𝑝 ∗ 𝑁𝑡𝑜𝑡𝑎𝑙 from the ‘true’ population according to 

specified sampling scenarios and the stratified ratio estimator calculates estimated totals 

as per species categories using HT. Then, the simulation calculates the distribution of CV 

after M iterations by calculating the mean of the estimates (Y̅) and the SE of the estimated 

total (the SD of the M estimates):  𝑆𝐸(𝑌̅) =  ⟨ 
1

𝑀−1
 ∑ (𝑌̅𝑖 − 𝑌̅)

2𝑀
𝑖=1  , and the overall 

CV simulation for particular sampling scheme was evaluated as: 𝐶𝑉𝑠𝑖𝑚 =
𝑆𝐸(𝑌̅)

𝑌̅
∗ 100. 

Conclusively, bootstrapped CV was computed to generate 95% CI. 

5.0 Assumptions 

I. Logbook reported set totals were treated as reliable baselines and within-set 

expansion, the ratio estimation assumed sampled baskets are representative. 

II. In the absence of sampled CPUE at basket level as discussed above, a true CPUE 

ratio raise (
sampledcatch

sampledhooks
) * 𝐻𝑖 and inference of total catch of baskets 𝐵𝑓𝑢𝑙𝑙 that would 

have been applied for within-set expansion patterns was not possible and 

therefore, the study assumed that the observed baskets are representative of the 

within-set species composition by weight. Consequently, those sampled baskets 

that represented the set composition, were then disaggregated from the set totals 

by sampled-weight proportions, which is an unbiased for species total since direct 

observed weights were used as basis for proportioning (Cochran, 1977). 

III. The proportion-based raising fails to acknowledge uncertainty between the 

relationship of sampled baskets and unobserved baskets, which may have been 

possible using hooks or basket positions. Therefore, due to this mismatch, the 

variance was included through bootstrap of basket-level resampling conducted for 

both basket and set-level in order to reflect uncertainty in true population. 

IV. The loss of effort simple standardisation (per 1000 hook) rate at the basket-level 

was compensated at the set-level by adjusting the CPUE with effects originating 

at the basket-level for species composition. Thus, since proportional raising at 

basket-level will only give species composition totals. After raising at basket-level 

totals, adjusted CPUE at set-level was calculated for raising to total for sets. 

6.0 Tools and software 

As mentioned above, R base software was employed in the analysis and pakcages used 

were: sf, ggplot2, lubridate, boot, lme4, naturalearth among others (R Core Team, 2024). 

 



7.0 Results and Discussions 

7.1 Spatial Stratification in Context of Kenya’s Observer Program 

The spatial analysis based on the 1°×1° grid cells provided a detailed overview of catch 

composition and species distribution patterns from Kenya’s longline observer data (2018–

2025). The results are summarized in four key visual outputs: (a) distribution of fishing 

sets by grid cell, (b) species distribution across bycatch, PET (Protected, Endangered, and 

Threatened), SSI (Species of Special Interest), and target groups, (c) catch diversity 

hotspots, and (d) Shannon biodiversity index values (figure 1). 

The distribution of fishing sets by grid cell revealed uneven observer coverage across the 

fishing grounds, with several grid cells showing dense activity concentrated in limited 

areas. This pattern highlights the spatial variability in fishing effort and underscores the 

importance of increasing observer coverage at the basket or set level. In areas where 

observer presence was sparse, the representativeness of catch and effort data was 

reduced, limiting the precision of spatially explicit CPUE and biodiversity estimates. 

The species distribution maps demonstrated that bycatch, PET, SSI, and target species 

are spatially distinct, often occupying different ecological zones within the Western Indian 

Ocean. Such segregation indicates that pooling data across wide areas without sufficient 

sampling resolution may mask important spatial patterns in species occurrence and 

abundance. These findings strongly reinforce the need for 100% basket-level sampling 

or, at minimum, observer coverage exceeding 60% to capture the true variability in catch 

composition and species interactions. 

The catch diversity hotspots further illustrated localized areas of high species richness, 

particularly along productive oceanographic zones near the Kenyan EEZ boundary. 

Similarly, the Shannon biodiversity index revealed moderate to high diversity in several 

nearshore and offshore grid cells, consistent with known multi-species assemblages in 

the region. Together, these indicators demonstrate that catch diversity is not uniformly 

distributed and that targeted sampling strategies are necessary to account for this spatial 

heterogeneity. 

Overall, the 1°×1° grid approach provided enhanced spatial precision, allowing for a finer-

scale understanding of fishing activity, species distribution, and biodiversity. The results 

support the conclusion that improved observer coverage and basket-level sampling are 

essential for reducing uncertainty in bycatch and biodiversity assessments and for 

strengthening ecosystem-based management of Kenya’s longline fishery. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Precision vs Percentage of Basket Sampled (Stand-CPUE) per stratum



 

In figure (2) the Monte Carlo (MC) simulation results illustrate how precision (CV of CPUE) 

changes with increasing percent of baskets sampled and varying set coverage levels 

across spatial strata (1°×1° grids). Each panel represents a stratum for example at01–

at80 whether both SEM and NEM seasons, with curves showing how precision improves 

as more baskets are sampled within a set. 

Across most strata, the CV (Coefficient of Variation) values decline steadily as the 

proportion of baskets sampled increases. This inverse relationship indicates that precision 

of CPUE estimates improves with sampling intensity, confirming that limited basket-level 

coverage introduces significant uncertainty in estimating catch rates. In several strata, 

CV values drop sharply between 20% and 60% sampling, after which gains in precision 

taper off — implying a diminishing return beyond 60–80% basket coverage. 

Comparisons among the coloured curves (representing 10%, 20%, 40%, 50%, and 60% 

set coverage) reveal that higher set coverage consistently produces lower CVs across 

strata. However, some variability remains, particularly in strata with fewer observed sets 

or greater heterogeneity in catch composition such that even high set coverage did not 

fully stabilize precision. This variation underscores that spatial heterogeneity in fishing 

effort and species composition can amplify sampling uncertainty unless both basket and 

set coverage are adequate. Therefore, in fisheries management perspective that involves 

planning of observer deployment and validation of the datasets, the study revealed that: 

• Attention to adequate sampling effort: The precision verses coverage relationship 

suggests that 60% basket-level sampling combined with ≥50% set coverage 

achieves acceptable precision (CV ≤ 0.3) for most strata. This balance optimizes 

observer effort without incurring unnecessary costs. 

• Planning for coverage for specific strata: Precision gains vary across strata, 

indicating that sampling designs should be adaptive. Strata with greater variability 

in CPUE (e.g., high bycatch or mixed species zones) may require intensified 

sampling or stratified subsampling protocols. 

• Data reporting quality and validation process: The MC-based validation provides a 

quantitative basis for evaluating observer data quality. By comparing simulated 

(true population) and sampled CPUE distributions, managers can identify under-

sampled strata and potential biases in observer deployment. 

• Attention to uncertainties and biasness: Since observer presence and sampling are 

rarely random, ensuring adequate basket and set coverage helps minimize bias in 

catch and bycatch estimates, especially critical when estimating bycatch of PET 

and SSI species. 



Conclusively, the precision curves demonstrated that robust observer coverage is vital to 

data reliability. The use of simulated “true populations” allows for realistic testing of 

sampling strategies, offering a strong empirical basis for setting minimum coverage 

targets and validating the representativeness of observer data across Kenya’s longline 

fishery strata. 

7.2 Fisheries Management Perspective 

The simulation results shown above for both plots and tables demonstrated how 

effectively the analysis met the three core objectives related to precision, sampling 

sufficiency, and stratification design for the longline fishery observer data. 

To estimated CV for strata with ±95% confidence bounds, each panel in the figure 2 

represented a distinct 1°×1° spatial stratum, where the coefficient of variation (CV) was 

calculated from the Monte Carlo replicates of standardized CPUE. The downward trend in 

the curves shows that as more baskets are sampled within each set, the variability in 

CPUE decreases, confirming the computation of precision per stratum. Although the 95% 

confidence bounds are not displayed directly, the narrowing spread of CVs across 

simulations indicates increasing confidence in CPUE estimates at higher sampling 

fractions. 

Also, to determine the minimum coverage and basket sampling proportions that fulfills 

targets in management, the precision curves showed clearly that precision improves 

rapidly between 20% and 60% basket coverage, after which gains begin to flatten. This 

pattern identifies an optimal range of sampling coverage (50–60%) that achieves 

acceptable CV values (typically below 0.3), aligning with management standards for 

reliable catch rate estimates. Strata that maintain high CVs even at higher coverage levels 

signal statistically unreliable areas, likely due to low observer effort or high catch 

variability, and thus need targeted increases in sampling intensity or revised deployment 

strategies. 

Furthermore, to validate operational stratification scheme, by evaluating precision within 

each 1°×1° grid cell, the analysis confirmed that the current stratification successfully 

divides the fishery into relatively homogenous units. Within each stratum, CPUE variability 

was lower than across the entire fishery, showing that fishing effort and catch 

composition are internally consistent within these grid-based areas. This supports the 

statistical appropriateness of the stratification scheme for monitoring trends and 

managing observer effort efficiently. 
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