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Abstract

Effective fisheries management requires accurate, spatially-resolved data on target,
bycatch and protected, endangered and threatened species. This study integrates
longline observer datasets (2018-2025) from the Kenyan coastline to standardize Catch
Per Unit Effort (CPUE), quantify its uncertainty, and evaluate sampling biases. We
employed a comprehensive, reproducible framework using modern statistical and
computational tools within the R ecosystem. Data were harmonized and mapped onto a
1° x 1° grid of Kenya's Exclusive Economic Zone. Nominal CPUE (kg/1000 hooks) was
standardized using generalized linear and delta-lognormal models, adjusting for
spatiotemporal and operational covariates.

Uncertainty in CPUE and species composition was rigorously quantified using analytical
and bootstrap-derived Coefficients of Variation (CVs). A nested resampling approach
simultaneously captured variation in catch proportions and sampling effort, ensuring
realistic propagation of uncertainty. The workflow included diagnostic modules to flag
statistical deviations, outliers, and spatial coverage gaps, safeguarding data integrity.
Spatial analyses produced gridded summaries of species distribution, relative abundance,
and biodiversity, highlighting species-specific hotspots and bycatch concentration zones.

A critical focus was addressing non-random sampling bias inherent in voluntary observer
programs. The framework assesses the representativeness of observed vessels using
historical observer data from Kenya, a vital step for bias correction. Our analysis indicates
that while 20% observer coverage yields acceptable precision for common species, rare
species require coverage exceeding 60% to reduce uncertainty to manageable levels,
with requirements varying spatially and seasonally. This CV-based approach provides a
quantitative benchmark for designing efficient, stratified sampling strategies that balance
logistical constraints with statistical rigor.



Ultimately, this study demonstrates a scalable and transparent methodology that bridges
operational sampling with modern analytics. By integrating standardization models,
spatial stratification, and resampling-based uncertainty quantification, it enhances the
credibility of fisheries indices in data-limited regions, directly supporting sustainable
management, adaptive monitoring, and robust stock assessments for the Western Indian
Ocean.

Keywords: Observer Data Validation, Coefficient of variation, Catch per Unit Effort,
Spatial stratification, catch estimates, Monte Carlo Resampling, Uncertainty, Fisheries
Monitoring and Managements

1.0 Introduction

The management of longline fishery is complex due to an ever-present challenge of
bycatch that are caught in substantial quantities, which involve non-target species,
sharks, rays, seabirds, turtles and cetaceans. Therefore, it becomes paramount to
strengthen monitoring of the fishery in order to account for these incidental catches and
safeguard progress to sustainable management of the fisheries resources as well as fulfill
conservation mandates (Kiilu et al., 2025).

Kenya has a functional national observer program that deploys fisheries staff as scientific
observers onboard national and foreign flagged vessels in the Kenyan Exclusive Economic
Zone (EEZ) and the high seas (Fondo & Omukoto, 2021). The implementation of the
observer program is critical function by the Kenya Fisheries Service as stipulated in the
Fisheries Act Cap 378 and forms part of the backbone in the monitoring, control and
surveillance (MCS) functions (Kiilu et al., 2025). However, as evidenced in literature and
national observer reports, the program suffers constraints ranging from finances,
logistical operations, knowledge and capacity among others that often contribute to gaps
in data coverage (Babcock et al., 2003). The strive for balance by fisheries observer
programs between capped observer efforts and the necessity for precise estimates of
target, bycatch and protected, endangered and threatened (PET) species for the longline
fisheries has become unbearably inevitable (Gray & Kennelly, 2018). The coefficient of
variation (CV) is a global technique that has been applied as a scale-free metric of relative
precision to set monitoring targets and validation of core indices and estimates relevant
to management of longline fisheries (Thompson, 2012).

The observer program in Kenya implements training techniques from the IOTC and the
SWIOFC that has structured data collection forms and reporting templates for catch and
effort, biological sampling, and compliance information. This study focused on catch and



effort data in order to review and assess precision estimates at the primary sampling unit,
which in this case is the basket (hooks between floats/radio buoys). In order to
comprehensively assess precision, it was inevitable to compile all data and simulate
sampling techniques and finally review the statistics involved.

Therefore, study aimed to assess the efficiency of alternative stratification schemes
unique to longline fishery in addition to estimates of CV for a given defined stratum, and
thus, demonstrates proof to select the most statistically efficient strata for fisheries
managers need to understand the marginal gains in precision for every new stratification
scheme.

1.1 Objectives

1. To Build per-stratum baseline standardised CPUE templates from vessel logbook
and observer data.

2. Simulate observer sampling under alternative set-coverage and basket-sampling
schemes

3. Compute per-stratum CV of CPUE (catch rate estimates) and 95% confidence
bounds

4. Identify minimal coverage and within-set sampling fraction that meets
management targets. This identifies which species/strata estimates are statistically
reliable and which suffer from insufficient sampling effort due to high variance or
low coverage.

5. To validate that the current operational stratification scheme is statistically
appropriate for the longline fishery by verifying that the strata successfully partition
the fishing effort into relatively homogenous units, whereby catch rates within a
stratum are less variable than across the entire fishery.

1.2 Justification and Rationale

Therefore, aggregating catch totals of vessel logbooks with basket-level fishing behaviour
from observer data has potential to generate an authentic baseline population that
conserves both reported catch totals and within-set heterogeneity (Kesavan Nair &
Alagaraja, 1988). In addition, the simulation of sampling techniques for observer
candidate set and basket across different strata allows for proof-based design of coverage
levels for sets and basket sampling efforts. In essence, this procedure is critical because
it manages the phenomenon of potential uncertainty intrinsic in proportionate sampling
of increasingly unstable natural patterns like quantifying the variation in sampling
(Thompson, 2012).



The strive to attain 100% coverage over the whole fishery for observer program steadily
continues and with that reality, estimated total catches for target, bycatch and PET
species becomes a random estimate, which is conditional to inaccuracies (Babcock et al.,
2003). For example, reported observer data particularly for elusive catches of PET
species, usually demonstrate highly overdispersed distribution whereby, a majority of
fishing sets tend to report zero bycatch or PET species while only a few sets record
extremely high levels of these species (Curtis & Carretta, 2020). It is due to this high
uncertainty in the fishery that causes conventional simple sampling techniques unreliable
(Little & Rubin, 2019).

Stratified random sampling schemes based on factors that drive catches such as fishing
area, target species, depth or seasons is more efficient than simple random sampling
(SRS), which fails to validate whether sampled vessel effort is truly representative of the
unobserved effort by rigorously assessing the statistical efficiency of various stratification
and allocation strategies (Babcock et al., 2003). This study aimed to correct that by
comparing both logbook data and observer data for species category totals and imputed
by mean for unobserved sets and baskets per stratum. Then acknowledged Newton and
Geyer's (1994) technique in a simulation through nested bootstrap and Monte Carlo (MC)
propagation (Manly, 2018) as well as deployment of the Horvitz-Thompson (HT)
estimator (Gokpinar & Arzu Ozdemir, 2012) to apply the CV as the definitive metric for
quantifying the uncertainty property of estimated total catches of target, bycatch and
PET species categories (Wakefield et al., 2018; Hulliger, 1995). Therefore, the techniques
were then invested to demonstrate a probabilistic evaluation of the precision of estimated
catches by confirming that a low CV denotes a statistically stable estimate whereas a high
CV would then signal that the monitoring program is statistically deficient for that
particular species category or stratum (Mclnerny, 2014; Babcock et al., 2003).

Furthermore, the simulation permits for the testing of different stratification and
allocation schemes such as placing more observers in areas known for high bycatch
(Babcock et al., 2003). Also, the technique creates opportunities for advanced model-
based and inclusion of the finite population correction (FPC) (Thompson, 2012) the
current simulation abstracts away from complex design-based and FPC.

2.0 Materials and Methods
2.1 Data sourcing, Incorporation and Validation

The fisheries observer dataset involves sampled data of catch and effort data n = 6928
from 2018 to 2025, which represents the historical dataset of fisheries observer program
onboard longline fishing vessels. Similarly, vessel logbook data n = total sets that reflects
fishing sets of the observer data was used to provide total catches and total nhumber of



hooks for every set for validation of with those exact observed total of sets captured in
the observer data. Therefore, we combined the two datasets to generate a schema of
the following fields per row: date, start-setting positions, end-hauling positions, season
(NEM and SEM), set unique identification (id), basket index, species type, species
category (target, bycatch, PET), total weight per species composition (kg), observed total
weight per set (calculated catch) and observed total number of hooks per set. Generally,
data cleaning was performed in R (R Core Team, 2024) with packages tidyverse and dplyr
(Wickham, 2014; Wickham et al., 2023) and vectorisation of spatial coordinates
(Pebesma, 2018).

2.2 Description of Spatial Stratification

The positions for start setting and end hauling were obtained from the logbook dataset,
which contained the reported catches for both individual species and aggregated species
categories. The line connecting these two points, theoretically set to haul, represents the
spatial trajectory of the longline fishing gear and consequently defines the spatial
distribution of catches (Francis, 1984).

Each longline set was converted into a LINESTRING geometry using the dateline to ensure
accurate spatial continuity, resulting in one geometry per set (Pebesma & Bivand, 2023).
This enabled precise spatial allocation of each fishing set across 1° x 1° grid cells. A
polygon grid at this finer spatial resolution was constructed and clipped to the boundaries
of the Western Indian Ocean FAO Area 51, thereby establishing a spatial stratification
framework for area-based management (FAO, 2002).

Subsequently, each LINESTRING was intersected with the FAO-cropped 1° grid,
producing individual line segments corresponding to each combination of set and grid
cell. The length of each segment within a given cell was calculated following the method
described by Jolly & Hampton (1990). These segments were then divided into geodetic
length fractions as follows:

For each set line L;, its intersection with grid cell c was used to determine the fractional
distribution of catch and effort:

Witie = totalyx %, (Pebesma & Bivand, 2023; Francis, 1984)

This procedure was necessary due to the absence of positional data at the hook or basket
level, making it impossible to precisely locate individual hooks along the gear. Instead,
basket-level catches were proportionally distributed across intersected grid cells
according to line length fractions. This approach ensured that both catch and effort



(standardized CPUE) were appropriately allocated, even when basket positions were
missing or incomplete.

Finally, reported catches of all species and species categories were distributed across
their respective intersected 1° grid cells by these fractional weights and aggregated to
the cell level. The resulting logbook dataset provided cell-level catch and effort
summaries, forming the basis for area stratification and for generating spatial templates
representing the “true” population distribution (Pebesma, 2018).

At the basket level, the sum of individual species weights within each basket was used to
compute the total basket weight. For each set, the total weight of all species across
observed baskets was compared to the total reported set weight to validate sampling
completeness (Francis, 1984). This comparison revealed that some baskets within sets
were unobserved or missing data, confirming partial observation at the basket level.
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Figure 1. Comprehensive Overview of Catch Composition Per 1°x1° Grid Cell from
Kenya's Observer Catch and Effort Data 2018-2015, with illustration as follows: (a)
Distribution of fishing sets by grid cell, (b) species distribution (bycatch, PET, SSI &
target species), (c) Catch diversity hotspots, (d) Shannon biodiversity index (Developed
in R base 4.4.3)

2.3 Proportion of Weight Raise and Imputation for unobserved Baskets

Here the focus was on observed basket species weights in order to compute species
proportions and raise to the total set weight. At the same time, impute (mean) for



unobserved baskets to generate complete basket templates for a ‘true’ population (Quinn
& Deriso, 1999). Thus, due to the limitation of absence of number of observed hooks per
basket, sampled basket weights proportions within set were used to allocate total weight
of sets proportionally to observed baskets as well as species categories whereby, the
approach becomes: for set i let sampled basket species weights be w;,, for sampled
baskets b € S; (Harley et al., 2001): sampled weight of species composition is calculated

as w P = ¥, e wips and total sampled weight of baskets per set i (including species

composition in baskets) as W;°*"*¢ = Ypes; Ls Wins (Quinn & Deriso, 1999). In addition,
the proportion of sampled weight (per basket) for species was calculated as s: P;,; =

sample

VM;“’S— and showed the ratio of how much of sampled catch each basket contributed.

sample 1
i

Then, estimates were done for the total number of baskets in a set, whereby, B; refers
to total number of baskets hauled per set.

Thereafter, we estimated the total number of baskets per set by conducting a mean
imputation to generate weights for unobserved baskets and was achieved by inferring

reasonable number of baskets from observed total weights per set or logbook set totals
(set)
(kgs) W, as B; = V_VW‘— whereby, w“"™*®) becomes the mean weight of sampled

.sample 1
i

basket (Kimura, 1981).

Furthermore, we normalised proportions and expanded to total weights per set using,

L Pig,“”) =1 in order to ensure that summation of proportions becomes 1 (Quinn &
Deriso, 1999). Then, calculated the total weights for a set by scaling the basket weights
as: will = P« wet this confirmed that both observed baskets and imputed baskets

were combined to represent the expanded total catch for that set.

Similarly, the same computation was repeated for estimating species composition per
basket since the observed baskets have total weights of species types and was imputed
for basket-level species composition by, calculating the proportion of species type per
observed basket as

Dis = Ypeons Wins /W, "™, then for imputed baskets utilise the same ratio:

wimputed) _ .+ w ™ and consequently, the summation over all baskets will generate

the expanded total weights of species composition per set (Thompson, 2012). According
to previous literature, the imputation fortifies variance when coverage is less than 100%
whereas, the ratio of weight expansion reduces bias because it safeguards proportional
heterogeneity within sets (Thompson, 2012; Pennington, 2001; Cotter, 1998). The ratio



estimation of the total catch per set Y; under an unbiased proportional sampling then
became:

¥, = Wyt « Zhesample Wibs (cochran 1977).

Zbesample Wib
2.4 CPUE standardisation at Set-Level

The computation for expanded total catch per set and records of total number of hooks
per set was done to generate nominal CPUE (kg/1000 hooks) and then applied a GLM
model to standardised nominal CPUE into indices of abundance that was comparable
across stratum (Lo et al., 1992). Then, summed totals into population sets and population
baskets for stratum templates (Thompson, 2012). Standardisation of CPUE satisfies its
comparison across sets and thus, nominal CPUE at set-level for species s in set i as:

}7.
nom __ LS
CPUER™ = &
L

* 1000, where, Y;, indicates the raised total catch (kg) for species s in

set i whereas H?PPS , represents the total number of hooks observed per set. Thereafter,
nominal CPUE was standardised using a gaussian GLM (Lo et al., 1992) to enhance
comparability of CPUE across spatial and temporal strata and thus, ensured minimal bias
due to non-uniform effort or sampling techniques (Hilborn & Walters, 1992).
Consequently, GLM was computed as: let Y;; be total catch of species type s in set i and
adopted a Gamma-log, which ensures that responses are positive ad caters from
multiplicative effects (Hilborn & Walters, 1992).

Therefore, the model was performed as:

E[Y;] = HPYS * y;, so that CPUngmi”“l ~ Gamma (mean = pg;, link = log), and model
was fitted with an offset log (H??) (Lo et al., 1992). Then standardisation was done by
strata of area, season and species type.

E[Y;] = pis = exp (B + B log(Hi"bS) + B,Area; + PsSeason + B,Speciess(wtT*sed) +
€;)

The model parameters were defined as, B, to indicate the intercept inferring to the
abundance index of baseline and log (H?"S) performs the offset for hooks to achieve
adjusted effort. The model involved effects at stratum level such as Area; as categorial
that impacts spatial stratum developed for 5° grid cell, Season; as a categorical outcome,
Speciesg(wt™s¢?) to acknowledge basket-level species composition effects and e; to
represent residual error (Hiborn & Walters, 1992). Thus, indices of CPUE standardization
per stratum was generated as: CPUESE =exp (By + Pon + Bss+ Bas + ), which
eliminates effort and sampling biases (Hiborn & Walters, 1992).



2.5 Generate Baseline Templates for True Population

This stage was important to introduce the standardised CPUE (CPUE;'?) to generate a
hypothetical but natural population, which the sampling simulation procedure MC will be
undertaken (Thompson, 2012; Manly, 2018). The stage had two phases: (i) template for
population sets, since each set represented a feature in the population with its
parameters. (ii) template population baskets whereby, every set is expanded into total
number of baskets B; to create Bif “ and thereafter, assign individual weights of species
composition for every basket by disaggregating raised total weights of species across the
baskets using B/*" template (Cochran, 1977).

Phase 1: Construction of template for population sets for every observed set was
performed so that the output generated a set with rows bearing parameters as follows:

unique identification (id) of set i, stratum (area * season), H?YS, V;, w™"*and p;; , Vs
and (CPUE;'®) (already defined above). Therefore,

Populationges(;) = (i, stratum, H??, Y, {Pys}s, {Yis}s, CPUES?)

Phase 2: Construction of template for population baskets were created by amplifying
individual set i into B; baskets and then assigned the weight of species composition into

those baskets was done for each set i : YoL, S who = ¥, (refer above) and likewise,
for each species s in set i : YL wh? = Y, (refer above). In addition, the P, ratio
output already derived for baskets in each set was considered to demonstrate observed
pattern at basket-level. Thereafter, we distributed species s across baskets through a
deterministic disaggregation (Cochran, 1977): w)°F = Py, * Y5, b=1,..,B,.

Thus, the totals for each basket assigned became:

W total = ZsWihe = Pip 25 Yis = Py + ¥; (Cochran, 1977).

In order to confirm that the allocation was conservative, we computed zﬁ;lwg?;tal to
confirm it was the same as Y, P, * Y; = Y; (Thompson, 2012).

Eventually, the population basket template developed had features represented in every
row as: (i, b,s) and weight (kgs) w}°F.

3.0 Preparation for Stratified Statistics and Inclusion of Species Composition
Uncertainty into Sampling Scheme

This step was increasingly important to setup the required ingredients for a stratum-level
configuration that comprised of inclusion probability that warrants the simulation of
sampling schemes discussed above (stratified, PPS) and then evaluate Horvitz-Thompson



values and approximate variance (Pebesma & Bivand, 2023). The parameters that were
involved in the computation were derived from previous outputs as follows: stratum h,
sets i € h, species s and basket b. Accordingly, N, represented the number of sets in
stratum h and for set i it contained hooks H?PS, total raised catch Y, total raised species
catch Y;; and CPUE;S*. In addition, total estimated number of hooks per stratum was
calculated as: H, = Y;c, H??S (Hiborn & Walters, 1992).

As explained above, the technique adopted for PPS aimed to conduct deliberate
oversampling of sets as opposed to SRS, so as to capture most of the total catch from
those sets. The technique as argued by (Babcock et al., 2003), elevates the precision of
calculated total catches since the uncertainty in population is attributed to a small number
of sets that are have flourishing catches or increased CPUE (Kimura, 1981). Thus, the
focus was the size measure size; in set i was derived as the i*"* set, which was adopted
as Y;. The probability ratio of selecting i*" set in one (m;,) draw with replacement was
then computed as the size; divided by the summation of all other size measures size;

and denoted as:

pi(p“”’) = ZNSL% , Whereby N represents the total number of sets in the population
j=1 j

(Jolly & Hampton, 1990).

The subsequent step was the sampling itself with-replacement boosted probability m;
(Thompson, 2012). In essence, m; units were sampled with replacement from the
derived true population and thus, on the one hand, probability of not selecting a particular

set i for every m;, unique draw was denoted as: (1 - pi(p””’))mh(Hulliger, 1995). On the
hand, the probability of that particular set i being picked at least once was denoted as:

g PPSWR) — 1 _ (1 — pl.(p”’p)>mh (Hulliger, 1995). Therefore, the features for this

4

approximation were adopted such that if both pi(p”’p) and m,, became small, the output

(PPSWR)
i

of my, * pl.(p”’p) was an acceptable approximation for m , which substantiated the

assumption for PPSWR. However, in cases that size; prevailed with increased pi(p“’p), it
meant that huge sets influenced 7""*"® to quicky arrive at 1, which inferred that there
was a higher chance that the sets would be chosen in the sample (Thompson, 2012).
According to (cite), the computational function for 7""*"® is inherently placed on caveat
of 0 and 1 (Cochran, 1977).

The HT estimator discussed above was deployed in the sampling process as an unbiased
estimator for the overall population due to uncertainty supplied in the PPSWR



(Pennington, 1996). Hence, HT estimator for species s was derived as: TIE,ST) = Ziesﬁ
, and Y, as defined above, represented the set-level catch for species s in set i while the
summation refers to sets S for oversampled sets (FAO, 2011). In retrospect, the
unbiasedness of HT is usually tied to r; as the authentic first-order inclusion probability
derived from the true without-replacement sampling scheme (Pennington, 1996) while,
its precise variance measure of the HT estimator relies upon second-order joint
probabilities 7;; (Newton & Geyer, 1994; Hulliger, 1995). Thus, since 7""*"® used in
this step was a derivative approximation from the authentic probability, the precision of
the estimates is dependant on the properties of the approximation (Pennington, 1996).
In that regard, the need to perform sampling process through bootstrap was paramount
so that samples are resampled M times in consideration of the sampling regime and
evaluated the empirical variance of HT (Hulliger, 1995). The process of bootstrap or
Monte Carlo resampling ensured that both sampling scheme complexities i.e. for both
PPS and stratification as well as species composition uncertainty are accommodated
inherently in the sampling procedure of sets and baskets, and generates an authentic
variance associated with those schemes (Thompson, 2012).

3.1 Species Composition and Scheme Variance Propagation Across Strata with
Monte Carlo and HT Simulator

The purpose of this approach was to determine how observed coverage and basket
sampling could be synthesized into precision for CPUE of species composition, as well as
translate into design-based planning of effort and targets. The simulation handled set
observations and within-set basket sampling across various sampling scheme and then
calculated HT values of totals for every stratum and finally aggregate resampled estimates
for composition variations. Thus, to be able achieve the desired outcomes, the procedure
was structured to perform computations for every replicate as follows:

3.1.1 True Population per Stratum

In the above analysis, already generated population templates for individual strata was:

Populationserqeymn: {CPUEiSStd, w;, Area;, Season;, Speciess}

whereby CPUES!?, is the standardised CPUE for species s in set i derived above and w; ,
is the overall weight of a stratum obtained from total effort or total number of sets in
population (Efron & Tibshirani, 1993).

Therefore, mean CPUE of the true population for every stratum was calculated as:

CPUE _ N std N
Utrue = i=1Wi,h * CPUEis /Zi=1 Wi,h



and consequently, the overall catch estimates of the true population of stratum h is
derived from: Y,y n = XN, CPUES™ « H,,.

Therefore, let N, become number of sets per stratum, which is obtained from population
sets computed. Thus, by selecting m;, = round(coverage;.,.; * Ny) (Cochran, 1977), the
simulator withdraws m,, sets according defined sampling scheme discussed above. The
sampling scheme computed were random sampling conserved to be equivalent of equal-
probability sampling (Gokpinar & Arzu Ozdemir, 2012), stratified sampling was considered
as similar to random although it was executed per individual stratum. Then, performed
sampling with probability proportional to size with replacement and approximation for
inclusion probability (Efron & Tibshirani, 1993) to generate expansion across sets with

the estimator per species as TPSST) (Hulliger, 1995).
3.1.2 Monte Carlo Propagation

Application of the Monte Carlo (MC) simulator (Manly, 2006) accounted for uncertainty in
deriving species composition since proportions P;; had been calculated from a subset of
baskets. The technique for nested bootstrap (Manly, 2018), was adopted for individual
MC replicates and for every sampled set as follows:

e Observed baskets S; were resampled (with replacement) to generate a bootstrap
sample s at the basket level and this process of resampling whole baskets was

2

vital to shield covariance of multi-species within a basket (Kunz et al., 2007).

Thereby, we reworked proportions Egr) from baskets that were resampled as:
pr Zbesgr) Wibs

is

2 pes® Ls Wibs
15

e Similarly, we recalculated the raised total catches for within-set expansion, which
was accomplished by inflating basket-weights by proportion ¥ = H??S « P

The nested resampling was undertaken within individual replicates of MC so that
uncertainty in species composition structure was supplied to the variance of across-
replicates (Hulliger, 1995; Hilborn & Walters, 1992). In addition, propagating uncertainty,
baskets were resampled entirely (the basket-level vectors across species) when building
population of species P; inside the MC replicates in order to capture composition sampling
variance. This technique satisfied our objective of integrating both composition and
design variability from the application of a nested bootstrap from basket sampling and
MC set selection respectively.



4.0 Compute CPUE and empirical CV over Monte Carlo replicates

The MC draws samples of size n = p * N,y from the ‘true’ population according to
specified sampling scenarios and the stratified ratio estimator calculates estimated totals
as per species categories using HT. Then, the simulation calculates the distribution of CV
after Miterations by calculating the mean of the estimates ( ¥) and the SE of the estimated

total (the SD of the M estimates): SE(Y) = <ﬁ M. (¥, — Y)?, and the overall

CV simulation for particular sampling scheme was evaluated as: CV,,, = SE;?)* 100.

Conclusively, bootstrapped CV was computed to generate 95% CI.
5.0 Assumptions

I.  Logbook reported set totals were treated as reliable baselines and within-set
expansion, the ratio estimation assumed sampled baskets are representative.
II. In the absence of sampled CPUE at basket level as discussed above, a true CPUE

sampledcatch

ratio raise ( ) * H; and inference of total catch of baskets B, that would

samplednooks
have been applied for within-set expansion patterns was not possible and
therefore, the study assumed that the observed baskets are representative of the
within-set species composition by weight. Consequently, those sampled baskets
that represented the set composition, were then disaggregated from the set totals
by sampled-weight proportions, which is an unbiased for species total since direct
observed weights were used as basis for proportioning (Cochran, 1977).

III. The proportion-based raising fails to acknowledge uncertainty between the
relationship of sampled baskets and unobserved baskets, which may have been
possible using hooks or basket positions. Therefore, due to this mismatch, the
variance was included through bootstrap of basket-level resampling conducted for
both basket and set-level in order to reflect uncertainty in true population.

IV. The loss of effort simple standardisation (per 1000 hook) rate at the basket-level
was compensated at the set-level by adjusting the CPUE with effects originating
at the basket-level for species composition. Thus, since proportional raising at
basket-level will only give species composition totals. After raising at basket-level
totals, adjusted CPUE at set-level was calculated for raising to total for sets.

6.0 Tools and software

As mentioned above, R base software was employed in the analysis and pakcages used
were: sf, ggplot2, lubridate, boot, Ime4, naturalearth among others (R Core Team, 2024).



7.0 Results and Discussions
7.1 Spatial Stratification in Context of Kenya’s Observer Program

The spatial analysis based on the 1°x1° grid cells provided a detailed overview of catch
composition and species distribution patterns from Kenya'’s longline observer data (2018-
2025). The results are summarized in four key visual outputs: (a) distribution of fishing
sets by grid cell, (b) species distribution across bycatch, PET (Protected, Endangered, and
Threatened), SSI (Species of Special Interest), and target groups, (c) catch diversity
hotspots, and (d) Shannon biodiversity index values (figure 1).

The distribution of fishing sets by grid cell revealed uneven observer coverage across the
fishing grounds, with several grid cells showing dense activity concentrated in limited
areas. This pattern highlights the spatial variability in fishing effort and underscores the
importance of increasing observer coverage at the basket or set level. In areas where
observer presence was sparse, the representativeness of catch and effort data was
reduced, limiting the precision of spatially explicit CPUE and biodiversity estimates.

The species distribution maps demonstrated that bycatch, PET, SSI, and target species
are spatially distinct, often occupying different ecological zones within the Western Indian
Ocean. Such segregation indicates that pooling data across wide areas without sufficient
sampling resolution may mask important spatial patterns in species occurrence and
abundance. These findings strongly reinforce the need for 100% basket-level sampling
or, at minimum, observer coverage exceeding 60% to capture the true variability in catch
composition and species interactions.

The catch diversity hotspots further illustrated localized areas of high species richness,
particularly along productive oceanographic zones near the Kenyan EEZ boundary.
Similarly, the Shannon biodiversity index revealed moderate to high diversity in several
nearshore and offshore grid cells, consistent with known multi-species assemblages in
the region. Together, these indicators demonstrate that catch diversity is not uniformly
distributed and that targeted sampling strategies are necessary to account for this spatial
heterogeneity.

Overall, the 1°x1° grid approach provided enhanced spatial precision, allowing for a finer-
scale understanding of fishing activity, species distribution, and biodiversity. The results
support the conclusion that improved observer coverage and basket-level sampling are
essential for reducing uncertainty in bycatch and biodiversity assessments and for
strengthening ecosystem-based management of Kenya’s longline fishery.
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In figure (2) the Monte Carlo (MC) simulation results illustrate how precision (CV of CPUE)
changes with increasing percent of baskets sampled and varying set coverage levels
across spatial strata (1°x1° grids). Each panel represents a stratum for example at01-
at80 whether both SEM and NEM seasons, with curves showing how precision improves
as more baskets are sampled within a set.

Across most strata, the CV (Coefficient of Variation) values decline steadily as the
proportion of baskets sampled increases. This inverse relationship indicates that precision
of CPUE estimates improves with sampling intensity, confirming that limited basket-level
coverage introduces significant uncertainty in estimating catch rates. In several strata,
CV values drop sharply between 20% and 60% sampling, after which gains in precision
taper off — implying a diminishing return beyond 60—-80% basket coverage.

Comparisons among the coloured curves (representing 10%, 20%, 40%, 50%, and 60%
set coverage) reveal that higher set coverage consistently produces lower CVs across
strata. However, some variability remains, particularly in strata with fewer observed sets
or greater heterogeneity in catch composition such that even high set coverage did not
fully stabilize precision. This variation underscores that spatial heterogeneity in fishing
effort and species composition can amplify sampling uncertainty unless both basket and
set coverage are adequate. Therefore, in fisheries management perspective that involves
planning of observer deployment and validation of the datasets, the study revealed that:

e Attention to adequate sampling effort: The precision verses coverage relationship
suggests that 60% basket-level sampling combined with >50% set coverage
achieves acceptable precision (CV < 0.3) for most strata. This balance optimizes
observer effort without incurring unnecessary costs.

e Planning for coverage for specific strata: Precision gains vary across strata,
indicating that sampling designs should be adaptive. Strata with greater variability
in CPUE (e.g., high bycatch or mixed species zones) may require intensified
sampling or stratified subsampling protocols.

o Data reporting quality and validation process: The MC-based validation provides a
quantitative basis for evaluating observer data quality. By comparing simulated
(true population) and sampled CPUE distributions, managers can identify under-
sampled strata and potential biases in observer deployment.

e Attention to uncertainties and biasness: Since observer presence and sampling are
rarely random, ensuring adequate basket and set coverage helps minimize bias in
catch and bycatch estimates, especially critical when estimating bycatch of PET
and SSI species.



Conclusively, the precision curves demonstrated that robust observer coverage is vital to
data reliability. The use of simulated “true populations” allows for realistic testing of
sampling strategies, offering a strong empirical basis for setting minimum coverage
targets and validating the representativeness of observer data across Kenya's longline
fishery strata.

7.2 Fisheries Management Perspective

The simulation results shown above for both plots and tables demonstrated how
effectively the analysis met the three core objectives related to precision, sampling
sufficiency, and stratification design for the longline fishery observer data.

To estimated CV for strata with £95% confidence bounds, each panel in the figure 2
represented a distinct 1°x1° spatial stratum, where the coefficient of variation (CV) was
calculated from the Monte Carlo replicates of standardized CPUE. The downward trend in
the curves shows that as more baskets are sampled within each set, the variability in
CPUE decreases, confirming the computation of precision per stratum. Although the 95%
confidence bounds are not displayed directly, the narrowing spread of CVs across
simulations indicates increasing confidence in CPUE estimates at higher sampling
fractions.

Also, to determine the minimum coverage and basket sampling proportions that fulfills
targets in management, the precision curves showed clearly that precision improves
rapidly between 20% and 60% basket coverage, after which gains begin to flatten. This
pattern identifies an optimal range of sampling coverage (50-60%) that achieves
acceptable CV values (typically below 0.3), aligning with management standards for
reliable catch rate estimates. Strata that maintain high CVs even at higher coverage levels
signal statistically unreliable areas, likely due to low observer effort or high catch
variability, and thus need targeted increases in sampling intensity or revised deployment
strategies.

Furthermore, to validate operational stratification scheme, by evaluating precision within
each 1°x1° grid cell, the analysis confirmed that the current stratification successfully
divides the fishery into relatively homogenous units. Within each stratum, CPUE variability
was lower than across the entire fishery, showing that fishing effort and catch
composition are internally consistent within these grid-based areas. This supports the
statistical appropriateness of the stratification scheme for monitoring trends and
managing observer effort efficiently.
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