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SUMMARY

In 2023, a 1-component GAMM model to standardize SKJ catch per FOB set of the Indian Ocean
EU purse-seine fleet for the period 1991-2021 was presented (Kaplan et al. 2023a). This paper
updates that model to include data for the period 2022-2024 for the SKJ management strategy
evaluation (MSE) process. Results indicate a roughly stable trend 2018-2024 with non-negligible
interannual variability.
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1. Introduction

In 2023, both a short (2010-2021; Kaplan et al. 2023b) and long (1991-2021; Kaplan et al. 2023a) time series
standardized CPUE for skipjack tuna (SKJ) were produced based on data from the European purse-seine fishery on
tropical tunas in the Indian Ocean. The long time series was the principal abundance index used for the stock
assessment. It was requested that the same long time series model (Kaplan et al. 2023a) be rerun including more
recent data (i.e., 2022-2024 for a total time series of 1991-2024) as part of the management strategy evaluation for
SKJ. This analysis is performed here. For completeness, the same figures and text are included as in the 2023 paper,
with any differences noted as needed.

2. Methods

2.1 Catch-effort dataset

The catch-effort data in this study consisted of French and Spanish FOB sets over the period 1991-2024. The initial
data consisted of 154,413 FOB sets corresponding to 151,912 fishing activity entries in the data set. The data was
filtered to remove the following data entries (numbers of sets indicated are not exclusive):

e Null sets (9,699 sets)
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o Fishing activities corresponding to multiple fishing sets (4,650 sets). Such multi-set fishing activities are
concentrated in the early part of the time series, but never exceed 15% of all FOB sets in a given year.

e Sets by vessels in the bottom 5% of vessels in terms of number of positive sets or that were active less than
3 years or whose activities spanned less than 5 years (20 vessels corresponding to 3,199 sets)

After applying all of these filters, the final dataset used for building the CPUE standardization model consisted of
137,742 sets.

In addition to including data from 2022-2024, this dataset differs from that presented in 2023 (Kaplan et al. 2023a)
in that improved SKJ catch estimates for the year 2020 have been used. Furthermore, French data from 2022 have
been amended with respect to data used in a previous version of this update (Kaplan et al. 2025) and 2024 French

and Spanish species compositions corrections have been carried out using the new R-based T3 algorithm detailed in
Duparec et al. (2020).
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Figure 1: Number and fraction of FOB sets per year that are recorded in multi-set fishing activities.

2.2 Predictor variables

The predictor variables consisted of the the standard temporal, spatial, fleet and vessel identifier predictor variables
included in previous standardization efforts (Guéry et al. 2021, Akia et al. 2022, Kaplan et al. 2023a):

e lon,lat spatial variables

e year, month temporal variables

e quarter for stratifying spatial smooths and prediction grids
e vessel country, capacity and year of initiation of activity

e vessel unique identifier



2.3 Modeling approach
Only a 1-part GAMM model was evaluated for this long time series CPUE.

2.3.1 I-part GAMM model
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Figure 2: Histograms of SKJ catch data in model training dataset before (a) and afer (b) log transformation.

A single-component general additive mixed-effects model (GAMM) was also run with log(SKJ + C) as the variable
to be predicted, where SKJ is the T3-corrected (Pianet et al. 2000, Duparc et al. 2020) catch of skipjack per purse
seine FOB set. As for a small number of sets (3,089 sets) zero SKJ catch was reported, a small constant, C, was
added to SK1J catch before taking the log. This constant C was chosen to be 1 tonne as this amount is generally used
as the limit between null and non-null sets and was observed to produce a response variable that was reasonably
close to normally distributed before running the model (Figure 2) and the resulting GAMM had reasonably good
model diagnostics (see Results below).

Predictor variables for the GAMM model were longitude and latitude as a tensor product smooth by quarter, year
and month as a tensor product smooth cyclic in the month dimension, vessel capacity and years of service at the time
of fishing as individual smooths and vessel country as a categorical predictor. Vessel identifier was included as a
categorical random effect. The precise command used to general the GAMM model was:

gm = gamm(logskj~te(lon,lat,by=quarter,k=13) +
te(year,month,k=c(20,11),bs=c("cr","cc")) +
s(yr_serv,k=10) + s(capacity,k=10) + country,
data=data,random=1ist(vessel id=~1))

The model was verified using the gam. check function of the mgcv package to assure that the numbers of splines
used for each smooth (i.e., k) were sufficient.

2.4 Prediction/standardization approaches

CPUE standardization is based on predicting models on a standard spatio-temporal grid, fixing fishing-efficiency-

and catchability-related variables at standardized values, and then averaging over space (and potentially other
predictors) to obtain a standardized estimation of abundance. We implemented two different approaches to this



spatial averaging process. The first is the approach that has traditionally been used based on predicting catch in each
1° X 1°-month strata occupied by the fishery and then averaging (or summing) over 1° X 1° grid cells. This spatial
averaging is based on the assumption that set size is a true predictor of abundance in each strata. Though spatial
thinning is generally used to remove cells with very low fishing effort from the prediction step, this method still has
the disadvantage that it combines results from grid cells with potentially highly varying sampling effort (i.e.,
numbers of fishing sets). Furthermore, catch per set is only partially satisfactory as an estimator of abundance as it
implicitly assumes that the number of FOB fish schools is constant over space (so that abundance is entirely
reflected in set size), an assumption that is unlikely to be globally valid.

Due to these limitations, we also implement a second approach to developing a spatially-averaged standardized
CPUE. In this approach, the predictions in each 1° X 1°-month strata are weighted by the total number of fishing
sets carried out in that grid cell and the corresponding quarter (i.e., the weightings are stratified by quarter) over the
entire time series of the data. As the number of sets times the average catch per set is the total catch, this approach is
akin to using total catch as an indicator of abundance, except that the spatial distribution of fishing effort is
standardized over time. This method will place more weight on core fishing areas where most fishing effort occurs
relative to the previously described methodology.

Before implementing both standardization approaches, the spatial area to be used for predictions was thinned to
remove 1° X 1° grid cells with little fishing effort. Predictions were only made for grid cells that collectively
represent the smallest number of grid cells accounting for at least 95% of the FOB fishing sets in each quarter
included in the model training data. The resulting modeling domains for each of the four quarters are shown in
Figure 3.

Variables related to fishing efficiency and catchability were fixed at their median values from the training data set.
Specifically, when calculating standardized CPUEs, vessel capacity was fixed at 1850 and vessel initial year of
activity was fixed at 1996. Predictions were made for all levels of categorical predictor variable vessel country and
then averaged across levels, weighting the resulting predictions by the overall prevalence of each level in the model
training data (e.g., fraction of Spanish versus French sets).

Predictions from the log-normal GAMM model were converted back to absolute catch using the standard formula
for estimating the expected value of a log-normal distribution (Fletcher 2008):

2
Ox
Ky = exp <llx + 7) €Y

where uy is the expected value predicted by the GAMM model, o2 is the residual variance of the GAMM model
(i.e., the scale parameter of the model outputs) and yy is the final predicted catch.

When averaging GAMM model predictions to obtain annual standardized CPUEs, standard errors were combined
via simple addition, equivalent to assuming that all uncertainties in model predictions are correlated. Though
undoubtedly inexact, this assumption will lead to conservative estimates of uncertainty (i.e., larger than reality). This
issue can be corrected to obtain more exact uncertainty estimates using a bootstrap approach based on the Cholesky
trick (Andersen 2022).
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Figure 3: The 1° X 1° grid cells used for model prediction for each quarter. The quarter number is indicated at the
top of each panel.

3. Results

3.1 Nominal catch data

Boxplots of catch per set find that nominal SKJ CPUEs for the period 2018-2024 have been more or less stable, with
values being somewhat lower for the period ~2020-2024 than for 2018-2019 (Figure 4, Figure 5).
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Figure 4: Boxplot of nominal catch per set by year and country.
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Figure 5: Boxplot of nominal catch per set by year and country. Outliers are not shown in this boxplot.



3.2 Model diagnostics and significance of predictor variables

GAMM models are actually implemented as the combination of a linear mixed-effects (LME) model for estimating
the random effect and a GAM model for estimating the final model with smooths after removing the variance
explained by the random effect. Both of these components provide standard diagnostic plots, including a residuals
versus fitted plot for the LME model (Figure 6) and a QQ-plot for the GAM (Figure 7). Both of these plots indicate
an adequate fit of the data to the model assumptions.

All predictors included in the model, including smoothed, direct and random effects, had a significant impact on
SK1J catch per FOB set except for year of vessel initiation of activity (see model summaries below and Table 1).
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Figure 6: Fitted values versus residuals for LME part (i.e., random part) of GAMM.
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Figure 7: QQ-plot of GAM part (i.e., non-random part) of GAMM.
ANOVA table for LME component of GAMM model (i.e., model for estimating random effect):

numDF denDF F-value p-value
X 17 137654 2668.057 <.0001

Summary output from GAM part of GAMM model (i.e., non-random part of model):

Family: gaussian
Link function: identity

Formula:

logskj ~ te(lon, lat, by = quarter, k = 13) + te(year, month,
k = c(20, 11), bs = c("cr", "cc")) + s(yr_serv, k = 10) +
s(capacity, k = 10) + country

Parametric coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 2.67166 0.02136 125.069 <2e-16 ***
countryspain 0.06224 0.02927 2.127 0.0334 *

Signif. codes: © '***' @.001 '**' 9.01 '*' @.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:

edf Ref.df F p-value
te(lon,lat):quarterl 49.95 49.96 24.728 < 2e-16 ***
te(lon,lat):quarter2 31.07 31.07 12.674 < 2e-16 ***
te(lon,lat):quarter3 37.70 37.70 42.638 < 2e-16 ***



te(lon,lat):quarterd4d 45.35 45.35 24.481 < 2e-16 ***

te(year,month) 180.96 180.96 35.029 < 2e-16 ***
s(yr_serv) 1.00 1.00 1.665 0.197

s(capacity) 1.00 1.00 26.202 3.18e-07 ***

Signif. codes: © '***' 9,001 '**' @9.01 '*' ©.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.112
Scale est. = 0.86307 n = 137742

(a) Parametric terms

Estimate Std. Error t value Pr(>t))
(Intercept) 2.672 0.021 125.069 0.000
countryspain 0.062 0.029 2.127 0.033
(b) Smoothed terms
edf Ref.df F p-value
te(lon,lat):quarter 49.955 49.955 24.728 0.000
1
te(lon,lat):quarter 31.070 31.070 12.674 0.000
2
te(lon,lat):quarter 37.699 37.699 42.638 0.000
3
te(lon,lat):quarter 45.348 45.348 24.481 0.000
4
te(year,month) 180.964 180.964 35.029 0.000
s(yr_serv) 1.000 1.000 1.665 0.197
s(capacity) 1.000 1.000 26.202 0.000

Table 1: Summary statistics and p-values for fixed and smooth terms included in the non-random part of the GAMM
model.



3.3 Marginal effects of predictor variables
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Figure 8: Marginal effect of lon,lat on log SKJ catch per FOB set for each of the four quarters.
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Figure 9: Marginal effect of year,month on log SKJ catch per FOB set.
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Figure 10: Marginal effects of individual smooths on log SKJ catch per FOB set. The red horizontal bars on the
panels indicate the central 95% of the data of the corresponding predictor variable in the model training data set.



Vessel carrying capacity had a linearly increasing impact on log SKJ catch per set, whereas the effect of year of
entry into the fishery was insignificant. The impacts of spatial (Figure 8) and temporal (Figure 9) predictors on log
SKJ catch are more difficult to interpret.

3.4 Standardized CPUEs

Table 2: Annual spatially weighted and unweighted standardized CPUEs and nominal CPUEs for SKJ catch per
FOB set in the Indian Ocean European purse seine fleet. Values are in units of tonnes per set.

Ye Unweighted, Unweighted, Unweighted, Weighted, Weighted, Weighted,
ar Mean 2.5% 97.5% Mean 2.5% 97.5%
19 27.79 23.60 32.76 27.64 23.77 32.18
91

19 26.93 23.83 30.42 27.33 24.49 30.51
92

19 27.15 23.93 30.80 27.70 24.72 31.04
93

19 27.49 24.41 30.96 27.65 24.89 30.72
94

19 23.93 21.32 26.86 23.76 21.46 26.31
95

19 18.96 16.84 21.35 18.80 16.91 20.89
96

19 17.75 15.87 19.85 17.79 16.12 19.63
97

19 19.69 17.37 22.31 19.95 17.81 22.34
98

19 22.89 20.43 25.64 23.21 21.00 25.64
99

20 26.03 23.10 29.32 26.32 23.68 29.25
00

20 27.57 24.50 31.03 27.89 25.13 30.94
01

20 28.29 25.24 31.71 28.69 25.97 31.69
02

20 28.34 25.09 32.00 28.69 25.73 31.98
03

20 26.68 23.82 29.89 26.75 24.21 29.56
04

20 2391 21.20 26.96 23.80 21.40 26.46
05

20 20.80 18.65 23.20 20.81 18.93 22.87
06

20 18.93 16.91 21.20 18.92 17.13 20.88
07

20 19.15 17.09 21.46 18.92 17.11 20.92
08

20 21.55 19.31 24.03 21.38 19.43 23.52
09

20 23.02 20.55 25.79 2291 20.72 25.33
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Figure 11: Yearly standardized CPUE predictions from the single-component GAMM model. CPUEs are in units of
tonnes of SKJ catch per PS FOB set in the Indian Ocean. Solid curves indicate mean tendencies, whereas shaded
areas indicate the upper and lower limits of the 95% confidence interval. Red curves correspond to the spatially
unweighted approach to averaging predictions over space, whereas green curves correspond to the spatially
weighted approach to spatial averaging. Black and gray curves indicate the nominal CPUE derived from the
original, unfiltered data and the filtered data used for training the GAMM model, respectively.
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Figure 12: Quarterly standardized CPUE predictions from the single-component GAMM model. CPUEs are in units
of tonnes of SKJ catch per PS FOB set in the Indian Ocean. Solid curves indicate mean tendencies, whereas shaded
areas indicate the upper and lower limits of the 95% confidence interval. Red curves correspond to the spatially
unweighted approach to averaging predictions over space, whereas green curves correspond to the spatially
weighted approach to spatial averaging. Black and gray curves indicate the nominal CPUE derived from the
original, unfiltered data and the filtered data used for training the GAMM model, respectively.

Nominal and standardized annual CPUE curves are shown in Figure 11 and Table 2, whereas quarterly CPUEs are
shown in Figure 12. The weighted and unweighted standardized CPUE curves are generally similar to each other
and similar to the nominal CPUE curves. The most notable differences between nominal and standardized CPUEs
occur in 3 specific periods: (a) 1991-1997: standardized CPUEs are consistently above nominal CPUEs, perhaps due
to the balancing of catch between the different fleets; (b) 2000-2007: standardized CPUEs are generally below
nominal CPUEs, perhaps related to the effect of the “golden years”; and (¢) 2007-2017: this period corresponding to
the most important impacts of Somali piracy is also characterized by standardized CPUEs being somewhat superior
to nominal CPUE. Nominal CPUEs based on the original, unfiltered data and the filtered data used for GAMM
model training are generally quite close, but show some differences particularly 2003-2007.

The standardized time series is generally quite close to that presented in 2023 (Kaplan et al. 2023a) except for 2020
which has changed due to the use of revised data. This standardized time series differs from that prevented in a
previous version of this update (Kaplan et al. 2025) in that French data from 2022 has been updated, increasing
CPUEs for 2022.

3.5 Access to standarized time series
The annual standardized CPUE time series can be download at: https://drive.ird.fr/s/Ccrny4a3qD7Q2wK

The quarterly standardized CPUE time series can be downloaded at: https://drive.ird.fr/s/jZcKz7GQHS5AcrzT
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4. Discussion

Results for 2018-2024 are variable, but roughly stable at values that are intermediate (20-25 tonnes/set) over the
scale of the entire time series. 2023-2024 shows a somewhat decreasing trend, though considering interannual
variability over the time series it is too early to tell if that simply represents interannual variability or a longer-term
downward trend.
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