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Abstract 

Yellowfin tuna (Thunnus albacares) plays a central role in Sri Lanka’s longline fishery, contributing 

a higher share of both catch and economic return. However, catch rates are highly variable, 

reflecting the combined influence of fishing practices and possible changes in stock abundance. 

This study examined catch per unit effort (CPUE) dynamics using port sampling data collected 

between 2013 and 2023. Explanatory variables included temporal (month), operational (vessel 

length, days fished, number of hooks, and gear operation time), and spatial (fishing area) 

variables. Multiple linear regression (MLR) and generalized additive models (GAMs) were 

employed to describe both linear and non-linear relationships, while a Random Forest model was 

utilized to assess variable importance. The analysis showed that CPUE varied significantly with 

vessel length and fishing effort, indicating that larger vessels operating longer trips with more 

hooks tended to achieve higher catch rates. Both linear and non-linear models indicated that 

fishing effort and operational characteristics accounted for a significant portion of the observed 

variability in CPUE. These findings highlight the value of integrating statistical and machine 

learning approaches to better understand catch rate dynamics in the yellowfin tuna longline 

fishery of Sri Lanka. 
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Introduction 

The yellowfin tuna (Thunnus albacares) is one of the most valuable tuna species exploited in the 

Indian Ocean, contributing significantly to Sri Lanka’s fisheries sector through both domestic 

consumption and export earnings (World Bank, 2022; Jayaweera, 2022). Among the various gears 

employed, the longline fishery has become increasingly important for targeting tuna species, in 

particular, yellowfin tuna. Understanding catch rate dynamics in this fishery is crucial for 

evaluating fishing performance, identifying changes in resource availability, and informing 

evidence-based management decisions (Yeh and Chang, 2010). 

Catch Per Unit Effort (CPUE) is commonly used as an indicator of relative abundance in fisheries 

(Maunder and Punt, 2004).  However, CPUE values are not solely determined by fish stock 

abundance; they are also influenced by factors such as vessel type, trip duration, number of 

fishing days, gear configuration, fishing grounds, and seasonal conditions (Hoyle et al., 2017; 

Haputhantri et al., 2023). These operational and environmental factors can mask underlying 

trends, making it necessary to explore modeling approaches that can separate their effects and 

identify the main drivers of catch rates. This study examines yellowfin tuna CPUE in Sri Lanka’s 

longline fishery from 2013 to 2023 using both linear and non-linear methods. Multiple Linear 

Regression (MLR) and Generalized Additive Models (GAM) are employed alongside selected 

machine learning techniques to analyze the relationship between CPUE and variables related to 

fishing effort and practices. By comparing the performance of linear and non-linear models, this 

work provides insights into the factors affecting catch rate dynamics and evaluates the potential 

of advanced modeling frameworks for fisheries data analysis. The findings contribute to a better 

understanding of fishery operations and provide valuable guidance for management and regional 

stock assessment efforts.  

Materials and methods 

Catch and effort data from the Sri Lankan longline fishery targeting yellowfin tuna from 2013 to 

2023 were used for analysis. The data comes from port sampling records maintained in the 

PELAGOS database of the National Aquatic Resources Research and Development Agency 
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(NARA), Sri Lanka. To ensure consistency and reliability, landings from vessels using mixed gear 

combinations and records of partial unloads were excluded from the analysis. 

The dependent variable was the catch per unit effort (CPUE, expressed in kg per boat per trip). 

Predictor variables considered were vessel length, the number of hooks deployed, days fished, 

gear operation time (day/night/both), IOTC 5° area, and month. All the statistical analyses were 

carried out using R software version 4.1.3 (R Development Core Team, 2025). 

Multiple Linear Regression (MLR) 

MLR is a parametric approach that models the linear relationship between a continuous response 

variable (CPUE) and explanatory variables such as boat length, number of hooks, and trip 

duration. It assumes additive and linear effects of predictors on the response. 

An MLR model was applied to assess the relationship between CPUE and explanatory variables. 

Before modeling, CPUE was log-transformed. Model selection was carried out using stepwise 

procedures based on Akaike Information Criterion (AIC). Multicollinearity was evaluated using 

the Variance Inflation Factor (VIF), and residual diagnostics were performed to assess model 

assumptions (normality, homoscedasticity, independence). 

Generalized Additive Model (GAM) 

GAM is an extension of linear models that allows for nonlinear relationships between the 

response variable and predictors through smooth functions. It is particularly useful for capturing 

seasonal or effort-related nonlinear trends in CPUE. 

A Generalized Additive Model (GAM) was applied to examine the influence of vessel, gear, 

temporal, and spatial factors on CPUE. The model used a Gamma distribution with a log link to 

account for the right-skewed nature of CPUE data. The response variable was CPUE 

(kg/boat/trip). Explanatory variables included: 

Continuous variables: Vessel length, number of hooks, and days fished. 

Categorical variables: Fishing time (day, night, both) and IOTC 5° area. 
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Temporal variable: Month. 

Smooth terms (s ( )) were used for boat length, number of hooks, and days fished to allow for 

potential nonlinear relationships. Model fit was evaluated using adjusted R², deviance explained, 

and residual diagnostics. 

Random Forest (RF) regression model 

RF is a non-parametric, ensemble machine learning method that builds many decision trees and 

averages their predictions. It can model complex, nonlinear interactions among predictors 

without requiring assumptions about the underlying data distribution. 

An RF regression model was applied to examine the influence of fishing effort and vessel-related 

variables on the CPUE. The dataset included the following predictor variables: vessel length, 

fishing time (day, night, both), IOTC area, number of hooks, and days fished. Before model fitting, 

the dataset was screened for missing values, and incomplete records were excluded to ensure 

consistency. 

The Random Forest model was implemented using the randomForest package in R with 500 trees 

(ntree = 500) and default tuning parameters. Variable importance was assessed using two 

measures: (i) percentage increase in mean squared error (%IncMSE), which reflects the predictive 

accuracy loss when a variable is permuted, and (ii) increase in node purity (IncNodePurity), which 

indicates the contribution of each variable to reducing residual variance. 

Partial Dependence Plots (PDPs) were generated for the most influential predictors to visualize 

their marginal effects on CPUE while averaging over the effects of other variables. This allowed 

for the interpretation of non-linear relationships between CPUE and key fishing effort indicators. 
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Results and discussion 

Data visualization 

Box plots of continuous predictors (vessel length, number of hooks, and days fished) show clear 

patterns in CPUE (Figure 1). Larger vessels, higher numbers of hooks, and longer fishing durations 

were generally associated with higher catch rates, though variability and outliers were also 

evident. 

 

Figure 1. Box plot for the distribution of continuous predictor variables used in the CPUE 
analysis 
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Box plots of categorical predictors highlight differences in CPUE across vessel type, fishing time, 

and fishing area (Figure 2). Night operations tended to yield higher catches than day sets, while 

variation was also observed across IOTC fishing areas, suggesting spatial and temporal influences 

on yellowfin CPUE. 

 

Figure 2. Box plot for the distribution of categorical predictor variables used in the CPUE 
analysis 
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MLR model 

Table 1 presents the regression coefficients of the final MLR model developed to examine the 

factors influencing yellowfin tuna CPUE in the Sri Lankan longline fishery. The model explained 

about 52% of the total variance in CPUE (adjusted R² = 0.489, p < 0.001). Vessel length, number 

of hooks deployed, and days fished were all positively and significantly associated with CPUE, 

indicating that larger vessels operating longer trips with more hooks tended to achieve higher 

catch rates. Among the spatial factors, fishing in IOTC area 6100085 was associated with a 

significantly lower CPUE compared to the reference area, while other areas showed negative but 

non-significant effects. Month also had a significant negative effect, suggesting seasonal 

variability in catch rates. 

The diagnostic plots of the final MLR confirmed that residuals were approximately normally 

distributed, heteroscedasticity was minimal, and variance inflation factors (VIF) were below 5, 

indicating no strong multicollinearity (Figure 3). 

Table 1. Regression coefficients of the final MLR model used for CPUE analysis 

Coefficients: 

                   Estimate Std. Error t value Pr(>|t|)     

(Intercept)       4.8981898  0.6615898   7.404 1.69e-12 *** 

Boat length       0.0440782  0.0125689   3.507 0.000531 *** 

Number of hooks   0.0007057  0.0001510   4.674 4.67e-06 *** 

Days fished       0.0369238  0.0080423   4.591 6.76e-06 *** 

IOTC.area6100065 -0.0655334  0.4436013  -0.148 0.882666     

IOTC.area6100075 -0.5263315  0.3876322  -1.358 0.175657     

IOTC.area6100080 -0.6607307  0.4596187  -1.438 0.151716     

IOTC.area6100085 -0.8457109  0.4009569  -2.109 0.035845 *   

IOTC.area6105075 -0.7780837  0.4095525  -1.900 0.058520 .   

IOTC.area6105080 -0.7616405  0.4213074  -1.808 0.071750 .   

IOTC.area6110080 -0.4445284  0.4391323  -1.012 0.312307     

IOTC.area6110085 -0.6009549  0.4479714  -1.342 0.180885     

IOTC.area6115085 -0.7170109  0.4841168  -1.481 0.139754     

IOTC.area6200060 -0.1352358  0.4418702  -0.306 0.759800     

IOTC.area6200065 -0.1362781  0.3956430  -0.344 0.730778     

IOTC.area6200075 -0.3196707  0.3895400  -0.821 0.412577     

IOTC.area6205065 -0.2215876  0.4722268  -0.469 0.639277     

IOTC.area6205075 -0.5079135  0.4211430  -1.206 0.228859     

Month            -0.0405854  0.0169952  -2.388 0.017625 *   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Multiple R-squared:  0.521, Adjusted R-squared:  0.489  
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F-statistic: 16.31,  p-value: < 2.2e-16 
 

 

Figure 3. Diagnostic plots of the MLR model: (a) Residuals vs Fitted; (b) Normal Q–Q plot; 

(c) Scale–Location and (d) Residuals vs Leverage 

 

GAM model 

The fitted GAM explained 53% of the deviance in CPUE, with an adjusted R2 of 0.567, indicating 

a moderate to good model fit (Table 2). The parametric component of the GAM showed that 

several categorical factors had a significant influence on the catch rates. Among these, month 
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exhibited a marked seasonal pattern, with certain months contributing significantly higher or 

lower CPUE compared to the reference month, reflecting the seasonal availability of yellowfin 

tuna. The IOTC area variable was also significant, indicating that spatial differences in fishing 

grounds strongly affect catch rates.   

Among the parametric terms, fishing time did not show a statistically significant effect on CPUE. 

Both daytime (p = 0.35004) and night-time operations (p = 0.22272) were not significantly 

different from the reference category. However, the lower p-value for nighttime fishing may 

indicate a weak trend towards higher CPUE compared with the reference. The absence of a 

statistically significant effect of fishing time (day/night) on CPUE may partly reflect limitations of 

the port-sampling data. In the current dataset, fishing time is reported at the trip level rather 

than recorded set-by-set at sea, which could introduce misclassification or averaging effects and 

doubtful real differences in catch rates between day and night operations.  

Among the smooth predictors, boat length (edf=2.213, F=5.098, p= 0.00257) number of hooks 

(edf=1.734, F=10.605, p<0.001) and days fished (edf=4.432, F=9.642, p<0.001) showed 

significant non-linear relationships with CPUE. These results indicate that the response variable 

is strongly influenced by non-linear relationships with boat length, the number of hooks, and days 

fished. 

The GAM smooth plots illustrate how boat length, number of hooks, and days fished each 

influence the response variable (CPUE), after controlling for other factors (Figure 4). For boat 

length, the predicted effect increases steadily from approximately 20 Feet to around 50 Feet, 

indicating that larger vessels tend to achieve higher predicted catch or CPUE. Beyond 50 Feet, 

the effect levels off, suggesting little additional benefit from even longer vessels. Wider 

confidence intervals at the extremes reflect fewer data points. 

For the number of hooks, the effect increases gently and almost linearly across the observed 

range, implying that using more hooks per operation is positively associated with the response. 

In contrast, days fished shows a non-linear pattern: the response rises sharply during the first 

few days, peaks around 10 days, and then levels off, with a slight decline beyond 25–30 days and 
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increasing uncertainty. Overall, these results highlight how the model captures non-linear 

relationships and suggest thresholds where increasing effort no longer improves outcomes, 

valuable information for optimizing fishing practices and management decisions. 

Table 2. Parametric and smooth term estimates from the Generalized Additive Model (GAM) 

for Yellowfin tuna CPUE    

                 Estimate  Std. Error      t value        Pr(>|t|)     

                      
(Intercept)       8.25838    0.32177       25.665         < 2e-16 *** 

Month            -0.03815    0.01424       -2.679         0.00784 **  

Fishing.timeD    -0.22478    0.24011       -0.936         0.35004     

Fishing.timeN     0.13627    0.11149        1.222         0.22272     

IOTC.area6100065 -0.26556    0.36911       -0.719         0.47249     

IOTC.area6100075 -0.64983    0.33317       -1.950         0.05219 .   

IOTC.area6100080 -0.94877    0.38804       -2.445         0.01514 *   

IOTC.area6100085 -0.71628    0.35266       -2.031         0.04326 *   

IOTC.area6105075 -0.95120    0.35165       -2.705         0.00728 **  

IOTC.area6105080 -1.06993    0.36281       -2.949         0.00347 **  

IOTC.area6110080 -0.65220    0.38142       -1.710         0.08846 .   

IOTC.area6110085 -0.80911    0.38966       -2.076         0.03882 *   

IOTC.area6115085 -0.79240    0.42598       -1.860         0.06398 .   

IOTC.area6200060 -0.17779    0.36964       -0.481         0.63093     

IOTC.area6200065 -0.28646    0.32839       -0.872         0.38382     

IOTC.area6200075 -0.59945    0.32783       -1.829         0.06860 .   

IOTC.area6205065 -0.47108    0.39306       -1.199         0.23180     

IOTC.area6205075 -0.77535    0.35244       -2.200         0.02868 *   

 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
                                    edf       Ref.df       F          p-value     
s(Boat.length)          2.213   2.878      5.098  0.00257 **  
s(Number.of.hooks)1.734   2.186   10.605  2.22e-05 *** 
s(Days.fished)           4.432   5.445     9.642   < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.567   Deviance explained =   53% 
GCV = 0.5757  Scale est. = 0.4629     
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Figure 4. Partial smooth effects of model predictors on Yellowfin tuna CPUE 
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Random Forest (RF) regression model 

The Random Forest (RF) model was applied to evaluate the relative importance of predictor 

variables in explaining the variation in CPUE. The variable importance plot (Figure 5) indicates 

that number of hooks was the most influential predictor, followed by boat length and IOTC area, 

while days fished, and fishing time contributed less to the model performance. 

 

Figure 5. Random forest variable importance plot for CPUE prediction 
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The partial dependence plots (Figure 6) depict the marginal effects of key predictors on CPUE. 

For the number of hooks, a strong positive association with CPUE was evident, with catch rates 

increasing steadily as hook numbers rose. This pattern indicates that greater fishing effort, 

through the deployment of more hooks, generally enhances catch rates, although the effect 

appears to level off at very high hook numbers, suggesting diminishing returns at extreme effort 

levels. 

For boat length, CPUE increased with vessel size, particularly for vessels exceeding 40 Feet in 

length. This finding highlights the greater operational capacity, fishing power, and resource 

exploitation efficiency associated with larger vessels. Finally, the IOTC area effect showed little 

to no variation in CPUE across areas, implying that spatial differences in fishing grounds, within 

the range of the available data, exert limited influence on CPUE in the model. 

The partial dependence plots provide an additional insight into how individual predictors 

influence CPUE after accounting for the effects of other variables. The strong positive relationship 

between CPUE and the number of hooks reflects the direct role of fishing effort in determining 

catch rates. However, the apparent plateau at higher hook numbers suggests that beyond a 

certain threshold, additional hooks yield only marginal gains, indicating diminishing returns to 

effort. Similarly, the positive effect of boat length highlights the operational advantages of larger 

vessels, which may include greater fishing power, larger storage capacity, and the ability to access 

more distant or productive grounds. 

In contrast, the effect of the IOTC area on CPUE was weak or absent. This lack of spatial variation 

may not necessarily indicate uniform catch rates across areas, but rather could reflect limitations 

in the port sampling data. In many cases, fishermen report aggregated catch and effort data for 

an entire trip rather than at the set-by-set level. This practice can obscure the true spatial 

distribution of fishing effort, especially when vessels operate in more than one IOTC area during 

a single trip. Consequently, CPUE values may represent a composite of multiple areas rather than 

a single location, diluting any area-specific signal. Improving spatial resolution in data collection, 

such as through set-by-set reporting or electronic logbooks, would help clarify the true impact of 

fishing grounds on CPUE. 
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Figure 6. Partial dependence plots of key predictors in the Random Forest Model 
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Conclusion 

The combined findings from data visualization, MLR, GAM, and Random Forest analyses show 

that vessel size, number of hooks deployed, and days fished are the dominant factors influencing 

yellowfin tuna CPUE in the Sri Lankan longline fishery. Across all approaches, larger vessels and 

higher hook numbers consistently produced higher catch rates, while the effect of fishing 

duration showed a non-linear pattern with diminishing returns beyond about 10–20 days at sea. 

Spatial and temporal influences were evident, with month having a significant seasonal effect 

and some IOTC areas producing lower CPUE, although the strength of area effects was weakened 

by the coarse trip-level reporting used in the current dataset. Fishing time (day vs night) showed 

no significant effect in either the MLR or GAM, or RF, again likely reflecting data limitations rather 

than the absence of a true difference. 

Overall, these results highlight both the power and the limits of the available port-sampling data. 

They highlight the importance of improving data resolution (e.g., set-by-set logbooks or 

electronic reporting) to better capture spatial and temporal variation, and they point to 

thresholds where increasing effort yields only marginal gains. Using these findings to guide 

management: by adjusting vessel effort, the number of hooks used, and trip duration, and by 

improving data collection, Sri Lanka can create stronger, evidence-based plans to protect and 

sustain its yellowfin tuna stocks, even as environmental and fishery conditions change. 
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