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Abstract

The use of the state-space approach in fish stock assessments has received more attention in
recent years and is considered as an essential feature for the next-generation stock assessment
platforms. However, age-structure state-space asssessment models (SSAMs) are still uncommon
for stocks with scarce age information, like tunas. In this study, we aimed to apply an age-
structured SSAMs (the Woods Hole Assessment Model - WHAM) to the Indian Ocean bigeye
tuna using data inputs that are common for tuna stocks: aggregated catch, indices of abundance,
and marginal length compositions. Our models suggest that the SSB has decreased from values
around 1.3 million mt in 1979 to values around 400 thousand mt in 2024. Also, the most likely
stock status is not overfished and not subject to overfishing in 2024, although there is a high
probability (∼ 0.45) of being subject to overfishing for most models. We also provided some
diagnostics (e.g., retrospective analysis, likelihood profile, jitter analysis) for the implemented
models, and ran some model projections to show the capabilities of WHAM. We hope that this
study may increase the visibility of age-structured SSAMs and their application to other tuna
stocks as an alternative platform.
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1 Introduction

Age-structured population dynamics models were initially limited to the use of age-specific
data to estimate abundance-at-age and fishing mortality-at-age. Since the late 1990s, age-
structured assessment platforms have been developed to include size-specific data and model
the age-size transition internally (Fournier et al., 1998; Methot and Wetzel, 2013), expanding
their use for stocks with scarce age information like tunas. Most of these platforms were written
in AD Model Builder (ADMB), which allowed for the efficient and accurate estimation of a
large number of parameters (Fournier et al., 2012). During the last decade, age-structured
state-space assessment models (SSAMs) have rapidly become popular due to the development
of Template Model Builder (TMB) software, which leverages the Laplace approximation to
efficiently integrate out random effects (Kristensen et al., 2016). State-space models are a type
of hierarchical model with two levels: 1) unobserved states or processes that represent the true
state of nature that may vary over time, and 2) observations with associated errors of the state
of nature (Auger-Méthé et al., 2021). The key strength of models written in TMB is their
ability to estimate process error variation objectively by treating them as random effects, which
is considered an essential feature in next-generation stock assessment platforms (Punt et al.,
2020).

The Stock Synthesis (SS3) platform (Methot and Wetzel, 2013) is written in ADMB and has
become very popular to implement assessment models for tuna stocks worldwide, principally
including catch, indices of abundance, marginal size compositions and, in some cases, tagging
and conditional age-at-length data. Traditionally, estimating process error variation in models
written in ADMB like SS3 is done using the “penalized maximum likelihood” approach, which
estimates penalized deviations 𝜖𝑦 ∼ 𝑁(0, 𝜎2

𝜖 ) from the mean parameter while subjectively fix-
ing or iteratively tuning the penalty term 𝜎2

𝜖 (Methot and Taylor, 2011), or approximating it
(Thorson et al., 2015).

The State-space Assessment Model -SAM- (Berg and Nielsen, 2016; Nielsen and Berg, 2014)
and the Woods Hole Assessment Model -WHAM- (Stock and Miller, 2021) are two popular age-
structured SSAM platforms written in TMB that can model recruitment, age-based selectivity,
natural and fishing mortality or survival, and environmental variables using random effects
(Miller et al., 2018; Miller and Hyun, 2018; Stock and Miller, 2021). SAM and WHAM are
mostly applied to stocks on the east coast of North America and ICES management zones
(ICES, 2024; NEFSC, 2024; e.g., NEFSC, 2023), where plenty of age information is available.

The use of age-structured SSAM for tuna stocks has been limited, probably due to the scarce
age information for these stocks and the absence of state-space assessment platforms able to
include size-specific data or model size-based processes. Mhamed et al. (2017) applied SAM
to implement a stock assessment model for eastern Atlantic bluefin tuna (Thunnus thynnus),
converting marginal size compositions and aggregated catch and indices of abundance to catch-
at-age and index-at-age data. Correa et al. (2023) extended WHAM (growth-WHAM hereafter)
to model length-based processes such as selectivity and growth and to allow the use of length
compositions or conditional age-at-length (CAAL) as data inputs. Likewise, other size- or age-
structured SSAMs have been developed to model these processes as length-based rather than
age-based (Hillary and Day, 2021; Zhang and Cadigan, 2022). These developments could expand
the use of age-structured SSAMs to fish stocks with scarce age information like tunas.

In this study, we implemented a stock assessment model for Indian Ocean (IO) bigeye tuna
in WHAM. The source of data to derive the model data inputs (catch, indices of abundance,
marginal size compositions) was the same as that used in the SS3 IO bigeye assessment model
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presented in the Working Party of Tropical Tunas 27th (WPTT27). The model configurations
considered uncertainty in key fishery processes (e.g., selectivity) and data inputs. We also show
examples of WHAM capabilities to estimate stock status and conduct model diagnostics and
projections. The main goal of this study is to introduce WHAM to the tuna RFMOs, and
increase the use of age-structure SSAMs for tuna stocks since they may become more popular
in future years.

2 Methods

2.1 Model inputs

Catch (1979-2024) and size (1979-2024) information was provided by the IOTC Secretariat in
a comma-separated values (CSV) format. Two indices of abundance were also available: joint
longline and purse seine fishing on associated schools. These indices can also be found online at
https://iotc.org/documents/standardised-cpue-index-bigeye-tuna.

2.2 Definition of fisheries

Our assessment adopted the equivalent fisheries definitions used in the previous SS3 stock as-
sessments. Seven fishery groups were defined based on fleet, gear, purse seine set type, and
type of vessel in the case of the longline fleet (Table 1), representing relatively homogeneous
fishing units with similar selectivity and catchability characteristics that do not vary greatly
over time.

A brief description of each fishery group is provided below.

• Freezing longline fisheries (LL), or all those using drifting longlines for which one or more
of the following three conditions apply: (i) the vessel hull is made up of steel; (ii) the
vessel length overall of 30 m or greater; (iii) the majority of the catches of target species
are preserved frozen or deep-frozen.

• Fresh-tuna longline fisheries (LF), or all those using drifting longlines and made of vessels
(i) having fibreglass, fibre-reinforced plastic, or wooden hull; (ii) having length overall less
than 30 m; (iii) preserving the catches of target species fresh or in refrigerated seawater.

• The purse-seine catch and effort data were apportioned into two separate fisheries: catches
from sets on associated schools of tuna (log and drifting FAD sets; PSLS) and sets on
unassociated schools (free schools; PSFS).

• Baitboat fishery (BB), which included the pole-and-line (essentially the Maldives fishery)
and small seine fisheries (catching small fish).

• Line fishery (LINE), representing a mixture of gears using handlines, and small longlines
(including the gillnet and longline combination fishery of Sri Lanka).

• A miscellaneous “Other” fishery (OTHER) was defined, comprising catches from artisanal
fisheries other than those specified above (e.g. gillnet, trolling and a range of small gears).

These fishery groups were used as the model fleets in WHAM.
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2.3 Aggregated catch

The catch dataset was composed of information about time (year and month), CPCs, gear type,
type of association of the fish school, grid code at a 5∘ ×5∘ resolution, and catch in weight (metric
tons) and numbers. The grid code contained information on the grid resolution, quadrant, and
longitude and latitude of the corner of the grid.

To process this dataset and generate the catch inputs for WHAM, we first identified the fishery
groups based on CPC, gear type, and the type of association of the fish school. Then, catch was
summed by year and fishery group (Figure 1).

2.4 Size data

The size data was composed of information about time (year and month), CPC, gear type, type
of association of the fish school, grid code, number of fish sampled per fork length bin (cm),
and the score of reporting quality (RQ). The RQ score is a proxy of the quality (e.g., sampling
coverage, reporting details) of the size information provided to the IOTC Secretariat by CPCs
(Herrera, 2010; IOTC, 2024). The length bin width was 2 cm and the length bins spanned
from 10 to 340 cm. The size dataset had six main types of grid dimensions, although most of
them were category 5 (1 × 1∘) or 6 (5 × 5∘). The data were collected from a variety of sampling
programs, which are described in Fu et al. (2022).

To process this dataset and generate the size compositions inputs for WHAM, we first filtered
the data to remove inconsistent size samples using the criterion followed in official 2025 IO
bigeye stock assessment. Then, we identified the fishery groups based on CPC, gear type, and
the type of association of the fish school. Then, we reduced the number of length bins in the
data by summing the number of sampled fish ≥ 198 cm and assigning it to the 198 cm length
bin. The fishery group was assigned based on the CPC, gear type, and type of association of
the fish school. Then, we converted the length bin width from 2 to 4 cm. To do so, we summed
the number of sampled fish from pairs of length bins (e.g., 10 and 12 cm were summed and
assigned to 10 cm, 14 and 16 cm were summed and assigned to 14 cm, and so on). After this
conversion, we had a total of 48 length bins. Finally, the number of sampled fish per length bin
was summed and the RQ was averaged by year and fishery group (Figure 2, Figure 3, Figure 4,
Figure 5, Figure 6, Figure 7, Figure 8).

The RQ was used as input sample size in WHAM. Due to lower scores of RQ represent better
quality, we inverted the RQ scores from a minimum of 5 (corresponded to an original RQ of 6)
and maximum of 20 (corresponded to an original RQ of 0). Also, we removed size compositions
for for LINE, OTHER, BB fisheries before 2008 due to inconsistent samples.

2.5 Indices

2.5.1 Longline (LL) CPUE

Standardised LL CPUE indices (1979-2024) were available from a joint workshop held by Japan,
Korea, and Taiwan (Kitakado et al., 2025). The indices were derived following the methodology
developed for previous stock assessments and were provided for the four assessment areas used
in the last assessment model (Fu et al., 2022) in a quarterly temporal resolution.
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We determined regional scaling factors that incorporated both the size of the region and the
relative catch rate to estimate the relative level of exploitable longline biomass among regions
(method ‘8’ in Hoyle and Langley (2020)). After scaling the indices by region, we grouped them
by summing the values by quarter. Then, we grouped this index by year by averaging the LL
CPUE quarterly values (Figure 9). A coefficient of variation (CV) of 0.1 was assumed for all
years.

2.5.2 Purse seine (PSLS) CPUE

A standardised index of the biomass of bigeye caught by European purse seiners (Spain and
France) from sets on associated tuna schools (1991 – 2023) was developed (Correa et al., 2025)
and provided in a quarterly temporal resolution. Data used to develop this index mainly come
from the western IO and mainly informs on the biomass of juvenile bigeye. We averaged the
quarterly CPUE values by year to be included in WHAM (Figure 9). The CV associated
with each quarterly value was also averaged and then rescaled to a mean of 0.2 to be used as
observation error.

3 Model parameters

3.1 Population dynamics

The model configurations were single-area and partitioned the population into 10 yearly age
classes (1−10+), both sexes combined. The last age-class (10+) comprises a plus group in which
mortality and other characteristics are assumed to be constant. Age quantities are partitioned
into 48 4-cm length bins ranging from 10 to 198 cm, which covers the main size range observed
for bigeye in the IO. The population is monitored in the model at yearly time steps, extending
through a time window of 1979–2024. The main population dynamics processes are as follows.

3.1.1 Recruitment

Recruitment in WHAM is defined as the appearance of age-1 fish in the population. Recruitment
was assumed to be a function of spawning biomass via a Beverton and Holt stock-recruitment
relationship (SRR) with a fixed value of steepness (ℎ). Typically, fisheries data are not very
informative about the steepness parameter of the SRR parameters (Lee et al., 2012); hence,
the steepness parameter was fixed at a moderate value (0.80). Deviates from the SRR curve
(recruitment deviates) were modelled from 1979 to 2024 as random effects while its standard
deviation (𝜎𝑅) was estimated.

3.1.2 Initial population

The population age structure at the start of the first year (i.e., 1979) was assumed to be in
equilibrium state, estimating the number of fish at age 1 (𝑁1) and an initial fishing mortality
to derive the abundance of other age classes.
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3.1.3 Somatic growth and sexual maturity

The 2022 bigeye stock assessment used growth parameters that replicated the growth curve
derived by Eveson et al. (2012). In the WPTT(DP) 27, Eveson et al. (2025) presented growth
estimates using otolith information from the GERUNDIO project and found quite different
growth patterns compared to previous studies. In our WHAM assessment models, we use the
Eveson et al. (2025) estimates by modelling a von Bertalanffy growth curve (Figure 10). For
the length-weight relationship, we use the estimates found in Chassot et al. (2016). Regarding
sexual maturity, we modelled size-based logistic maturity using the parameters from the last
stock assessment held in 2022. Parameters related to somatic growth and fixed in our models
are shown in Table 3.

3.1.4 Natural mortality

For the current assessment, we used the 𝑀𝑎 estimates following Hamel and Cope (2022) and
then rescaled based on Lorenzen (2005). This relationship models high 𝑀 for younger fish, which
then declines as fish get older. In WHAM, the reference natural mortality is calculated from
𝑀𝑟𝑒𝑓 = 5.4/𝐴𝑚𝑎𝑥, where 𝐴𝑚𝑎𝑥 is the assumed maximum age in the population equal to 14.7
years based on Eveson et al. (2025). 𝑀𝑟𝑒𝑓 is the natural mortality that corresponds to the age
at the 95% maturity, assumed to be 3.75 years based on the maturity and growth curve. Then,
the rescaling of natural mortality at age is performed as a function of the 𝐿∞ and 𝑘 growth
parameters (Figure 11).

3.2 Fishery dynamics

3.2.1 Fishing mortality

Yearly fishing mortality per fleet was estimated as fixed effect through the use of fishing devi-
ates.

3.2.2 Catchability

We estimated the catchability parameters for each index (LL and PSLS) included in the stock
assessment model.

3.2.3 Selectivity

Selectivity was assumed to be size-based for all fleets in our model.

• Longline (LL): parameterised with a logistic function that constrains the older age classes
to be fully selected (“flat top”). Some model configurations also modelled time-variant
selectivity with two blocks: before and after 2000, with a logistic parametrization after
2000 and dome-shaped before 2000. The LL CPUE index was linked to this selectivity.

• Purse seine on free schools (PSFS): modelled using cubic splines with five nodes. The
nodes were specified to approximate the main inflection points of the selectivity function.
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• Purse seine on log schools (PSLS): modelled using a double-normal parametrization. The
PSLS CPUE index was linked to this selectivity.

• Longline fresh tuna (FL): parameterised with a logistic function that constrains the older
age classes to be fully selected (“flat top”).

• Line (LINE): parameterised with a logistic function.

• Baitboat (BB): mirrored the selectivity of the PSLS fishery.

• Other (OTHER): mirrored the selectivity of the PSFS fishery.

3.3 Likelihood components

The total likelihood is composed of a number of components, including the fit to the catch data,
indices of abundance (CPUE), and length frequency data. There are also contributions to the
total likelihood from the recruitment deviates and priors on the individual model parameters.

3.3.1 Catch

The catch data assumed a lognormal error structure. There is no objective estimates of the degree
in uncertainty in aggregated catch data, therefore, like in the 2022 assessment, we assumed a
value of 0.1 for every observation.

3.3.2 Indices of abundance

The CPUE indices assumed a lognormal error structure. The 2022 assessment assumed a CV for
every LL CPUE observation of 0.1. In the current assessment, we followed the same approach.
For the PSLS index, we used the CV derived from the standardization method.

3.3.3 Length frequency

The length frequency assumed a multinomial error structure. The current assessment treated
the RQ values (see Section 2.4) as the input sample size.

3.3.4 Recruitment

Derived from the estimation of annual recruitment as random effects.
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3.4 Parameter estimation and uncertainty

The parameters of the model were estimated by minimising the sum of the negative log-likelihood
components associated with each of the data components plus the negative log of the probability
density functions of recruitment deviates. Models were run with a gradient criterion of 10−4.
The Hessian matrix computed at the mode of the posterior distribution was used to obtain
estimates of the covariance matrix, which was used in combination with the Delta method to
compute approximate confidence intervals for parameters of interest.

The structural uncertainty grid attempts to describe the main sources of structural and data
uncertainty in the assessment. For the current assessment, we have continued with a factorial
grid of model runs which incorporates the following sources of uncertainties (Table 2):

• Selectivity of the LL fishery: constant over the years or with two blocks: before and after
2002.

• Including or excluding the PSLS CPUE index.

3.4.1 Diagnostics

In order to evaluate model misspecification, we applied a series of diagnostics tools described in
Carvalho et al. (2021) to the four model configurations. Regarding convergence, we examined
the maximum final gradient, invertible Hessian, and ran a jittering analysis to evaluate if models
converged to a global solution.

For highly complex population models fitted to large amounts of often conflicting data, it is
common to have difficulties estimating total abundance. Therefore, a likelihood profile analysis
was undertaken of the marginal posterior likelihood with respect to the initial abundance at age
1 (𝑁1). Retrospective analyses were conducted as a general test of the stability of the model,
as a robust model should produce similar output when rerun with data for the terminal years
sequentially excluded (Cadigan and Farrell, 2005). We used the Mohn’s 𝜌 (Mohn, 1999) as
an indicator of retrospective patterns for spawning biomass, recruitment, fishing mortality, and
𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌.

3.5 Stock status

Maximum Sustainable Yield (MSY) based estimates of stock status were determined for the
model configurations, and those included in the uncertainty grid. MSY based reference points
were derived for the model options based on the average F-at-age matrix for every year.

3.6 Projections

We also ran 5-year short-term projections using the fishing mortality levels from the last model
year (2024).

The code to replicate the analyses presented in this document can be found here: https://github.
com/GiancarloMCorrea/2025_IOTC_BET_WHAM.
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4 Results

4.1 Fits

All the models configurations fitted relatively well to the catch (Figure 12) and the CPUE LL
index (Figure 13). For models that incorporated the LS index (Figure 14), the fit was relatively
poor, probably due to the larger weight (i.e., smaller CV) specified for the LL index. Regarding
marginal length compositions, the fits to the PSLS (Figure 15) and FL (Figure 16) length data
were quite well, while to the PSFS length data were also relatively well (Figure 17). For the
LL length data, we observed that the model predicted larger fish before 2002 when using one
selectivity block with a logistic shape (Figure 18). However, these fits were improved when
modelling two selectivity blocks for the LL fishery (Figure 19).

4.2 Estimates

Selectivity estimates can be found in Figure 20 when one block was modelled for the LL fleet,
while Figure 21 shows the selectivity estimates when two blocks were modelled for that fleet.
The SRR is shown in Figure 22 for model 1BlockLL_LS_h08. In general, the four model
configurations produced similar results. The annual 𝐹 estimates shown an increasing trend
(Figure 23). Annual SSB estimates showed a decreasing trend, starting from values around 1.3
million mt in 1979 to values around 400 thousand mt in 2024. Annual recruitment estimates
remained roughly stable over the years, showing a slight decreasing trend from 2000 to 2015.
Regarding estimates of annual reference points, we observed that 𝑆𝑆𝐵𝑀𝑆𝑌 remained stable over
the years, around 325 thousand mt (Figure 24). Conversely, 𝐹𝑀𝑆𝑌 increased over time, especially
from 2005, while 𝑀𝑆𝑌 decreased up to a value of around 90 thousand mt in 2024 (Figure 24).
Recruitment variability (𝜎𝑅) was estimated between 0.14 and 0.17 (Table 4).

4.3 Stock status

Regarding estimates of stock status, in 2024, 𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌 was estimated around 1.25 for the
four model configurations, while 𝐹/𝐹𝑀𝑆𝑌 was estimated around 1 (Figure 25). When examining
these estimates in a Kobe plot with their respective uncertainties, we found that the most likely
stock status in 2024 is not overfished and not subject to overfishing (Figure 26, green quadrant),
although there is a high probably (∼ 0.45) of being not overfished but subject to overfishing.

4.4 Diagnostics

For this section, we focus on the diagnostics for the 2BlockLL_noLS model configuration, al-
though diagnostics were also produced for the other configurations. We found small retrospec-
tive patterns for SSB, 𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌, recruitment, and fishing mortality (Figure 27, Figure 28,
Figure 29, and Figure 30). Table 5 shows the Mohn’s 𝜌 values for each model configuration.
The jitter analysis suggests that models 1BlockLL_noLS, 1BlockLL_LS, and 2BlockLL_noLS
converged to a global solution (Figure 31 and Figure 32); however, 2BlockLL_LS produced
divergent estimates. Regarding the 𝑁1 profile, we found that the value used in our model
configurations was close to the 𝑁1 value that produced the minimum marginal negative log
likelihood (Figure 33).
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4.5 Projections

When making 5-years projections using the F values in 2024, we noticed that the SSB may
decrease and be closer to the 𝑆𝑆𝐵𝑀𝑆𝑌 (Figure 34). Also, the annual total catch decreased over
the projected years and may be closed to the 𝑀𝑆𝑌 (Figure 35).

5 Discussion

In this document, we aimed to apply an age-structured SSAMs like WHAM to the IO bigeye
tuna. Age-structured SSAMs have been rarely applied to tuna stocks, but their use might
become more popular in future years. The implemented model configurations converged and
were able to invert the Hessian to calculate standard error of derived quantities. Our models
suggest that the SSB has decreased from values around 1.3 million mt in 1979 to values around
400 thousand mt in 2024. Also, the most likely stock status is not overfished and not subject to
overfishing in 2024, although there is a high probability (∼ 0.45) of being subject to overfishing
for most models. Our models used marginal length compositions as a key data input; however,
growth-WHAM is also able to incorporate conditional age-at-length information, which could
be explored in future analyses.

There are some key differences among WHAM and SS3 that are important to interpret our model
results. First, the SS3 model configurations are more complex: they are spatially-explicit and
model quarters as years. Therefore, SS3 estimates of recruitment deviations are quarterly and
expected to be more variable. Second, SS3 models ages from 0 to a maximum age (plus group).
Therefore, the relationship between SSB and recruitment in the SSR has lag 0. Third, SS3 uses
the penalized likelihood approach to estimate recruitment deviations by fixing the recruitment
variability parameter 𝜎𝑅, which may impact the recruitment estimates. Lastly, the meaning of
fishing mortality (𝐹) in SS3 is different from WHAM. In SS3, we normally report annual F as
the average F in a subset of ages. In WHAM, annual F is reported as the maximum F per fleet
and age.

Besides the structural differences between SS3 and WHAM, there are also key differences in the
biological parameters used in this document and the last IO bigeye assessment conducted in
2022. The new growth curve presented by Eveson et al. (2025) may suggest that the IO bigeye
is more productive than previously thought, since the mean length-at-age is larger compared
with the curve used in Fu et al. (2022). Also, the 𝑀 at age values in our model are different and
slightly larger than the values used in the 2022 IO bigeye assessment, which were fixed at age.
In our study, we have not explored the individual impacts of these key updates on the biological
parameters for this stock, but we would expect large impacts on model outputs.

The version of WHAM used in this document (growth-WHAM ) is not consistently maintained.
The main version of WHAM has continued to develop, focusing only on the inclusion of age-
specific data. Recently, the most recent WHAM version (2.0) has been published, allowing for
the modeling of multiple areas/stocks, seasons, and movement among areas (Miller et al., 2025).
Regarding the development of growth-WHAM for stocks like tunas, we recommend expanding
its capabilities to model multiple seasons within a year as a first step, which may improve the
fitting to length data and realism. Another model configuration that may be useful to explore is
to model quarters as years as done in SS3; however, we found issues regarding memory allocation
due to the large number of random effects to predict. Finally, we could also explore the inclusion
of conditional age-at-length data, which is currently possible in growth-WHAM.
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7 Tables

Table 1: Seven fishery groups and codes used in the current assessment.

Fishery code Fishery group

LL Longline (frozen tuna)
PSFS Purse seine, free school
PSLS Purse seine, log school
FL Longline (fresh tuna)
LINE Combination handline and mixed gears
BB Baitboat
OTHER Other fisheries

Table 2: Model configurations. LL selectivity refers to the modelling of one or two selectivity
blocks for the LL fleet (before and after 2002). LS index refers to the inclusion or
exclusion of the PSLS index.

Model ID LL selectivity LS index

1 1BlockLL noLS (excluded)
2 1BlockLL LS (included)
3 2BlockLL noLS (excluded)
4 2BlockLL LS (included)

Table 3: Values of fixed parameters in the four model configurations.

Parameter Value

B-H h 0.8
K 0.3
Linf 171
L1 30
SD1 7.8
SDA 14.7
a (length-weight) 2.22e-05
b (length-weight) 3.01
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Table 4: Estimates of unfished recruitment (𝑅0) and recruitment variability (𝜎𝑅) by model con-
figuration.

Model Parameter Estimate 95% CI lower 95% CI upper

1BlockLL_noLS B-H 𝑅0 39731.77 34892.48 45242.24
1BlockLL_noLS NAA 𝜎 (age 1) 0.14 0.08 0.24
1BlockLL_LS B-H 𝑅0 38727.86 33817.51 44351.19
1BlockLL_LS NAA 𝜎 (age 1) 0.17 0.12 0.25
2BlockLL_noLS B-H 𝑅0 38458.62 34484.07 42891.27
2BlockLL_noLS NAA 𝜎 (age 1) 0.14 0.08 0.23
2BlockLL_LS B-H 𝑅0 37849.45 33882.90 42280.34
2BlockLL_LS NAA 𝜎 (age 1) 0.16 0.11 0.24
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Table 5: Mohn’s 𝜌 for each model configuration and variable.

Model SSB Fbar SSB/SSBmsy Recruitment

2BlockLL_noLS -0.1046 0.1331 -0.0766 -0.0724
1BlockLL_noLS -0.1097 0.1399 -0.0755 -0.0724
2BlockLL_LS -0.1186 0.1788 -0.0929 -0.1009
1BlockLL_LS -0.1388 0.2027 -0.1030 -0.1123
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8 Figures

Figure 1: Absolute and relative annual catch (mt) per fleet.
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Figure 2: Yearly marginal length compositions for fleet LL. Years with gray bubbles were used
in the model, while years with white bubbles were excluded.
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Figure 3: Yearly marginal length compositions for fleet PSFS. Years with gray bubbles were used
in the model, while years with white bubbles were excluded.
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Figure 4: Yearly marginal length compositions for fleet PSLS. Years with gray bubbles were used
in the model, while years with white bubbles were excluded.
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Figure 5: Yearly marginal length compositions for fleet FL. Years with gray bubbles were used
in the model, while years with white bubbles were excluded.
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Figure 6: Yearly marginal length compositions for fleet LINE. Years with gray bubbles were used
in the model, while years with white bubbles were excluded.
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Figure 7: Yearly marginal length compositions for fleet BB. Years with gray bubbles were used
in the model, while years with white bubbles were excluded.
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Figure 8: Yearly marginal length compositions for fleet OTHER. Years with gray bubbles were
used in the model, while years with white bubbles were excluded.
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Figure 9: Absolute and relative annual catch (mt) per fleet.

25



IOTC-2025-WPTT27-23

Figure 10: Age-length transition matrix. The color scale indicates the proportion-at-length for
each age.
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Figure 11: Natural mortality at age derived from the Lorenzen curve.
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Figure 12: Fit to the LL catch data of the 1BlockLL_LS_h08 model configuration. Residuals
are also shown in bottom panels.
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Figure 13: Fit to the LL index of the 1BlockLL_LS_h08 model configuration. Residuals are
also shown in bottom panels.
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Figure 14: Fit to the PSLS index of the 1BlockLL_LS_h08. Residuals are also shown in bottom
panels.
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Figure 15: Example of annual fits to PSLS length compositions of the 1BlockLL_LS_h08 model
configuration.
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Figure 16: Example of annual fits to FL length compositions of the 1BlockLL_LS_h08 model
configuration.
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Figure 17: Example of annual fits to PSFS length compositions of the 1BlockLL_LS_h08 model
configuration.
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Figure 18: Example of annual fits to LL length compositions of the 1BlockLL_LS_h08 model
configuration.
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Figure 19: Example of annual fits to LL length compositions of the 2BlockLL_LS_h08 model
configuration.
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Figure 20: Selectivity per fleet estimated by the 1BlockLL_LS_h08 model configuration.
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Figure 21: Selectivity for the LL fleet estimated by the 2BlockLL_LS_h08 model configuration.
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Figure 22: Relationship between annual estimates of SSB and recruitment by the
1BlockLL_LS_h08 model configuration.
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Figure 23: Comparison of annual estimates of SSB, recruitment, and fishing mortality among
the model configurations.
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Figure 24: Annual estimates of 𝑆𝑆𝐵𝑀𝑆𝑌, 𝑀𝑆𝑌, and 𝐹𝑀𝑆𝑌 by the model configurations.
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Figure 25: Annual estimates of 𝑆𝑆𝐵/𝑆𝑆𝐵𝑀𝑆𝑌 and 𝐹/𝐹𝑀𝑆𝑌 by the model configurations.
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Figure 26: Stock status (Kobe plot) estimated by the model configurations.
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Figure 27: Retrospective patterns in SSB by the 2BlockLL_noLS model.
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Figure 28: Retrospective patterns in 𝑆𝑆𝐵/𝑆𝑆𝐵𝑚𝑠𝑦 by the 2BlockLL_noLS model.
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Figure 29: Retrospective patterns in recruitment by the 2BlockLL_noLS model.
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Figure 30: Retrospective patterns in fishing mortality (averaged for ages 1-5) by the
2BlockLL_noLS model.
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Figure 31: Jitter analysis by model configuration. Change in marginal negative log likelihood
by jitter iteration (x-axis). Ten iterations were run.
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Figure 32: Jitter analysis by model configuration. Change in estimates of annual SSB. Ten
iterations were run.
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Figure 33: Likelihood profile of initial abundance at age 1 (𝑁1) for the 1BlockLL_LS model
configuration. The profile is shown by likelihood component. The dashed vertical
line represents the parameter value used in the model.
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Figure 34: Five-year projection in SSB and 𝑆𝑆𝐵𝑀𝑆𝑌 by model configuration. The projected F
was assumed to be as in 2024. The vertical dashed line indicates the start of the
projection.
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Figure 35: Five-year projection in total catch and 𝑀𝑆𝑌 by model configuration. The projected
F was assumed to be as in 2024. The vertical dashed line indicates the start of the
projection.
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