Spawning features of yellowfin and bigeye tuna in the Indian Ocean

revealed by decadal Chinese longline observer data
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Abstract: Reproductive dynamics of tropical tunas are critical for stock assessment
and management in the Indian Ocean. Using over ten years of biological data
collected from Chinese longline observers, this study analyzed the spatial and
temporal patterns of spawning activity and environmental effects for bigeye tuna and
yellowfin tuna. The estimated length at 50% maturity (Lso) was 109.3 cm for bigeye
and 106.2 cm for yellowfin tuna. Spawning seasons were identified as October—
January for bigeye and October-March for yellowfin tuna. Spatial models revealed
consistent high spawning probability areas in the equatorial western Indian Ocean
(10°N-10°S, 40°-70°E). Sea surface temperature (SST) as the most important habitat
factors showed the strongest positive influence on spawning probability for both
species. These results complement histological studies and provide new evidence for
spatially structured reproduction.
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1. Introduction

Most studies aimed at describing maturation and spawning distributions in tunas have
focused on ovaries, where scientists collected gonadal tissue samples and conducted
precise histological analyses in the laboratory (Schaefer 2001; Zhu et al. 2008;
Zudaire et al. 2013; Pacicco et al. 2023). This approach provides reliable accuracy in
distinguishing developmental stages, from early vitellogenesis to imminent spawning
and post-ovulatory states (Griffiths et al. 2019). Although histological analysis offers



high precision, it is constrained by several inherent limitations. Samples are typically
collected from port landing or canneries (Diaha et al. 2016; Zudaire 2022),
recreational fisheries (Pacicco et al. 2023), or through scientific observer programs
(Zhu et al. 2008). As sample acquisition is costly, spatial coverage, temporal
continuity, and overall sample sizes are generally limited. Moreover, samples
especially from port landings and canneries generally lack fine-scale, georeferenced
catch data required for robust spatial analyses, making it difficult to link spawning
activity to specific environmental conditions and habitats (Kaplan et al. 2014; Wibawa
etal. 2017).

In parallel, the implementation of the Regional Observer Scheme by IOTC
contracting and cooperating non-contracting parties (CPCs) officially commenced in
2010 (IOTC Secretariat 2022). National and international fishery observer programs
have emerged as a powerful source of fishery-dependent data. The program deploys
trained technicians aboard commercial fishing vessels to collect biological
information and catch statistics across operational areas (Cotter and Pilling 2007). The
principal trade-off is that at-sea maturity assessment is performed by macroscopic
staging of the gonads (West 1990). While faster and more feasible in an operational
setting, macroscopic staging is known to be less accurate than histology (Costa 2009;
Min et al. 2022). However, compared with laboratory sampling, observer programs
generate substantially larger datasets with broader spatial coverage and linked to
precise geographic coordinates (IOTC Secretariat 2023), thereby complementing
laboratory-derived reproductive parameters and enabling analyses of spawning
habitats and their environmental drivers.

Although yellowfin and bigeye tuna have been studied for several decades, the precise
locations and environmental drivers of their spawning grounds in the Indian Ocean
remain insufficiently resolved. Current knowledge of tuna spawning grounds in the
Indian Ocean is based largely on empirical observations and environmental
associations rather than systematic spatial analyses. For yellowfin tuna, spawning is
generally assumed to occur in the equatorial western Indian Ocean, where sea surface
temperatures exceed 24 °C (15°S - 10°N, west of 75°E) (Schaefer 2001; Zudaire et al.
2013). Spawning grounds for bigeye tuna in the Indian Ocean have not been clearly
delineated. To address this research gap, we integrate a decade of georeferenced
biological data from Chinese observer program with model-based analyses. The
specific objectives of this study were: 1) to estimate key reproductive parameters of
yellowfin and bigeye tuna in the Indian Ocean and place these results in the context of
previous researches, thereby assessing the effectiveness of observer-based datasets
and contributing complementary information to existing knowledge; and ii) apply the
sdmTMB spatial modeling framework to identify potential spawning habitats of these
two species; and iii) to quantify the relationship between environmental variables and
spawning probability. The findings will advances understanding of tuna reproductive
ecology and will contribute to tuna fisheries management and conservation in the
Indian Ocean.



2. Materials and methods
2.1 Observer data collection and preparation

Biological and operational data were collected from the Chinese Observer Program on
tuna longline vessels operating in the Indian Ocean, covering nearly 13 years from
October 2012 to May 2025, daily (Figure 1). The dataset comprises detailed
operational records, including fishing date, geographic position, hooks between floats,
and the start and end times of setting and hauling, and etc. For each catch, biological
information was recorded, including straight fork length (cm), processed weight (kg),
sex, maturity stage, and gonad weight (g).

Female maturity was assessed macroscopically following a six-stage scale (West
1990; Diaha et al. 2016): (i) Stage 0: gonads are small, thread-like, and sex cannot be
identified; (i1) Stage 1 - Immature: gonads are elongated and slender, but sex can be
identified; (ii1) Stage 2 - Early maturation: gonads are enlarged, but individual eggs
are not visible to the naked eye; (iv) Stage 3 - Late maturation: gonads are enlarged,
and individual eggs are visible to the naked eye; (v) Stage 4 - Fully mature: ovaries
are highly enlarged, transparent or semi-transparent, easily separated from follicles, or
loosely arranged in the ovarian lumen; (vi) Stage 5 - Spent: refers to individuals that
have recently spawned or are in the late post-spawning stage.

2.2 Reproductive biology analysis
2.2.1 Sex ratio

Sex ratio variation represents an important component of population reproductive
dynamics (Morgan 2018). To evaluate sex ratio patterns, individuals were grouped
into 5-cm length classes. For each class containing at least five specimens, the
observed number of males and females was compared against the expected 1:1 ratio
using a chi-square goodness-of-fit test:
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where O; and E; represent the observed and expected frequencies of males and
females, respectively. The null hypothesis assumed no deviation from a 1:1 sex ratio,
and p-values were used to assess the significance of departures from this expectation.

2.2.2 Length at 50% maturity

In histological analyses, ovaries in early vitellogenic stage including primary (Vtgl)



and secondary vitellogenesis (Vtg2) stages were considered mature, referred as
functional maturity (Arocha et al. 2001; Diaha et al. 2016; Pacicco et al. 2023). Using
functional maturity as the threshold to determine sexually mature fish is preferable
since it guarantees that the fish will inevitably reproduce in the very short term
(Pacicco et al. 2023; Urtizberea et al. 2024). To approximate this threshold in
macroscopic staging, in this study, stage 3 was used as the maturity threshold. Length
at 50% maturity (Lso) of female were estimated using the non-linear logistic equation
(Saborido-Rey and Junquera 1998; Zudaire et al. 2013; Pacicco et al. 2023):

1

S Tre @ @

Py

where Py is the proportion of mature females (stages 3-5) in length class L, and o and
[ are parameters represent the intercept and the slope of the logistic equation,
respectively. Model parameters were estimated using a generalized linear model with
binomial error distribution and a logit link. Lso was estimated as the ratio of the
parameters (-af'). Confidence intervals and standard errors for Lso were derived by
applying the delta method to the variance-covariance matrix of the estimated
parameters. Significance of the length-maturity relationship was assessed using Wald
tests for model coefficients.

2.2.3 Spawning seasonality

The gonad somatic index (GSI) was used to identify the spawning status and season.
As the weights recorded by observers represented processed weights (gilled, gutted,
and tailed), the GSI was estimated by fork length as follows (Matsumoto and Miyabe
2002; Nootmorn et al. 2005; Zhu et al. 2008) :

w
GSI = 773 X 10* (3)

where W is gonad weight (g); FL is the straight fork length (cm). GSI distributions
were compared among maturity stages to evaluate staging reliability, and monthly
mean GSI values were plotted to infer spawning seasonality. Given that the dataset
covers a wide latitudinal range across the Indian Ocean, we limited the estimation of
monthly mean GSI to the tropical domain (40°-70°E, 20°S—15°N). This restriction
minimizes the influence of non-reproductive individuals occurring in temperate
waters and ensures that the calculated seasonal pattern reflects the reproductive
dynamics within the core spawning habitat.

2.3 Spatial modeling of spawning grounds
2.3.1 Model structure

The sdmTMB framework (Anderson et al. 2022) was applied to model the spatial



distribution of spawning grounds. This approach implements spatiotemporal
generalized linear mixed models (GLMM) allowing explicit modeling of spatial
autocorrelation among observations. A Gaussian random field (GRF) was used to
represent this latent spatial dependence, where spatial random effects are assumed to
follow a multivariate normal distribution with mean vector u = [u(s1), . . . , u(sn)] and
spatially structured covariance matrix X' (Blangiardo and Cameletti 2015; Correa et
al. 2025). As GRFs require dense nxn covariance matrix factorization, their direct
implementation is computationally demanding (Hebert et al. 2024). The sdmTMB
applied the stochastic partial differential equations (SPDEs) approach to reduce the
computational costs.

In this study, we constructed the mesh using the SPDE approach, with triangles
covering the study area and a minimum allowed edge length (cutoff) of 0.5°. Due to
the sparse records in some year as reflected in the observer data (e.g. during Covid-19
period), temporal random fields were not included in the sdmTMB model. Therefore,
the GLMM with spatial Gaussian random fields can be written as (Anderson et al.
2022; Hebert et al. 2024; Correa et al. 2025):
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where the expected value [E[.] of an observation y at coordinates in space s is
defined as the mean pg, which is the result of an inverse link function g~! applied to
a linear predictor 1. X, is the model matrix of fixed effects with coefficients . V;
represents each vessel random effects. And w; denotes the spatial random field
capturing spatially correlated variation not explained by the fixed effects in the
model:

w ~ MVNormal (0,),) 5)

where ), specifies the covariance of the spatial random field, modeled using a
Matérn covariance function that determines how spatial dependence decays with
distance.

In this research, following the reproductive classification of tuna (Zudaire et al. 2013;
Diaha et al. 2016), maturity stages 3 and 4 were coded as spawning (1), and the
remaining stages as non-spawning (0). The response variable y was therefore modeled
as a binomial distribution using a logic link function.

2.3.2 Covariates
Covariates were classified into two categories: habitat and catchability covariates

(Thorson 2019). Habitat covariates represent environmental factors that influence the
true distribution or abundance of the population, whereas catchability covariates



primarily affect the probability of observation. Given that the observer dataset was
fishery-dependent, this classification helped disentangle biological processes from
sampling effects. Predictions of spawning probability were conditioned only on
density covariates.

Table 1 shows all the covariates explored in this study. The variable month was
included to account for potential seasonal variability in fishing activities and
spawning behavior. For the catchability covariates, the effect of different vessels was
included as a random factor to capture vessel-specific differences in fishing practices
and observers’ behavior. The hooks between floats (HBF) variable was incorporated
as a proxy for fishing depth, as it determines the vertical distribution of hooks and
consequently influences the likelihood of encountering spawning individuals. In
addition, given that yellowfin tuna are reported to spawn mainly at night (Schaefer
and Fuller 2022), the proportion of night-time operation was calculated for each set.
This proportion was derived by computing the midpoint time between gear
deployment and retrieval, and determining whether it occurred within local nighttime
hours based on daily nautical sunrise and sunset times.

Based on the two main hypotheses have been proposed to explain the global
distribution of tuna spawning grounds: (1) that spawning is constrained by
temperature and generally occurs in waters warmer than 24 °C (Schaefer 2001), and
(2) that spawning is associated with mesoscale oceanographic features such as fronts
and eddies (Reglero et al. 2014). Accordingly, sea surface temperature (SST) and
eddy kinetic energy (EKE) were included as key explanatory habitat covariates. As a
substantial number of sampling stations were located near islands, distance to coast
(DTC) and total depth (TD) were also incorporated. Additional environmental
variables with potential relevance to reproductive activity included sea surface height
(SSH), sea surface salinity (SSS), chlorophyll-a concentration (Chl-a), mixed layer
depth (MLD), dissolved oxygen (DO), and the Indian Ocean Dipole Mode Index
(DMI). The SST, SSS, MLD and SSH downloaded from Multi Observation Global
Ocean ARMOR3D database

(https://data.marine.copernicus.eu/product/MULTIOBS GLO _PHY TSUV_3D MY
NRT 015 012/description), with 0.25° spatial resolution and weekly temporal
resolution. EKE came from Copernicus Climate Service
(https://data.marine.copernicus.eu/product/SEAL EVEL_GLO PHY_ CLIMATE L[4
MY 008 057/description), with 0.25° spatial resolution and daily temporal
resolution. DTC is the distances to the neatest coastline (include major islands), which
downloaded from Ocean Color program with a 0.04 spatial degree
(https://oceancolor.gsfc.nasa.gov/resources/docs/distfromcoast/). TD from the gridded
bathymetry datasets with 0.0042° spatial resolution (https://www.gebco.net/data-
products/gridded-bathymetry-data). DO from the Global Ocean Biogeochemistry
Hindcast dataset with 0.25 spatial resolution and daily temporal resolution
(https://data.marine.copernicus.eu/product/ GLOBAL MULTIYEAR _BGC 001_029/
description). Chl-a downloaded from the Ocean Color daily data with 0.036° spatial
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resolution (https://oceandata.sci.gsfc.nasa.gov/13/). And the DMI from NASA with
weekly temporal resolution

(https://podaac.jpl.nasa.gov/dataset/NASA SSH_10OD_INDICATOR). Variance
inflation factor (VIF) values lower than 5 was used to test the multicollinearity among
independent variables.

2.3.3 Model selection and diagnostic

The modeling process began with a baseline model that included only the month,
vessel (as a random effect), and the spatial random field. Habitat and catchability
covariates were then added sequentially. The final model was selected based on the
lowest Akaike Information Criterion (AIC) value. Based on the exploratory analysis,
model assuming linear relationships between the response variable and continuous
covariates provided the best fit, so nonlinear terms were not included. Covariates with
non-significant effects (p > 0.05) were removed to obtain the most parsimonious
model.

Model diagnostics were first assessed using the built-in tools of the sdmTMB
package, which check model convergence, parameter identifiability, gradient
magnitude, and the Hessian matrix to ensure stable maximum likelihood estimation.
Further diagnostic evaluation was conducted using the DHARMa R package, which
generates standardized (quantile) residuals through simulation-based methods for
generalized linear mixed models. Two diagnostic plots were examined: (1) a quantile-
quantile (Q-Q) plot to detect deviations of residuals from the expected distribution,
and (2) a plot of residuals versus fitted values to identify patterns or potential outliers.
In addition, spatial autocorrelation in the randomized quantile residuals was evaluated
using Moran’s I statistic (Moran 1950) to confirm that no significant spatial structure
remained in the residuals.

2.3.4 Model prediction

Spawning probability was predicted for the study region using a “predict-then-
aggregate” approach. Predictions were generated on a 1° grid, where catchability
covariates were fixed at their mean values and habitat covariates were assigned
according to environmental conditions at each grid centroid. Model predictions were
limited to grid cells containing observed data. To further examine temporal variation,
monthly spawning probability was predicted for the area with the highest sampling
density (40°-70°E, 20°S-10°N) by substituting observed habitat values for each 1°
grid cell.

To quantify the effects of individual environmental variables, partial effect plots were
generated for all continuous covariates included in the final model. For each variable,
marginal predictions were computed across its observed range while holding other
covariates constant at their mean values. The resulting effects were visualized using
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the ggeffects package, and variables were ordered by the magnitude of their estimated
coefficients to indicate relative importance.

3. Results
3.1 Sex ratio

The sex ratio of both bigeye tuna and yellowfin tuna varied significantly with fork
length increase. In both species, females predominated in the smaller size classes,
whereas the proportion of males increased steadily with size. For bigeye tuna, the
proportion of males exceeded 0.5 at fork lengths greater than approximately 160 cm,
and this difference was statistically significant () test, p < 0.05) (Figure 2). Similarly,
yellowfin tuna showed a higher proportion of females below 150 cm and a
predominance of males at lengths above 160 cm (p < 0.05) (Figure 3). These results
indicate a size-dependent sex ratio pattern, with larger individuals being
predominantly male in both species.

3.2 Length at maturity

Logistic regression models were fitted to the proportion of mature females by fork
length to estimate the parameters o (intercept) and £ (slope) of the maturity ogive
(Table 2). Both parameters were highly significant according to Wald tests (p <
0.001), indicating a strong positive relationship between maturity and length for both
species. For bigeye tuna, the estimated parameters were o equals —16.83 and f equals
0.15, corresponding to a Lso of 109.3 cm (95% CI: 108.5-110.1 cm). For yellowfin
tuna, o equals —15.95 (SE = 0.47) and S equals 0.150 (SE = 0.005), yielding an Lso of
106.2 cm (95% CI: 105.6-106.8 cm). The fitted ccurves (Figures 4 - 5) closely
matched the observed data points, with only slight deviations observed in the smallest
length classes.

3.3 Spawning season

GSI increased progressively with maturity stage in both species, reaching the highest
values at stage 4 and decreasing in stage 5 (Figures 6). Monthly variations in the mean
GSlI revealed distinct seasonal patterns (Figure 7). For bigeye tuna, GSI increased
gradually from September, peaked between October and January, and declined
thereafter. For yellowfin tuna, GSI values began to rise in September, remained
elevated from October to March, and decreased during April to Augus. Therefore, the
spawning season for bigeye tuna was identified as October to January, for yellowfin
tuna is October to March.

3.4 Potential spawning ground

3.4.1 Model diagnostic



Collinearity diagnostics showed that DO was strongly collinear with SST for bigeye
tuna, and removed this variable prior to model selection. For yellowfin tuna, there is
no collinearity between covariates (Table 3). Model selection based on AIC indicated
that models incorporating both catchability and habitat covariates provided the best fit
for both species (Table 4). After exploring for variable correlations, the retained
covariates for bigeye tuna were SST, DTC, MLD, DMI, EKE, SSH, and TD, while for
yellowfin tuna the final model included SST, DTC, MLD, DMI, EKE, SSS, and DO.
The proportion of nighttime sets showed no significant correlation with spawning
probability in either species and was therefore excluded.

The DHARMa Q-Q plot of bigeye tuna showed that residuals closely followed the
expected uniform distribution (KS test: p = 0.134), and no outliers were detected (p =
0.926). Although the dispersion test suggested significant overdispersion (p < 0.001),
the residuals versus predicted values displayed only a weak positive trend, indicating
no substantial systematic deviation (Figure 8). The diagnostic results were almost
consistent for yellowfin tuna (Figure 9). Moran’s I p values for bigeye tuna and
yellowfin tuna were 0.343 and 0.661, respectively (Table 4). Residuals randomly
distributed in the study region indicating no significant spatial autocorrelation in
model residuals (Figure 8, 9).

3.4.2 Potential spawning ground

Model predictions revealed distinct spatial patterns of spawning probability for bigeye
tuna and yellowfin tuna. For bigeye tuna (Figure 10), the spatial random field (Figure
10B) showed strong positive deviations concentrated in the equatorial western Indian
Ocean, particularly between 50°E-70°E and 0-10°S, indicating spatial clustering of
high spawning probability not fully explained by environmental covariates. The
overall prediction map (Figure 10C) highlighted a clearly defined spawning ground
within this region, extending slightly eastward along the equatorial zone and
weakening toward the southern and coastal waters. However, yellowfin tuna exhibited
a more diffuse spatial pattern (Figure 11). The spatial random field (Figure 11B)
displayed weak and spatially scattered positive deviations, suggesting less pronounced
spatial aggregation. The predicted spawning probability (Figure 11C) indicated broad
but patchy areas of potential spawning activity across the central tropical western
Indian Ocean, mainly between 45°E-70°E and 5°N-10°.

The intensity of spawning probability showed distinct seasonal fluctuations for bigeye
tuna, with elevated values observed from October to January, corresponding to the
main spawning season identified from GSI analysis. Lower probabilities occurred
during June to August, indicating a reduction in reproductive activity during the
austral winter period (Figure 12). For yellowfin tuna, spatial patterns were more
homogeneous, with moderate spawning probabilities maintained across the central
tropical western Indian Ocean (Figure 13).



3.5 Partial effects of habitat covariates

The partial effects show that sea surface temperature (SST) is the most influential
factor for the spawning probability of both species (Figure 14,15). For yellowfin tuna,
spawning probability increases sharply with SST, indicating that spawning mainly
occurs in warm tropical waters above around 25°C. For bigeye tuna, the relationship
is also positive but weaker, suggesting that this species prefers slightly cooler
temperatures, around 24-28 °C. Neither curve shows a decline at high SST, probably
because the temperature range in our data did not exceed the upper thermal limits for
spawning activity. Other environmental effects are consistent with their ecology:
bigeye spawning probability increases with distance from the coast, reflecting its
oceanic nature, whereas yellowfin shows higher probability in nearshore or island-
associated waters. Both species prefer shallower mixed layers and show weak positive
effects of eddy kinetic energy, indicating that moderately dynamic environments may
favor spawning. Positive IOD events had weekly negative influence on both species.

4 Summary

The results derived from the Chinese longline observer dataset are broadly consistent
with previous findings based on histological analyses, demonstrating the reliability of
at-sea observer data for reproductive studies. Compared with port-sampling programs,
observer-based sampling provides spatially extensive and temporally continuous
biological information, which can complement conventional datasets and improve the
estimation of reproductive parameters such as maturity ogives and spawning
seasonality.

The estimated length at 50% maturity (Lso) for bigeye tuna (109.3 cm) closely
matches the value currently used in stock assessments (110.9 cm; Shono et al., 2009),
supporting the robustness of our maturity classification. In contrast, the Lso for
yellowfin tuna (106.2 cm) was slightly higher than the value applied in recent
assessments (101.7 cm). This difference may be attributed to spatial variation in
reproductive timing, as yellowfin tuna near the equator have been reported to mature
earlier (Itano 2000). Moreover, observer-based sampling may introduce uncertainty
due to potential misclassification of gonadal stages at sea.

Spawning activity was found to be seasonal, with bigeye tuna spawning mainly from
October to January and yellowfin tuna from October to March. These periods
correspond to the warm season in the equatorial Indian Ocean. The identified
seasonality agrees with observations from previous studies (Nootmorn et al. 2005;
Zhu et al. 2008; Zudaire et al. 2013).

Spatial modeling revealed consistent high spawning probability areas in the equatorial
and western Indian Ocean, particularly between 10°N-10°S and 40°-70°E. The



overlapping spawning habitats of yellowfin and bigeye tunas may reflect their shared
environmental preferences and life-history interactions, as juvenile bigeye are known
to form mixed schools with juvenile yellowfin and skipjack tunas (Pickerell 2024).
The strong positive effect of SST on spawning probability observed in both species
reinforces its role as a primary environmental driver regulating tuna reproduction,
consistent with previous studies emphasizing temperature as a key determinant of
spawning habitat suitability (Schaefer 2001).

From a fisheries management perspective, the identification of spatially structured
spawning habitats suggests potential implications for stock assessment and
management. The presence of concentrated spawning areas, particularly for bigeye
tuna, supports the need to consider spatial population structure when defining
assessment units. Seasonal patterns in spawning activity may also influence the
availability of mature individuals to fisheries, thereby affecting estimates of spawning
biomass and recruitment timing in stock assessment models. Incorporating such
temporal and spatial variability into future assessments could help improve the
accuracy of reproductive potential estimates and enhance the management of tropical
tuna fisheries under changing environmental conditions.
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Figure 1 Spatial distribution of observer sampling records for bigeye tuna and yellowfin tuna
in the Indian Ocean from 2012 to 2025. Red points indicate female individuals, and blue
points indicate male individuals.
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Figure 2 Proportion of males by fork length class for bigeye tuna in the Indian Ocean.
Red bars indicate length classes where the sex ratio differed significantly from parity

(p <0.05), and grey bars indicate non-significant differences.
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Figure 3 Proportion of males by fork length class for yellowfin tuna in the Indian
Ocean. Red bars indicate length classes where the sex ratio differed significantly from

parity (p < 0.05), and grey bars indicate non-significant differences.
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Figure 4 Maturity ogive for female bigeye tun in the Indian Ocean. Open circles
represent binned proportions of mature individuals by fork length. Black dots at 0 and
1 represent individual observations classified as no spawn and spawn, respectively.
The dashed lines indicate 50% maturity (horizontal) and the estimated Lso (vertical).

YFT
L50 = 106.2 cm (SE = 0.3); n=9251
|
.
1001 A
| 5
1
1
|
|
0.754 :
1
I
|
.g : n per bin
£ ! o 250
o e A e e T et O 500
B X O 750
o
& | O 1000
1
|
I
|
0.25 !
1
1
|
1
(o] 1
o I
oot R
'

100 150
Fork length (cm)

Figure 5 Maturity ogive for female yellowfin tun in the Indian Ocean. Open circles
represent binned proportions of mature individuals by fork length. Black dots at 0 and
1 represent individual observations classified as no spawn and spawn, respectively.



The dashed lines indicate 50% maturity (horizontal) and the estimated Lso (vertical).
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Figure 6: Boxplots of the gonadosomatic index (GSI) by maturity stage for female
bigeye tuna and yellowfin tuna in the Indian Ocean. BET: bigeye tuna; YFT:

yellowfin tuna.
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Figure 11: Model results for yellowfin tuna. A: SPDE mesh (lines) combined with
observations (points). B: Spatial random field: these values are shown in link (log)
space and represent spatially correlated deviations that are not accounted for by the
covariates. C: Overall prediction: these estimates represent the combination of all
fixed and random effects.
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Figure 12 Monthly spawning probability for bigeye tuna in the tropical Indian Ocean.
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Figure 13 Monthly spawning probability for yellowfin tuna in the tropical Indian
Ocean.
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Figure 14 Partial effects of habitat covariates on the spawning probability of bigeye
tuna in the Indian Ocean.



YFT

1.00 SST (°C) DTC (km) SSS (0.001)
0.751 \ /
0.504

0.25+

0.0 0 -1y s——: | |, SE——— o ——c

25.0 27.5 30.0 0 500 1000 1500 34 35 36

02 (mmol m3) MLD (m) DMI

1.00

0.75- / \

Spawning probability

0 00 L Il gl L T T ETTTT . 1 LT TR N -l
. u T U T T T T T

200 210 25 50 75 100 125 0 2 +4

EKE (m/s)

1.00

0.754

0.50+

0.25+

0,00 | pm——
0.0 0.1 02 03 04 0.5

Figure 15 Partial effects of habitat covariates on the spawning probability of yellowfin
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7 Tables

Table 1: Code, description, class, and type of candidate explanatory variables.
Catchability covariates were fixed at a specified value when predicting, while habitat
covariates varied over space and time.

Code Description Class Type
month  month Factor (levels: 1,..., 12) -
vessel  vessel id Factor (levels: 1..., 33) Catchability

Proportion of

n_prop nighttime fishing Numeric Catchability
effort

HBF  Hooks between float Numeric Catchability
MLD  Mixing layer depth Numeric Habitat
SST tsee;;;lrrzl;ree Numeric Habitat
SSS Sea surface salinity Numeric Habitat
SSH Sea surface height Numeric Habitat
EKE  Eddy kinetic energy Numeric Habitat
CHL  Chlorophyll - a Numeric Habitat
DO Dissolved Oxygen Numeric Habitat
DMI il;ljiin Ocean Dipole Numeric Habitat
DP Ocean depth Numeric Habitat

DTC Distance to the coast Numeric Habitat




Table 2 Parameters for the logistic regression model for estimating the fork length of
female bigeye tuna and yellowfin tuna in the Indian Ocean at which 50% of the
population is mature (Lso, cm). a and £ are the coefficients of the equation and L50
was computed as -a/f for the maturity threshold used: maturity stage over 3.
Significant test shows the length-maturity relationship.

Bigeye tuna Yellowfin tuna
parameters a ) Lso a S Lso
estimates -12.473 0.114 109.3 -9.877 0.093 106.2
standard error 0.376 0.003 0.4 0.287 0.002 0.3

significance p<0.001 p<0.001




Table 3 VIF test for the variables in bigeye and yellowfin tuna model.

Bigeye tuna Yellowfin tuna
Variables SST EKE SSH DMI Chla DO SSS Depth DTC SST EKE SSS SSH DMI Chla DO Depth DTC
VIF .47 1.09 132 117 1.18 1.38  1.23 1.5 2.7 1.04 148 1.64 136 132 32 1.64 1.56

Table 4 Model selection and diagnostic results for bigeye and yellowfin tuna. M0: baseline model with month, vessel (as a random effect), and
the spatial random field; M1: baseline model including environmental covariates; M2: baseline model including both catchability and habitat-
related variables. Moran’s I p values represent the significance of spatial autocorrelation of model residuals.

BET YFT
M s | M s |
Convergency df oransip AIC Convergency df oran s AlIC
value p value
MO Yes 15 8483.76 MO Yes 15 10409.74
M1 Yes 23 8439.61 M1 Yes 23 10351.26

M2 Yes 25 0.343 8328.84 M2 Yes 26 0.661 10324.62




