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Abstract: Reproductive dynamics of tropical tunas are critical for stock assessment 

and management in the Indian Ocean. Using over ten years of biological data 

collected from Chinese longline observers, this study analyzed the spatial and 

temporal patterns of spawning activity and environmental effects for bigeye tuna and 

yellowfin tuna. The estimated length at 50% maturity (L₅₀) was 109.3 cm for bigeye 

and 106.2 cm for yellowfin tuna. Spawning seasons were identified as October–

January for bigeye and October-March for yellowfin tuna. Spatial models revealed 

consistent high spawning probability areas in the equatorial western Indian Ocean 

(10°N-10°S, 40°-70°E). Sea surface temperature (SST) as the most important habitat 

factors showed the strongest positive influence on spawning probability for both 

species. These results complement histological studies and provide new evidence for 

spatially structured reproduction. 
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1. Introduction 

 

Most studies aimed at describing maturation and spawning distributions in tunas have 

focused on ovaries, where scientists collected gonadal tissue samples and conducted 

precise histological analyses in the laboratory (Schaefer 2001; Zhu et al. 2008; 

Zudaire et al. 2013; Pacicco et al. 2023). This approach provides reliable accuracy in 

distinguishing developmental stages, from early vitellogenesis to imminent spawning 

and post-ovulatory states (Griffiths et al. 2019). Although histological analysis offers 



high precision, it is constrained by several inherent limitations. Samples are typically 

collected from port landing or canneries (Diaha et al. 2016; Zudaire 2022), 

recreational fisheries (Pacicco et al. 2023), or through scientific observer programs 

(Zhu et al. 2008). As sample acquisition is costly, spatial coverage, temporal 

continuity, and overall sample sizes are generally limited. Moreover, samples 

especially from port landings and canneries generally lack fine-scale, georeferenced 

catch data required for robust spatial analyses, making it difficult to link spawning 

activity to specific environmental conditions and habitats (Kaplan et al. 2014; Wibawa 

et al. 2017). 

 

In parallel, the implementation of the Regional Observer Scheme by IOTC 

contracting and cooperating non-contracting parties (CPCs) officially commenced in 

2010 (IOTC Secretariat 2022). National and international fishery observer programs 

have emerged as a powerful source of fishery-dependent data. The program deploys 

trained technicians aboard commercial fishing vessels to collect biological 

information and catch statistics across operational areas (Cotter and Pilling 2007). The 

principal trade-off is that at-sea maturity assessment is performed by macroscopic 

staging of the gonads (West 1990). While faster and more feasible in an operational 

setting, macroscopic staging is known to be less accurate than histology (Costa 2009; 

Min et al. 2022). However, compared with laboratory sampling, observer programs 

generate substantially larger datasets with broader spatial coverage and linked to 

precise geographic coordinates (IOTC Secretariat 2023), thereby complementing 

laboratory-derived reproductive parameters and enabling analyses of spawning 

habitats and their environmental drivers. 

 

Although yellowfin and bigeye tuna have been studied for several decades, the precise 

locations and environmental drivers of their spawning grounds in the Indian Ocean 

remain insufficiently resolved. Current knowledge of tuna spawning grounds in the 

Indian Ocean is based largely on empirical observations and environmental 

associations rather than systematic spatial analyses. For yellowfin tuna, spawning is 

generally assumed to occur in the equatorial western Indian Ocean, where sea surface 

temperatures exceed 24 °C (15°S - 10°N, west of 75°E) (Schaefer 2001; Zudaire et al. 

2013). Spawning grounds for bigeye tuna in the Indian Ocean have not been clearly 

delineated. To address this research gap, we integrate a decade of georeferenced 

biological data from Chinese observer program with model-based analyses. The 

specific objectives of this study were: i) to estimate key reproductive parameters of 

yellowfin and bigeye tuna in the Indian Ocean and place these results in the context of 

previous researches, thereby assessing the effectiveness of observer-based datasets 

and contributing complementary information to existing knowledge; and ii) apply the 

sdmTMB spatial modeling framework to identify potential spawning habitats of these 

two species; and iii) to quantify the relationship between environmental variables and 

spawning probability. The findings will advances understanding of tuna reproductive 

ecology and will contribute to tuna fisheries management and conservation in the 

Indian Ocean. 



 

2. Materials and methods 

 

2.1 Observer data collection and preparation 

 

Biological and operational data were collected from the Chinese Observer Program on 

tuna longline vessels operating in the Indian Ocean, covering nearly 13 years from 

October 2012 to May 2025, daily (Figure 1). The dataset comprises detailed 

operational records, including fishing date, geographic position, hooks between floats, 

and the start and end times of setting and hauling, and etc. For each catch, biological 

information was recorded, including straight fork length (cm), processed weight (kg), 

sex, maturity stage, and gonad weight (g). 

 

Female maturity was assessed macroscopically following a six-stage scale (West 

1990; Diaha et al. 2016): (i) Stage 0: gonads are small, thread-like, and sex cannot be 

identified; (ii) Stage 1 - Immature: gonads are elongated and slender, but sex can be 

identified; (iii) Stage 2 - Early maturation: gonads are enlarged, but individual eggs 

are not visible to the naked eye; (iv) Stage 3 - Late maturation: gonads are enlarged, 

and individual eggs are visible to the naked eye; (v) Stage 4 - Fully mature: ovaries 

are highly enlarged, transparent or semi-transparent, easily separated from follicles, or 

loosely arranged in the ovarian lumen; (vi) Stage 5 - Spent: refers to individuals that 

have recently spawned or are in the late post-spawning stage. 

 

2.2 Reproductive biology analysis 

 

2.2.1 Sex ratio 

 

Sex ratio variation represents an important component of population reproductive 

dynamics (Morgan 2018). To evaluate sex ratio patterns, individuals were grouped 

into 5-cm length classes. For each class containing at least five specimens, the 

observed number of males and females was compared against the expected 1:1 ratio 

using a chi-square goodness-of-fit test: 

 

𝑥2 = ∑
(𝑂𝑖  −  𝐸𝑖)2

𝐸𝑖

𝑘

𝑖=1

 (1) 

 

where Oi and Ei represent the observed and expected frequencies of males and 

females, respectively. The null hypothesis assumed no deviation from a 1:1 sex ratio, 

and p-values were used to assess the significance of departures from this expectation. 

 

2.2.2 Length at 50% maturity 

 

In histological analyses, ovaries in early vitellogenic stage including primary (Vtg1) 



and secondary vitellogenesis (Vtg2) stages were considered mature, referred as 

functional maturity (Arocha et al. 2001; Diaha et al. 2016; Pacicco et al. 2023). Using 

functional maturity as the threshold to determine sexually mature fish is preferable 

since it guarantees that the fish will inevitably reproduce in the very short term 

(Pacicco et al. 2023; Urtizberea et al. 2024). To approximate this threshold in 

macroscopic staging, in this study, stage 3 was used as the maturity threshold. Length 

at 50% maturity (L50) of female were estimated using the non-linear logistic equation 

(Saborido-Rey and Junquera 1998; Zudaire et al. 2013; Pacicco et al. 2023): 

 

𝑃𝐿 =
1

1 + 𝑒−(𝛼+𝛽𝐿)
 (2) 

 

where PL is the proportion of mature females (stages 3-5) in length class L, and α and 

β are parameters represent the intercept and the slope of the logistic equation, 

respectively. Model parameters were estimated using a generalized linear model with 

binomial error distribution and a logit link. L50 was estimated as the ratio of the 

parameters (-αβ-1). Confidence intervals and standard errors for L50 were derived by 

applying the delta method to the variance-covariance matrix of the estimated 

parameters. Significance of the length-maturity relationship was assessed using Wald 

tests for model coefficients. 

 

2.2.3 Spawning seasonality 

 

The gonad somatic index (GSI) was used to identify the spawning status and season. 

As the weights recorded by observers represented processed weights (gilled, gutted, 

and tailed), the GSI was estimated by fork length as follows (Matsumoto and Miyabe 

2002; Nootmorn et al. 2005; Zhu et al. 2008) : 

𝐺𝑆𝐼 =  
𝑊

𝐹𝐿3
× 104 (3) 

 

where W is gonad weight (g); FL is the straight fork length (cm). GSI distributions 

were compared among maturity stages to evaluate staging reliability, and monthly 

mean GSI values were plotted to infer spawning seasonality. Given that the dataset 

covers a wide latitudinal range across the Indian Ocean, we limited the estimation of 

monthly mean GSI to the tropical domain (40°–70°E, 20°S–15°N). This restriction 

minimizes the influence of non-reproductive individuals occurring in temperate 

waters and ensures that the calculated seasonal pattern reflects the reproductive 

dynamics within the core spawning habitat. 

 

2.3 Spatial modeling of spawning grounds 

 

2.3.1 Model structure 

 

The sdmTMB framework (Anderson et al. 2022) was applied to model the spatial 



distribution of spawning grounds. This approach implements spatiotemporal 

generalized linear mixed models (GLMM) allowing explicit modeling of spatial 

autocorrelation among observations. A Gaussian random field (GRF) was used to 

represent this latent spatial dependence, where spatial random effects are assumed to 

follow a multivariate normal distribution with mean vector 𝜇 = [𝜇(𝑠1), . . . , 𝜇(𝑠𝑛)] and 

spatially structured covariance matrix 𝛴 (Blangiardo and Cameletti 2015; Correa et 

al. 2025). As GRFs require dense n×n covariance matrix factorization, their direct 

implementation is computationally demanding (Hebert et al. 2024). The sdmTMB 

applied the stochastic partial differential equations (SPDEs) approach to reduce the 

computational costs.  

 

In this study, we constructed the mesh using the SPDE approach, with triangles 

covering the study area and a minimum allowed edge length (cutoff) of 0.5°. Due to 

the sparse records in some year as reflected in the observer data (e.g. during Covid-19 

period), temporal random fields were not included in the sdmTMB model. Therefore, 

the GLMM with spatial Gaussian random fields can be written as (Anderson et al. 

2022; Hebert et al. 2024; Correa et al. 2025): 

 

𝔼[𝑦𝑠] = 𝜇𝑠, 

𝜇𝑠 = 𝑔−1(𝜂𝑠), 

𝜂𝑠 = 𝑋𝑠𝛽+ 𝑉𝑖 + 𝜔𝑠 

 

(4) 

where the expected value 𝔼[. ] of an observation y at coordinates in space s is 

defined as the mean 𝜇𝑠, which is the result of an inverse link function 𝑔−1 applied to 

a linear predictor 𝜂𝑠. 𝑋𝑠 is the model matrix of fixed effects with coefficients 𝛽. 𝑉𝑖 
represents each vessel random effects. And 𝜔𝑠 denotes the spatial random field 

capturing spatially correlated variation not explained by the fixed effects in the 

model: 

 

𝜔 ~  MVNormal (0, ∑𝜔) (5) 

 

where ∑𝜔 specifies the covariance of the spatial random field, modeled using a 

Matérn covariance function that determines how spatial dependence decays with 

distance. 

In this research, following the reproductive classification of tuna (Zudaire et al. 2013; 

Diaha et al. 2016), maturity stages 3 and 4 were coded as spawning (1), and the 

remaining stages as non-spawning (0). The response variable 𝑦 was therefore modeled 

as a binomial distribution using a logic link function. 

 

2.3.2 Covariates 

 

Covariates were classified into two categories: habitat and catchability covariates 

(Thorson 2019). Habitat covariates represent environmental factors that influence the 

true distribution or abundance of the population, whereas catchability covariates 



primarily affect the probability of observation. Given that the observer dataset was 

fishery-dependent, this classification helped disentangle biological processes from 

sampling effects. Predictions of spawning probability were conditioned only on 

density covariates. 

 

Table 1 shows all the covariates explored in this study. The variable month was 

included to account for potential seasonal variability in fishing activities and 

spawning behavior. For the catchability covariates, the effect of different vessels was 

included as a random factor to capture vessel-specific differences in fishing practices 

and observers’ behavior. The hooks between floats (HBF) variable was incorporated 

as a proxy for fishing depth, as it determines the vertical distribution of hooks and 

consequently influences the likelihood of encountering spawning individuals. In 

addition, given that yellowfin tuna are reported to spawn mainly at night (Schaefer 

and Fuller 2022), the proportion of night-time operation was calculated for each set. 

This proportion was derived by computing the midpoint time between gear 

deployment and retrieval, and determining whether it occurred within local nighttime 

hours based on daily nautical sunrise and sunset times. 

 

Based on the two main hypotheses have been proposed to explain the global 

distribution of tuna spawning grounds: (1) that spawning is constrained by 

temperature and generally occurs in waters warmer than 24 °C (Schaefer 2001), and 

(2) that spawning is associated with mesoscale oceanographic features such as fronts 

and eddies (Reglero et al. 2014). Accordingly, sea surface temperature (SST) and 

eddy kinetic energy (EKE) were included as key explanatory habitat covariates. As a 

substantial number of sampling stations were located near islands, distance to coast 

(DTC) and total depth (TD) were also incorporated. Additional environmental 

variables with potential relevance to reproductive activity included sea surface height 

(SSH), sea surface salinity (SSS), chlorophyll-a concentration (Chl-a), mixed layer 

depth (MLD), dissolved oxygen (DO), and the Indian Ocean Dipole Mode Index 

(DMI). The SST, SSS, MLD and SSH downloaded from Multi Observation Global 

Ocean ARMOR3D database 

(https://data.marine.copernicus.eu/product/MULTIOBS_GLO_PHY_TSUV_3D_MY

NRT_015_012/description), with 0.25° spatial resolution and weekly temporal 

resolution. EKE came from Copernicus Climate Service 

(https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_CLIMATE_L4_

MY_008_057/description), with 0.25° spatial resolution and daily temporal 

resolution. DTC is the distances to the neatest coastline (include major islands), which 

downloaded from Ocean Color program with a 0.04 spatial degree 

(https://oceancolor.gsfc.nasa.gov/resources/docs/distfromcoast/). TD from the gridded 

bathymetry datasets with 0.0042° spatial resolution (https://www.gebco.net/data-

products/gridded-bathymetry-data). DO from the Global Ocean Biogeochemistry 

Hindcast dataset with 0.25 spatial resolution and daily temporal resolution 

(https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/

description). Chl-a downloaded from the Ocean Color daily data with 0.036° spatial 

https://data.marine.copernicus.eu/product/MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012/description
https://data.marine.copernicus.eu/product/MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012/description
https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_CLIMATE_L4_MY_008_057/description
https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_CLIMATE_L4_MY_008_057/description
https://oceancolor.gsfc.nasa.gov/resources/docs/distfromcoast/
https://www.gebco.net/data-products/gridded-bathymetry-data
https://www.gebco.net/data-products/gridded-bathymetry-data
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description


resolution (https://oceandata.sci.gsfc.nasa.gov/l3/). And the DMI from NASA with 

weekly temporal resolution 

(https://podaac.jpl.nasa.gov/dataset/NASA_SSH_IOD_INDICATOR). Variance 

inflation factor (VIF) values lower than 5 was used to test the multicollinearity among 

independent variables. 

 

2.3.3 Model selection and diagnostic 

 

The modeling process began with a baseline model that included only the month, 

vessel (as a random effect), and the spatial random field. Habitat and catchability 

covariates were then added sequentially. The final model was selected based on the 

lowest Akaike Information Criterion (AIC) value. Based on the exploratory analysis, 

model assuming linear relationships between the response variable and continuous 

covariates provided the best fit, so nonlinear terms were not included. Covariates with 

non-significant effects (p > 0.05) were removed to obtain the most parsimonious 

model. 

 

Model diagnostics were first assessed using the built-in tools of the sdmTMB 

package, which check model convergence, parameter identifiability, gradient 

magnitude, and the Hessian matrix to ensure stable maximum likelihood estimation. 

Further diagnostic evaluation was conducted using the DHARMa R package, which 

generates standardized (quantile) residuals through simulation-based methods for 

generalized linear mixed models. Two diagnostic plots were examined: (1) a quantile-

quantile (Q-Q) plot to detect deviations of residuals from the expected distribution, 

and (2) a plot of residuals versus fitted values to identify patterns or potential outliers. 

In addition, spatial autocorrelation in the randomized quantile residuals was evaluated 

using Moran’s I statistic (Moran 1950) to confirm that no significant spatial structure 

remained in the residuals. 

 

2.3.4 Model prediction 

 

Spawning probability was predicted for the study region using a “predict-then-

aggregate” approach. Predictions were generated on a 1° grid, where catchability 

covariates were fixed at their mean values and habitat covariates were assigned 

according to environmental conditions at each grid centroid. Model predictions were 

limited to grid cells containing observed data. To further examine temporal variation, 

monthly spawning probability was predicted for the area with the highest sampling 

density (40°-70°E, 20°S-10°N) by substituting observed habitat values for each 1° 

grid cell. 

 

To quantify the effects of individual environmental variables, partial effect plots were 

generated for all continuous covariates included in the final model. For each variable, 

marginal predictions were computed across its observed range while holding other 

covariates constant at their mean values. The resulting effects were visualized using 

https://oceandata.sci.gsfc.nasa.gov/l3/
https://podaac.jpl.nasa.gov/dataset/NASA_SSH_IOD_INDICATOR


the ggeffects package, and variables were ordered by the magnitude of their estimated 

coefficients to indicate relative importance. 

 

3. Results 

 

3.1 Sex ratio  

 

The sex ratio of both bigeye tuna and yellowfin tuna varied significantly with fork 

length increase. In both species, females predominated in the smaller size classes, 

whereas the proportion of males increased steadily with size. For bigeye tuna, the 

proportion of males exceeded 0.5 at fork lengths greater than approximately 160 cm, 

and this difference was statistically significant (χ² test, p < 0.05) (Figure 2). Similarly, 

yellowfin tuna showed a higher proportion of females below 150 cm and a 

predominance of males at lengths above 160 cm (p < 0.05) (Figure 3). These results 

indicate a size-dependent sex ratio pattern, with larger individuals being 

predominantly male in both species. 

 

3.2 Length at maturity 

 

Logistic regression models were fitted to the proportion of mature females by fork 

length to estimate the parameters α (intercept) and β (slope) of the maturity ogive 

(Table 2). Both parameters were highly significant according to Wald tests (p < 

0.001), indicating a strong positive relationship between maturity and length for both 

species. For bigeye tuna, the estimated parameters were α equals −16.83 and β equals 

0.15, corresponding to a L₅₀ of 109.3 cm (95% CI: 108.5–110.1 cm). For yellowfin 

tuna, α equals −15.95 (SE = 0.47) and β equals 0.150 (SE = 0.005), yielding an L₅₀ of 

106.2 cm (95% CI: 105.6–106.8 cm). The fitted ccurves (Figures 4 - 5) closely 

matched the observed data points, with only slight deviations observed in the smallest 

length classes. 

 

3.3 Spawning season 

 

GSI increased progressively with maturity stage in both species, reaching the highest 

values at stage 4 and decreasing in stage 5 (Figures 6). Monthly variations in the mean 

GSI revealed distinct seasonal patterns (Figure 7). For bigeye tuna, GSI increased 

gradually from September, peaked between October and January, and declined 

thereafter. For yellowfin tuna, GSI values began to rise in September, remained 

elevated from October to March, and decreased during April to Augus. Therefore, the 

spawning season for bigeye tuna was identified as October to January, for yellowfin 

tuna is October to March. 

 

3.4 Potential spawning ground 

 

3.4.1 Model diagnostic 



 

Collinearity diagnostics showed that DO was strongly collinear with SST for bigeye 

tuna, and removed this variable prior to model selection. For yellowfin tuna, there is 

no collinearity between covariates (Table 3). Model selection based on AIC indicated 

that models incorporating both catchability and habitat covariates provided the best fit 

for both species (Table 4). After exploring for variable correlations, the retained 

covariates for bigeye tuna were SST, DTC, MLD, DMI, EKE, SSH, and TD, while for 

yellowfin tuna the final model included SST, DTC, MLD, DMI, EKE, SSS, and DO. 

The proportion of nighttime sets showed no significant correlation with spawning 

probability in either species and was therefore excluded.  

 

The DHARMa Q-Q plot of bigeye tuna showed that residuals closely followed the 

expected uniform distribution (KS test: p = 0.134), and no outliers were detected (p = 

0.926). Although the dispersion test suggested significant overdispersion (p < 0.001), 

the residuals versus predicted values displayed only a weak positive trend, indicating 

no substantial systematic deviation (Figure 8). The diagnostic results were almost 

consistent for yellowfin tuna (Figure 9). Moran’s I p values for bigeye tuna and 

yellowfin tuna were 0.343 and 0.661, respectively (Table 4). Residuals randomly 

distributed in the study region indicating no significant spatial autocorrelation in 

model residuals (Figure 8, 9).  

 

3.4.2 Potential spawning ground 

 

Model predictions revealed distinct spatial patterns of spawning probability for bigeye 

tuna and yellowfin tuna. For bigeye tuna (Figure 10), the spatial random field (Figure 

10B) showed strong positive deviations concentrated in the equatorial western Indian 

Ocean, particularly between 50°E-70°E and 0-10°S, indicating spatial clustering of 

high spawning probability not fully explained by environmental covariates. The 

overall prediction map (Figure 10C) highlighted a clearly defined spawning ground 

within this region, extending slightly eastward along the equatorial zone and 

weakening toward the southern and coastal waters. However, yellowfin tuna exhibited 

a more diffuse spatial pattern (Figure 11). The spatial random field (Figure 11B) 

displayed weak and spatially scattered positive deviations, suggesting less pronounced 

spatial aggregation. The predicted spawning probability (Figure 11C) indicated broad 

but patchy areas of potential spawning activity across the central tropical western 

Indian Ocean, mainly between 45°E-70°E and 5°N-10°. 

 

The intensity of spawning probability showed distinct seasonal fluctuations for bigeye 

tuna, with elevated values observed from October to January, corresponding to the 

main spawning season identified from GSI analysis. Lower probabilities occurred 

during June to August, indicating a reduction in reproductive activity during the 

austral winter period (Figure 12). For yellowfin tuna, spatial patterns were more 

homogeneous, with moderate spawning probabilities maintained across the central 

tropical western Indian Ocean (Figure 13). 



 

3.5 Partial effects of habitat covariates 

 

The partial effects show that sea surface temperature (SST) is the most influential 

factor for the spawning probability of both species (Figure 14,15). For yellowfin tuna, 

spawning probability increases sharply with SST, indicating that spawning mainly 

occurs in warm tropical waters above around 25°C. For bigeye tuna, the relationship 

is also positive but weaker, suggesting that this species prefers slightly cooler 

temperatures, around 24-28 °C. Neither curve shows a decline at high SST, probably 

because the temperature range in our data did not exceed the upper thermal limits for 

spawning activity. Other environmental effects are consistent with their ecology: 

bigeye spawning probability increases with distance from the coast, reflecting its 

oceanic nature, whereas yellowfin shows higher probability in nearshore or island-

associated waters. Both species prefer shallower mixed layers and show weak positive 

effects of eddy kinetic energy, indicating that moderately dynamic environments may 

favor spawning. Positive IOD events had weekly negative influence on both species. 

 

4 Summary 

 

The results derived from the Chinese longline observer dataset are broadly consistent 

with previous findings based on histological analyses, demonstrating the reliability of 

at-sea observer data for reproductive studies. Compared with port-sampling programs, 

observer-based sampling provides spatially extensive and temporally continuous 

biological information, which can complement conventional datasets and improve the 

estimation of reproductive parameters such as maturity ogives and spawning 

seasonality. 

 

The estimated length at 50% maturity (L₅₀) for bigeye tuna (109.3 cm) closely 

matches the value currently used in stock assessments (110.9 cm; Shono et al., 2009), 

supporting the robustness of our maturity classification. In contrast, the L₅₀ for 

yellowfin tuna (106.2 cm) was slightly higher than the value applied in recent 

assessments (101.7 cm). This difference may be attributed to spatial variation in 

reproductive timing, as yellowfin tuna near the equator have been reported to mature 

earlier (Itano 2000). Moreover, observer-based sampling may introduce uncertainty 

due to potential misclassification of gonadal stages at sea. 

 

Spawning activity was found to be seasonal, with bigeye tuna spawning mainly from 

October to January and yellowfin tuna from October to March. These periods 

correspond to the warm season in the equatorial Indian Ocean. The identified 

seasonality agrees with observations from previous studies (Nootmorn et al. 2005; 

Zhu et al. 2008; Zudaire et al. 2013). 

 

Spatial modeling revealed consistent high spawning probability areas in the equatorial 

and western Indian Ocean, particularly between 10°N-10°S and 40°-70°E. The 



overlapping spawning habitats of yellowfin and bigeye tunas may reflect their shared 

environmental preferences and life-history interactions, as juvenile bigeye are known 

to form mixed schools with juvenile yellowfin and skipjack tunas (Pickerell 2024). 

The strong positive effect of SST on spawning probability observed in both species 

reinforces its role as a primary environmental driver regulating tuna reproduction, 

consistent with previous studies emphasizing temperature as a key determinant of 

spawning habitat suitability (Schaefer 2001). 

 

From a fisheries management perspective, the identification of spatially structured 

spawning habitats suggests potential implications for stock assessment and 

management. The presence of concentrated spawning areas, particularly for bigeye 

tuna, supports the need to consider spatial population structure when defining 

assessment units. Seasonal patterns in spawning activity may also influence the 

availability of mature individuals to fisheries, thereby affecting estimates of spawning 

biomass and recruitment timing in stock assessment models. Incorporating such 

temporal and spatial variability into future assessments could help improve the 

accuracy of reproductive potential estimates and enhance the management of tropical 

tuna fisheries under changing environmental conditions. 
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6 Figures 

 

 

 

Figure 1 Spatial distribution of observer sampling records for bigeye tuna and yellowfin tuna 

in the Indian Ocean from 2012 to 2025. Red points indicate female individuals, and blue 

points indicate male individuals. 

 



 

 

Figure 2 Proportion of males by fork length class for bigeye tuna in the Indian Ocean. 

Red bars indicate length classes where the sex ratio differed significantly from parity 

(p < 0.05), and grey bars indicate non-significant differences. 

 

 

 

Figure 3 Proportion of males by fork length class for yellowfin tuna in the Indian 

Ocean. Red bars indicate length classes where the sex ratio differed significantly from 

parity (p < 0.05), and grey bars indicate non-significant differences. 



 

Figure 4 Maturity ogive for female bigeye tun in the Indian Ocean. Open circles 

represent binned proportions of mature individuals by fork length. Black dots at 0 and 

1 represent individual observations classified as no spawn and spawn, respectively. 

The dashed lines indicate 50% maturity (horizontal) and the estimated L₅₀ (vertical). 

 

 

Figure 5 Maturity ogive for female yellowfin tun in the Indian Ocean. Open circles 

represent binned proportions of mature individuals by fork length. Black dots at 0 and 

1 represent individual observations classified as no spawn and spawn, respectively. 



The dashed lines indicate 50% maturity (horizontal) and the estimated L₅₀ (vertical). 

 

 

Figure 6: Boxplots of the gonadosomatic index (GSI) by maturity stage for female 

bigeye tuna and yellowfin tuna in the Indian Ocean. BET: bigeye tuna; YFT: 

yellowfin tuna. 

 

 
Figure 7: Monthly variation in mean gonadosomatic index (GSI ± SE) for female 

bigeye tuna and yellowfin tuna in the tropical Indian Ocean (40° - 70°E, 20°S - 

15°N). Numbers above points indicate sample size per month. 

 



 

 

Figure 8: Simulation-based randomized-quantile residuals for the bigeye model. QQ-

plot detects overall deviations from the expected distribution, by default with added 

tests for correct distribution (KS test), dispersion and outliers. Residual plot shows the 

residuals against the predicted value (left). Moran’s I plots shows the spatial 

distribution of residuals (right). Red points: positive residuals. Blue points: negative 

residuals. 

 

 

Figure 9: Simulation-based randomized-quantile residuals for the bigeye model. QQ-

plot detects overall deviations from the expected distribution, by default with added 

tests for correct distribution (KS test), dispersion and outliers. Residual plot shows the 

residuals against the predicted value (left). Moran’s I plots shows the spatial 

distribution of residuals (right). Red points: positive residuals. Blue points: negative 

residuals. 

 



 

 

Figure 10: Model results for bigeye tuna. A: SPDE mesh (lines) combined with 

observations (points). B: Spatial random field: these values are shown in link (log) 

space and represent spatially correlated deviations that are not accounted for by the 

covariates. C: Overall prediction: these estimates represent the combination of all 

fixed and random effects. 

 

 

 

 

Figure 11: Model results for yellowfin tuna. A: SPDE mesh (lines) combined with 

observations (points). B: Spatial random field: these values are shown in link (log) 

space and represent spatially correlated deviations that are not accounted for by the 

covariates. C: Overall prediction: these estimates represent the combination of all 

fixed and random effects. 

 

 



 

Figure 12 Monthly spawning probability for bigeye tuna in the tropical Indian Ocean. 

 

 

 

 

 

 

 



 

Figure 13 Monthly spawning probability for yellowfin tuna in the tropical Indian 

Ocean. 

 

 

 

 

 

 

 



 

Figure 14 Partial effects of habitat covariates on the spawning probability of bigeye 

tuna in the Indian Ocean. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 15 Partial effects of habitat covariates on the spawning probability of yellowfin 

tuna in the Indian Ocean. 

 

 

 

 

 

 

 



7 Tables 

 

Table 1: Code, description, class, and type of candidate explanatory variables. 

Catchability covariates were fixed at a specified value when predicting, while habitat 

covariates varied over space and time. 

 

Code Description Class Type 

month month Factor (levels: 1,…, 12) - 

vessel vessel id Factor (levels: 1…, 33) Catchability 

n_prop 

Proportion of 

nighttime fishing 

effort 

Numeric Catchability 

HBF Hooks between float Numeric Catchability 

MLD Mixing layer depth Numeric Habitat 

SST 
Sea surface 

temperature 
Numeric Habitat 

SSS Sea surface salinity Numeric Habitat 

SSH Sea surface height Numeric Habitat 

EKE Eddy kinetic energy Numeric Habitat 

CHL Chlorophyll - a Numeric Habitat 

DO Dissolved Oxygen Numeric Habitat 

DMI 
Indian Ocean Dipole 

index 
Numeric Habitat 

DP Ocean depth Numeric Habitat 

DTC Distance to the coast Numeric Habitat 

 

 

 

 

 

 

 

 

 



 

 

Table 2 Parameters for the logistic regression model for estimating the fork length of 

female bigeye tuna and yellowfin tuna in the Indian Ocean at which 50% of the 

population is mature (L50, cm). ɑ and β are the coefficients of the equation and L50 

was computed as -ɑ/β for the maturity threshold used: maturity stage over 3. 

Significant test shows the length-maturity relationship. 

 

 

 

 

 

 

 

 

 

Bigeye tuna  Yellowfin tuna 

parameters ɑ β L50  ɑ β L50 

estimates -12.473 0.114 109.3  -9.877 0.093 106.2 

standard error 0.376 0.003 0.4  0.287 0.002 0.3 

significance p < 0.001  p < 0.001 



Table 3 VIF test for the variables in bigeye and yellowfin tuna model. 

 

 Bigeye tuna  Yellowfin tuna 

Variables SST EKE SSH DMI Chla DO SSS Depth DTC  SST EKE SSS SSH DMI Chla DO Depth DTC 

VIF 1.47 1.09 1.32 1.17 1.18  1.38 1.23 1.5  2.7 1.04 1.48 1.64 1.36 1.32 3.2 1.64 1.56 

 

Table 4 Model selection and diagnostic results for bigeye and yellowfin tuna. M0: baseline model with month, vessel (as a random effect), and 

the spatial random field; M1: baseline model including environmental covariates; M2: baseline model including both catchability and habitat-

related variables. Moran’s I p values represent the significance of spatial autocorrelation of model residuals. 

BET  YFT 

 Convergency df 
Moran’s I p 

value 
AIC   Convergency df 

Moran’s I 

p value 
AIC 

M0 Yes 15  8483.76  M0 Yes 15  10409.74 

M1 Yes 23  8439.61  M1 Yes 23  10351.26 

M2 Yes 25 0.343 8328.84  M2 Yes 26 0.661 10324.62 

 


