Preliminary evaluation of Seychelles longline length, catch and effort data

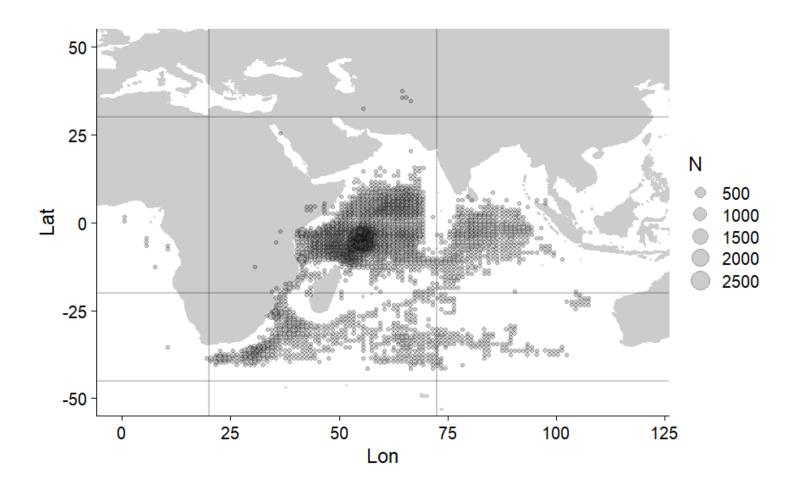
Summary of Findings... so far

Objectives

- Review the data
- Identify potential data errors and possible corrections
- Focus on length compositions, with the aim of considering these for use in stock assessment
- Preliminary results presented here focus on albacore, yellowfin and bigeye tunas

Data Description

- Data consisted of individual pelagic set data 2007-2023 for Seychelles registered vessels.
- Landings generally do occur in the Seychelles, so the reports have not been verified.
- There is a vessel registry and 3 other main tables:
 - A3: Trip details consisting of a record for each longline set in a trip. TripLogID represents individual sets, but with more than one record where multiple baits are used.
 - A4: Logbook details consisting of a record for each catch species (weight and number).
 - A5: The lengths (cm) of retained fish caught up to 20 per set.
- Significant number of records from the 3 tables are currently orphaned.

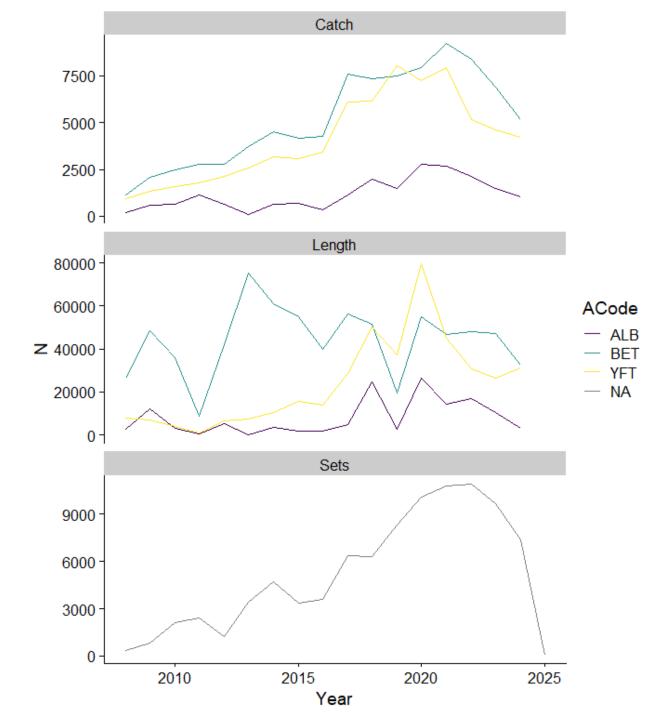

Gear Variable	Min	Median	Max	NA %
Hooks	20.0	3,000	6,080	0.8
HooksBetweenFloats	1.0	19	3,000	8.5
LengthFloatLine	0.9	15	660	87.8
LengthSetLine	1.0	27	1,350,000	78.7
LengthBranchLine	0.1	23	1,800	8.5

Catch Variable	Min	Median	Max	NA %
RetainedWeight	1.0	100.0	14,324	1.6
DiscardWeight	0.0	130.5	21,216	100.0
RetainedPieces	1.0	3.0	11,399	1.6
DiscardPieces	0.0	1.0	722	98.4

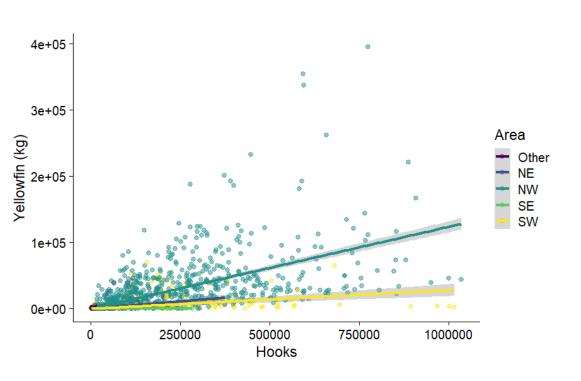
Length records

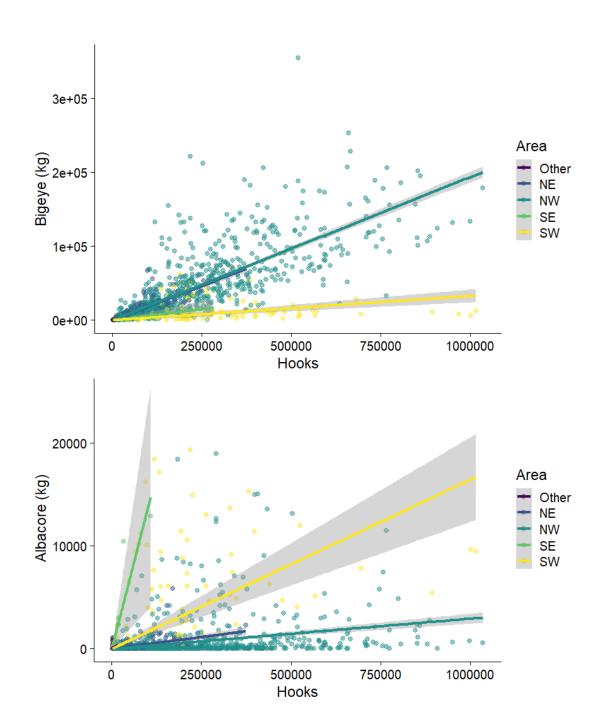
				Len	gth		Catch
ScientificName	CommonName	ACode	Min	Median	Max	Count	Retained Pieces
Alopias spp	Thresher sharks (Moro Sharks)	THR	30	165.0	290	6,425	14
Carcharhinus limbatus	Blacktip shark	CCL	24	152.0	274	3,690	1,067
Carcharhinus longimanus	Oceanic Whitetip shark	ocs	69	129.5	168	34	92
Makaira indica	Black Marlin (white marlin)	BLM	119	174.0	312	16,904	36,564
Makaira nigricans	Indo-Pacific blue Marlin	BUM	143	180.0	295	1,318	37,686
Makaira spp	Marlins nei	BXQ	64	172.0	290	29,061	2,574
Osteichthyes	Marine fishes nei	MZZ	10	90.0	194	99,866	792,877
Osteichthyes	Pelagic fishes nei	PEL	42	77.0	135	143	
Prionace glauca	Blue Shark	BSH	67	157.0	325	44,825	96,851
Selachimorpha (Pleurotremata)	sharks nei	SKH	51	170.0	310	2,463	15,249
Tetrapturus audax	Stripped Marlin	MLS	104	168.0	231	5,217	32,126
Thunnus alalunga	Albacore	ALB	20	90.0	165	134,099	430,124
Thunnus albacares	Yellowfin tuna	YFT	31	130.0	190	401,267	1,011,130
Thunnus obesus	Bigeye tuna	BET	48	134.0	186	749,328	1,196,687
Xiphias gladius	Swordfish	swo	50	147.0	260	129,409	257,574

Longline set start positions



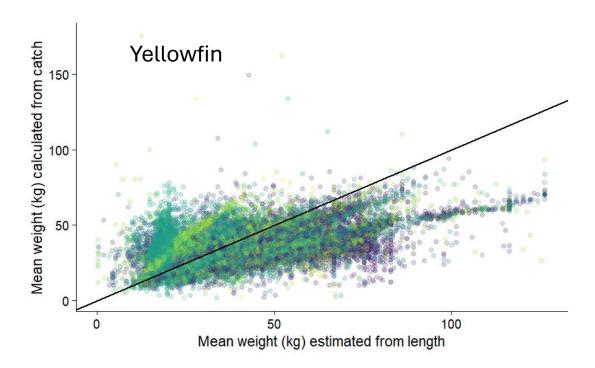
Area	Count	Percent
Atlantic	17	0.0%
NA	5	0.0%
NE	4,058	4.4%
NW	77,941	84.9%
On Land	44	0.0%
Outside	5	0.0%
SE	378	0.4%
SW	9,310	10.1%
Total	91,758	100.0%
		-


Length Observations

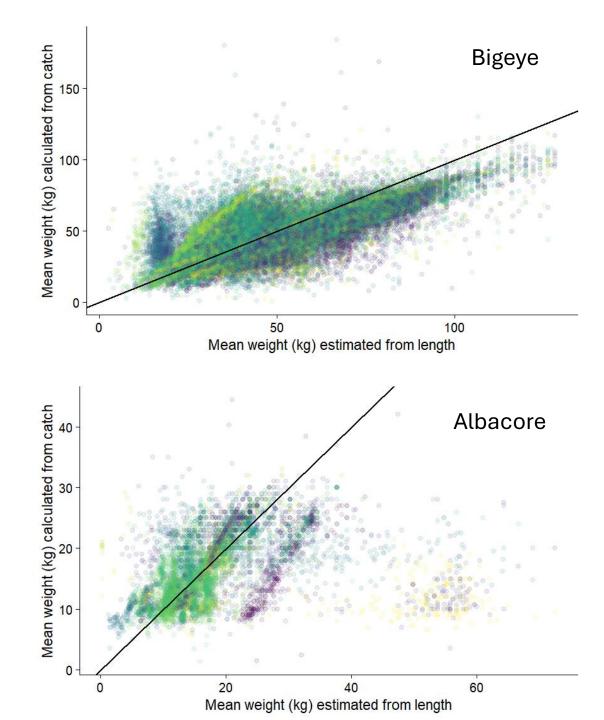

		ACode															
Area		ALB	BET	BLM	BSH	BUM	BXQ	CCL	MLS	MZZ	ocs	PEL	SKH	swo	THR	YFT	Total
Atlantic	Count	300 (0.0%)	1,057 (0.1%)	47 (0.0%)	86 (0.0%)	3 (0.0%)	42 (0.0%)	1 (0.0%)	1 (0.0%)	111 (0.0%)				197 (0.0%)	6 (0.0%)	695 (0.0%)	2,546 (0.2%)
	Mar. pct (1)	0.2% ; 11.8%	0.1% ; 41.5%	0.3% ; 1.8%	0.2% ; 3.4%	0.2% ; 0.1%	0.1% ; 1.6%	0.0% ; 0.0%	0.0% ; 0.0%	0.1% ; 4.4%				0.2% ; 7.7%	0.1% ; 0.2%	0.2% ; 27.3%	
NE	Count	2,037 (0.1%)	68,278 (4.2%)	2,230 (0.1%)	5,717 (0.4%)	158 (0.0%)	1,288 (0.1%)	424 (0.0%)	344 (0.0%)	1,823 (0.1%)	4 (0.0%)		119 (0.0%)	6,859 (0.4%)	209 (0.0%)	13,683 (0.8%)	103,173 (6.4%)
	Mar. pct	1.5% ; 2.0%	9.1% ; 66.2%	13.2% ; 2.2%	12.8% ; 5.5%	12.0% ; 0.2%	4.4% ; 1.2%	11.5% ; 0.4%	6.6% ; 0.3%	1.8% ; 1.8%	11.8% ; 0.0%		4.8% ; 0.1%	5.3% ; 6.6%	3.3% ; 0.2%	3.4% ; 13.3%	
NW	Count	10,132 (0.6%)	648,583 (39.9%)	14,396 (0.9%)	26,873 (1.7%)	1,126 (0.1%)	27,622 (1.7%)	3,131 (0.2%)	4,777 (0.3%)	17,772 (1.1%)	20 (0.0%)	23 (0.0%)	2,303 (0.1%)	110,485 (6.8%)	2,397 (0.1%)	368,264 (22.7%)	1,237,904 (76.2%)
	Mar. pct	7.6% ; 0.8%	86.6% ; 52.4%	85.2% ; 1.2%	60.0% ; 2.2%	85.4% ; 0.1%	95.0% ; 2.2%	84.9% ; 0.3%	91.6% ; 0.4%	17.8% ; 1.4%	58.8% ; 0.0%	16.1% ; 0.0%	93.5% ; 0.2%	85.4% ; 8.9%	37.3% ; 0.2%	91.8% ; 29.7%	
On Land	Count	124 (0.0%)	785 (0.0%)	47 (0.0%)	41 (0.0%)		31 (0.0%)	3 (0.0%)	26 (0.0%)	33 (0.0%)			3 (0.0%)	251 (0.0%)	2 (0.0%)	616 (0.0%)	1,962 (0.1%)
	Mar. pct	0.1% ; 6.3%	0.1% ; 40.0%	0.3% ; 2.4%	0.1% ; 2.1%		0.1% ; 1.6%	0.1% ; 0.2%	0.5% ; 1.3%	0.0% ; 1.7%			0.1%; 0.2%	0.2% ; 12.8%	0.0%; 0.1%	0.2% ; 31.4%	
Outside	Count	2 (0.0%)	182 (0.0%)	8 (0.0%)	4 (0.0%)	1 (0.0%)	5 (0.0%)			5 (0.0%)				43 (0.0%)	3 (0.0%)	174 (0.0%)	427 (0.0%)
	Mar. pct	0.0% ; 0.5%	0.0% ; 42.6%	0.0% ; 1.9%	0.0% ; 0.9%	0.1% ; 0.2%	0.0% ; 1.2%			0.0% ; 1.2%				0.0% ; 10.1%	0.0%; 0.7%	0.0% ; 40.7%	
SE	Count	23,333 (1.4%)	3,061 (0.2%)				6 (0.0%)			417 (0.0%)				628 (0.0%)		1,378 (0.1%)	28,823 (1.8%)
	Mar. pct	17.4% ; 81.0%	0.4% ; 10.6%				0.0% ; 0.0%			0.4% ; 1.4%				0.5% ; 2.2%		0.3% ; 4.8%	
SW	Count	98,171 (6.0%)	27,382 (1.7%)	176 (0.0%)	12,104 (0.7%)	30 (0.0%)	67 (0.0%)	131 (0.0%)	69 (0.0%)	79,705 (4.9%)	10 (0.0%)	120 (0.0%)	38 (0.0%)	10,946 (0.7%)	3,808 (0.2%)	16,457 (1.0%)	249,214 (15.3%)
	Mar. pct	73.2% ; 39.4%	3.7% ; 11.0%	1.0% ; 0.1%	27.0% ; 4.9%	2.3% ; 0.0%	0.2% ; 0.0%	3.6% ; 0.1%	1.3% ; 0.0%	79.8% ; 32.0%	29.4% ; 0.0%	83.9% ; 0.0%	1.5% ; 0.0%	8.5% ; 4.4%	59.3% ; 1.5%	4.1% ; 6.6%	
Total	Count	134,099 (8.3%)	749,328 (46.1%)	16,904 (1.0%)	44,825 (2.8%)	1,318 (0.1%)	29,061 (1.8%)	3,690 (0.2%)	5,217 (0.3%)	99,866 (6.1%)	34 (0.0%)	143 (0.0%)	2,463 (0.2%)	129,409 (8.0%)	6,425 (0.4%)	401,267 (24.7%)	1,624,049 (100.0%)

Number of observations by year

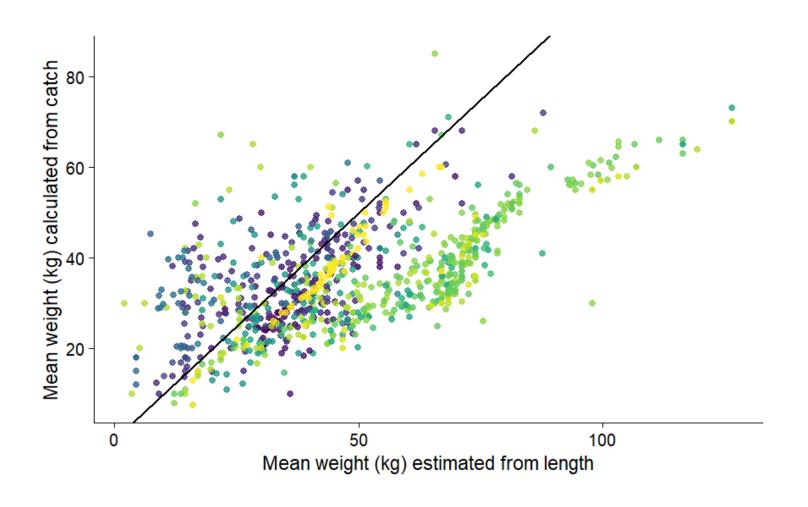
Catch (kg) and effort (hooks) - trips



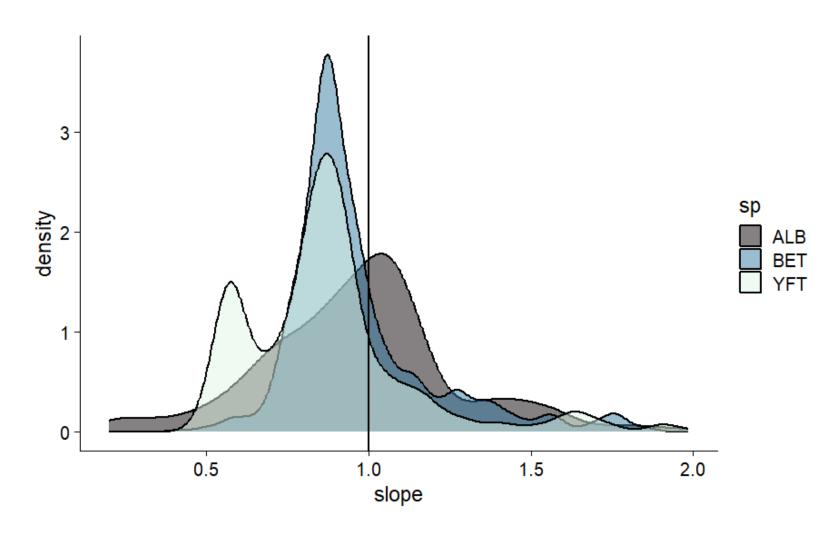
Internal consistency


- For each longline set, the retained weight and retained pieces by species
- For the first 20 fish of each species, the lengths are recorded.
- The mean weight of fish can be calculated from the length
 - Mean weight = sum(a L^b) / N
- and from the recorded catch weight
 - Mean weight Retained weight / Retained species

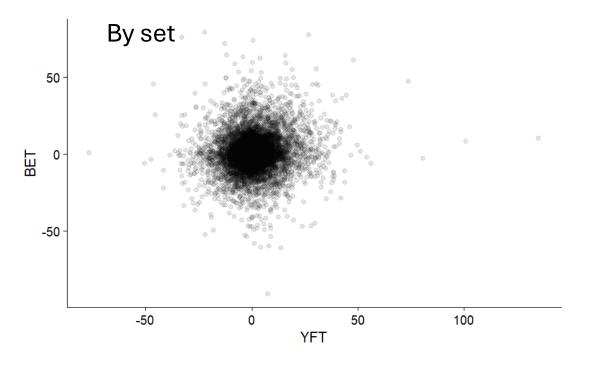
These estimates can be used to identify inconsistencies.

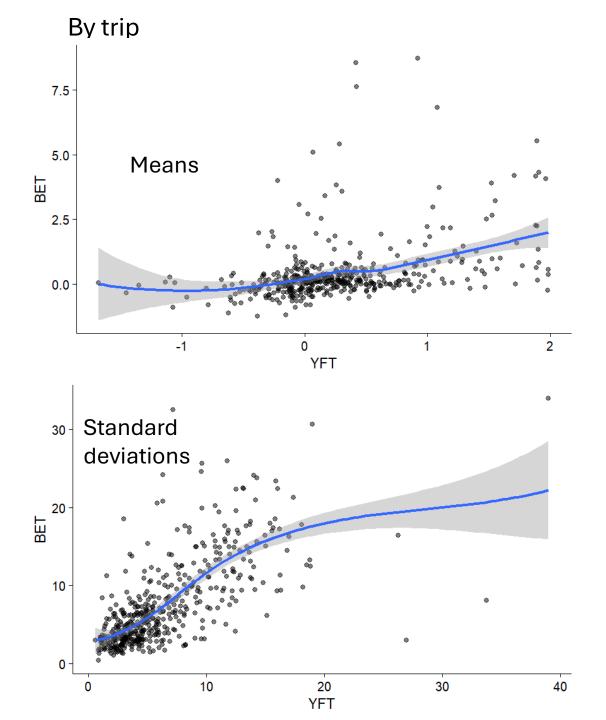

Catch-based vs Length-based mean weight: sets

Only sets are used where the number of retained fish and the number of length measurements were equal



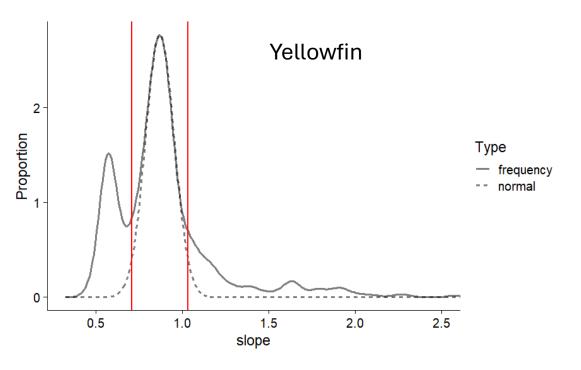
Single vessel: yellowfin: sets

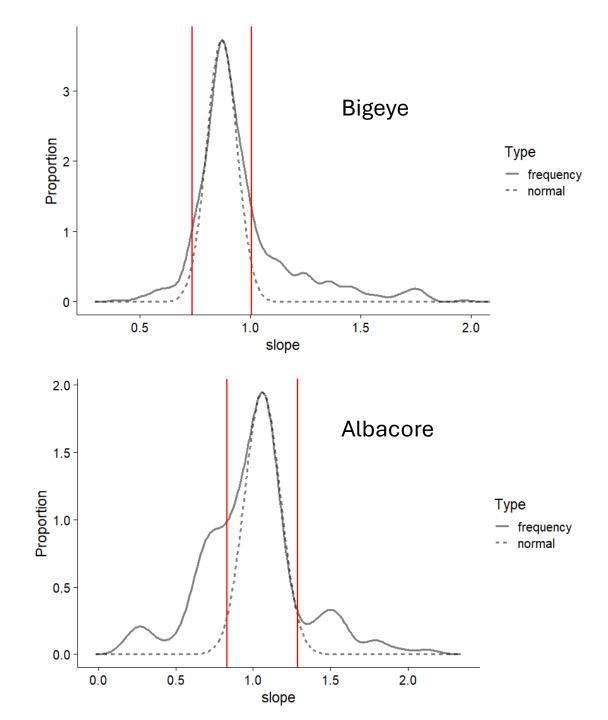



Each point is a single set Colour by trip

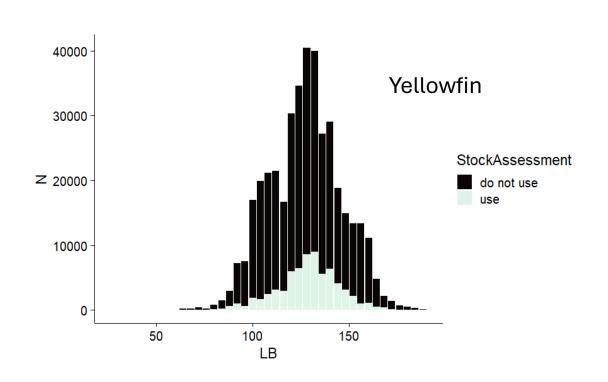
Slope density for: ca_mwt ~ le_mwt : trip + 0

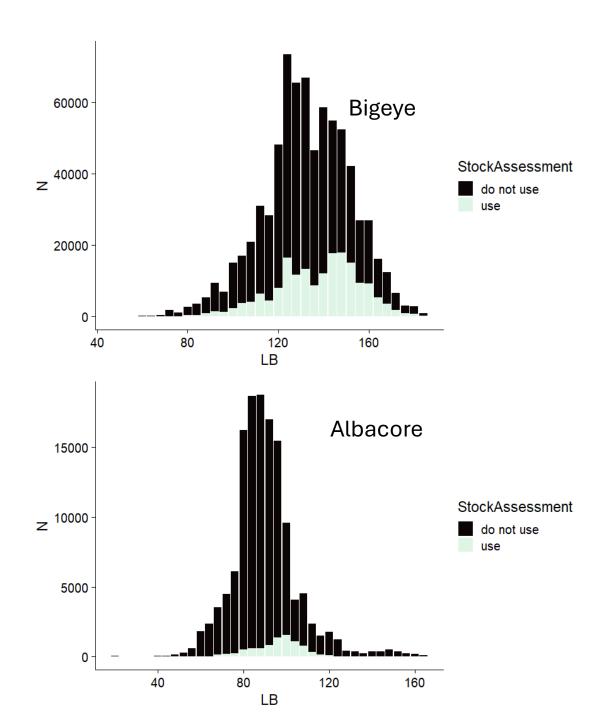
Catch vs Lengthbased Mean Weight Slope Residuals

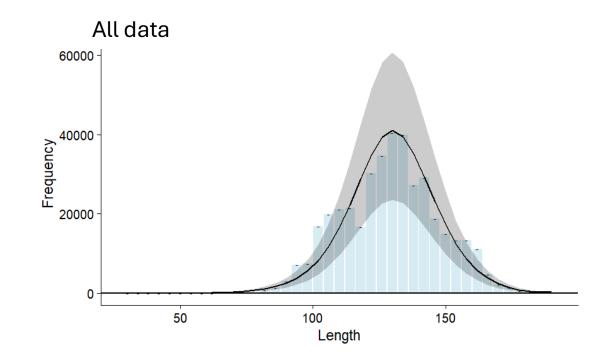


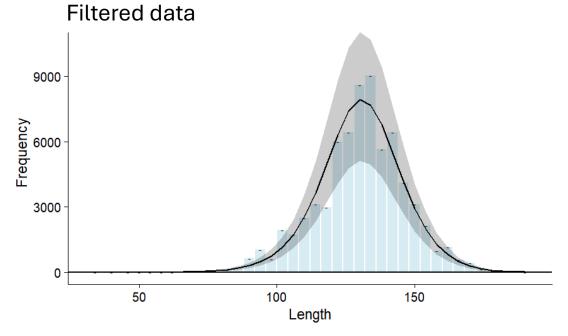

Trial Data Filtering for Stock Assessment

The fitted linear model has the form:- ca_mwt ~ le_mwt:TripID+0

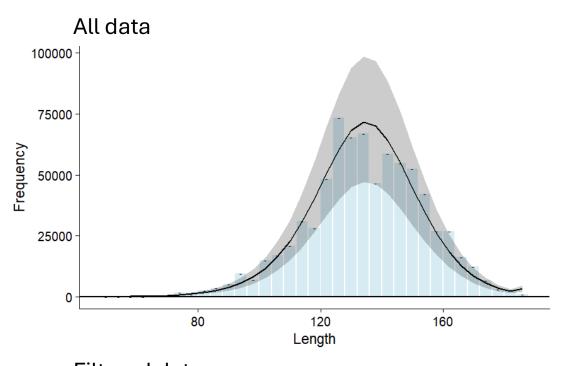

- 1. Globally, filter out **individual sets** that are unlikely (< 50% chance) to be present in the sample if it was normally distributed. For example, for 1000 observations, observations would be removed where the absolute standardised residual is greater than 3.29.
- 2. Refit the linear model to the filtered data set and extract the slopes.
- 3. Fit the sd of a normal density to the mode (+/- 10 points around the mode) of the smoothed density of the slopes.
- 4. Filter out **trips** where the slopes are beyond the 95% quartile range of the normal density around the mode.
- 5. If no trips are removed in 4 exit, else goto 2.

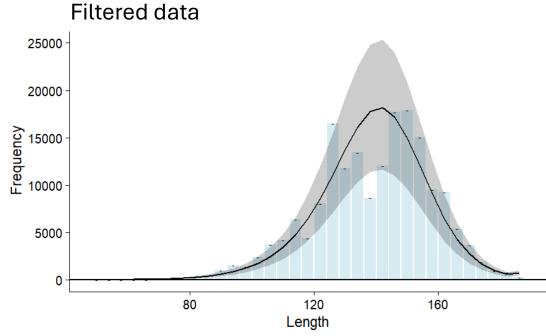

Filtering


Filtering Impact

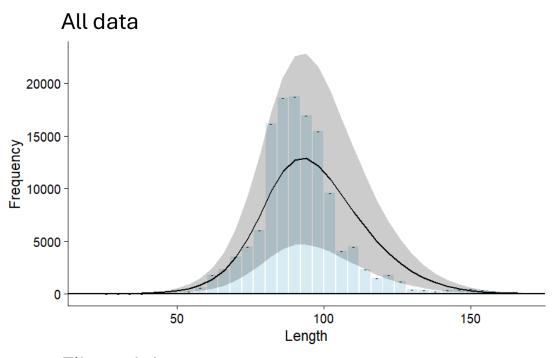


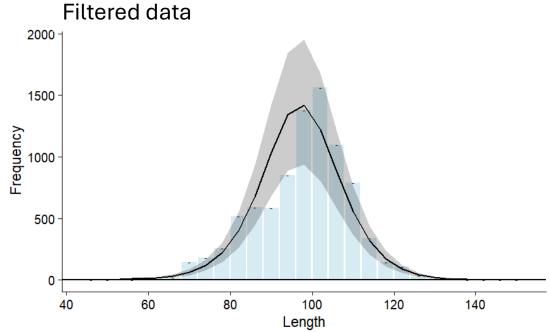
Yellowfin catch curve comparison


Parameter	All Data	Filtered Data
Linf	189.920	189.907
M/K	1.481	1.491
F/K	3.473	4.238
Selectivity 50%	126.754	128.470
Selectivity slope	0.108	0.117
SPR	0.203	0.184
YPR	7.956	8.321



Bigeye catch curve comparison


Parameter	All Data	Filtered Data
Linf	199.912	199.968
M/K	1.492	1.495
F/K	3.681	4.873
Selectivity 50%	131.808	142.421
Selectivity slope	0.099	0.095
SPR	0.188	0.218
YPR	12.230	12.172



Albacore catch curve comparison

Parameter	All Data	Filtered Data
Linf	125.323	124.990
M/K	1.479	1.501
F/K	0.360	2.488
Selectivity 50%	83.554	95.489
Selectivity slope	0.137	0.176
SPR	0.753	0.459
YPR	0.918	2.750

Conclusions and Suggestions

- 1. Catch and length data are most likely generally not biased but precision is low
- 2. Need to consider more explanations for observation error vs true change in catch (e.g. time period, location)