APPENDICE XVI RESUME EXECUTIF: TORTUES DE MER (2024)

Tableau A 1. Tortues de mer : État de menace selon l'UICN de toutes les espèces de tortues marines déclarées comme étant capturées par les pêcheries dans la zone de compétence de la CTOI.

Nom commun	Nom scientifique	État de menace selon l'UICN¹
Tortue à dos plat	Natator depressus	Données insuffisantes
Tortue verte	Chelonia mydas	En danger
Tortue imbriquée	Eretmochelys imbricata	En danger critique
Tortue-luth	Dermochelys coriacea	Vulnérable (mondialement)
(sous-population de l'océan Indien nord-est)		Données insuffisantes
(sous-population de l'océan Indien sud-ouest)		En danger critique
Tortue caouanne	Caretta caretta	Vulnérable (mondialement)
(sous-population de l'océan Indien nord-ouest)		En danger critique
(sous-population de l'océan Indien sud-est)		Quasi-menacé
Tortue olivâtre	Lepidochelys olivacea	Vulnérable

Source: Groupe de spécialistes des tortues marines 1996, Sous-comité des normes et des pétitions de la Liste rouge 1996, Sarti Martinez (Marine Turtle Specialist Group) 2000, Seminoff 2004, Abreu-Grobois & Plotkin 2008, Mortimer et al. 2008, IUCN 2020, Liste rouge de l'UICN des espèces menacées. www.iucnredlist.org. Téléchargé le 16 septembre 2020

STOCK DE L'OCEAN INDIEN - AVIS DE GESTION

État du stock. Aucune évaluation des tortues marines n'a été entreprise par le GTEPA de la CTOI faute de données soumises par les CPC. Toutefois, l'état de menace actuel, selon l'Union Internationale pour la Conservation de la Nature (UICN), de chacune des espèces de tortues marines déclarées à ce jour comme étant capturées par les pêcheries de la CTOI est fourni au Tableau A 1. Il est important de noter qu'un certain nombre d'accords internationaux sur l'environnement mondial (par exemple : Convention sur les espèces migratrices - CMS, ou Convention sur la diversité biologique - CDB), ainsi que de nombreux accords de pêche obligent les États à protéger ces espèces. Il y a désormais 35 signataires du Protocole d'accord sur la conservation et la gestion des tortues marines et de leurs habitats de l'océan Indien et de l'Asie du Sud-Est (IOSEA MoU). Parmi les 35 signataires de l'IOSEA MoU, 25 sont également membres de la CTOI. Bien que l'état des tortues marines soit affecté par de nombreux facteurs tels que la dégradation de leurs habitats naturels et la collecte des œufs et des tortues, le niveau de mortalité dû aux filets maillants est probablement élevé, comme le montre l'évaluation des risques écologiques (ERA) présentée en 2018 (Williams et al., 2018). Les évaluations de stock de l'ensemble des espèces de tortues marines de l'océan Indien sont limitées du fait de la quantité insuffisante et de la qualité limitée des données (Wallace

¹ IUCN, 2020. Le processus d'évaluation des menaces de l'UICN est indépendant de la CTOI et est uniquement présenté à titre d'information.

et al., 2011). Les prises accessoires et la mortalité dues aux pêcheries au filet maillant ont des impacts plus importants sur les populations de tortues marines de l'océan Indien que d'autres types d'engins, tels que la palangre, la senne et le chalut (Wallace et al., 2013). Le niveau d'impact de la palangre sur les populations de tortues luths capturées dans l'océan Indien Sud-Ouest a également été identifié comme constituant une priorité de conservation.

Perspectives. La Résolution 12/04 sur la conservation des tortues marines requiert qu'une évaluation soit réalisée chaque année (para. 17) par le Comité scientifique (CS). Toutefois, du fait, à ce jour, du manque de déclarations de la part des CPC sur les interactions avec les tortues marines, cette évaluation ne peut pas être réalisée. À moins que les CPC de la CTOI ne se conforment aux exigences en matière de collecte et de déclaration des données sur les tortues marines, le GTEPA et le CS continueront d'être dans l'incapacité de réaliser cette tâche. Jusqu'ici, les interactions avec les tortues marines n'ont pas été déclarées au niveau de l'espèce. Il est recommandé que les CPC déclarent désormais ces interactions en indiquant l'espèce des tortues marines. Les guides d'identification des espèces sont disponibles à l'adresse http://iotc.org/science/species-identification-cards. Néanmoins, il est reconnu que l'impact de la pêche de thons et d'espèces apparentées sur les populations de tortues marines s'accroîtra à mesure que la pression de pêche augmente, et que l'état des populations de tortues marines continuera de s'aggraver du fait d'autres facteurs, tels qu'une augmentation de la pression de pêche des autres pêcheries, ou des effets anthropiques ou climatiques.

Il convient de noter également les points suivants :

- 1. Les preuves disponibles indiquent un risque considérable pour l'état des tortues marines dans l'océan Indien.
- Compte tenu des taux de mortalité élevés associés aux interactions entre les tortues marines et les pêcheries au filet maillant, et l'utilisation croissante de filets maillants dans l'océan Indien (Aranda, 2017), il convient d'évaluer et d'atténuer les impacts sur les populations de tortues marines menacées et en danger.
- 3. Les principales sources de données qui permettent au GTEPA de déterminer l'état des tortues dans l'océan Indien, les interactions totales par navire de pêche ou dans les pêcheries au filet, sont très incertaines et devraient être traitées en toute priorité.
- 4. Les interactions actuellement déclarées sont réputées être largement sous-estimées.
- 5. L'évaluation des risques écologiques (Nel et al., 2013) a estimé que ~3 500 et ~250 tortues marines sont capturées par les palangriers et les senneurs, respectivement, chaque année, 75 % des tortues étant estimées être remises à l'eau vivantes⁷. L'ERA a exposé deux approches distinctes pour estimer les impacts des filets maillants sur les tortues marines, en se basant sur des données très limitées. La première a calculé que 52 425 tortues marines sont capturées chaque année par les filets maillants, et la seconde une fourchette de 11 400–47 500 (la moyenne des deux méthodes étant de 29 488 tortues marines par an). Des études empiriques/publiées ont enregistré des valeurs comprises entre >5 000–16 000 tortues marines par an pour chacun des pays suivants : Inde, Sri Lanka et Madagascar. D'après ces rapports, les tortues vertes subissent la plus forte pression de la part de la pêche au filet maillant et constituent 50–88 % des prises à Madagascar. La proportion de tortues caouannes, imbriquées, luths et olivâtres capturées varie selon la région, la saison et le type d'engin de pêche.
- 6. Le maintien ou l'augmentation de l'effort de pêche dans l'océan Indien, sans mesures d'atténuation appropriées en place, entraînera probablement de nouvelles réductions des populations de tortues marines.

7. Des efforts devraient être déployés en vue d'encourager les CPC à rechercher les moyens de réduire les prises accessoires de tortues marines et la mortalité à bord du navire et après remise à l'eau dans les pêcheries de la CTOI et à améliorer la collecte et la déclaration des données relatives aux tortues marines. Cela pourrait inclure des mécanismes de collecte de données alternatifs, comme la déclaration basée sur le capitaine, l'échantillonnage au port et des systèmes de surveillance électronique d'un bon rapport coût-efficacité.

REFERENCES BIBLIOGRAPHIQUES

- Abreu-Grobois A, Plotkin P (IUCN SSC Marine Turtle Specialist Group) (2008) *Lepidochelys olivacea*. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. <www.iucnredlist.org>. Downloaded on 09 November 2012.
- Aranda, M. 2017. Description of tuna gillnet capacity and bycatch in the IOTC Convention Area. IOTC-2017-WPEB13-18.
- Mortimer JA, Donnelly M (IUCN SSC Marine Turtle Specialist Group) (2008) *Eretmochelys imbricata*. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. <www.iucnredlist.org>. Downloaded on 09 November 2012
- Nel, R., Wanless, R. M., Angel, A., Mellet, B. and Harris, L. 2013. Ecological Risk Assessment and Productivity -Susceptibility Analysis of sea turtles overlapping with fisheries in the IOTC region IOTC-2013-WPEB09-23
- Seminoff JA (Southwest Fisheries Science Center, U.S.) (2004) *Chelonia mydas*. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. <www.iucnredlist.org>. Downloaded on 09 November 2012.
- Wallace BP, DiMatteo AD, Bolten AB, Chaloupka MY, Hutchinson BJ, et al. (2011) Global Conservation Priorities for Marine Turtles. PLoS ONE 6(9): e24510. doi:10.1371/journal.pone.0024510
- Wallace, B. P., C. Y. Kot, A. D. DiMatteo, T. Lee, L. B. Crowder, and R. L. Lewison. 2013. Impacts of fisheries bycatch on marine turtle populations worldwide: toward conservation and research priorities. Ecosphere 4(3):40. http://dx.doi.org/10.1890/ES12-00388.1 (Fig. 13)
- Williams, A. J., Georgeson, L., Summerson, R., Hobday, A., Hartog, J., Fuller, M., Swimmer, Y., Wallace, B. and Nicol, S. J. 2018. Assessment of the vulnerability of sea turtles to IOTC tuna fisheries. IOTC-2018-WPEB14-40