

Australia's National Science Agency

Close-kin mark recapture estimates of whale shark abundance in the Indian Ocean

Toby Patterson, Richard Pillans, Richard Hillary

CSIRO Environment,

November 2025

OFFICIAL

Citation

Patterson TA, Pillans RD and Hillary R (2025) Close-kin mark recapture estimates of whale shark abundance in the Indian Ocean. Information Paper to the Indian Ocean Tuna Commission Scientific Committee meeting, Shanghai, China, 1-5 December 2025.

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2025. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document, please contact csiro.au/contact.

Acknowledgement of Country

CSIRO acknowledges the Traditional Owners of the lands, seas and waters, of the area that we live and work on across Australia and pays its respects to Elders past and present. CSIRO recognises that Aboriginal and Torres Strait Islander peoples have made, and will continue to make, extraordinary contributions to Australian life including in cultural, economic, and scientific domains.

OFFICIAL

Contents

1	Introduction and background	.3
	0 11 11 11 11 11 11 11 11 11 11 11 11 11	
2	Results summary	.3
3	References:	.4

1 Introduction and background

The whale shark (Rhincodon typus) is the largest extant species of fish, having a global distribution through tropical and sub-tropical waters. The species is of general conservation concern and is subject to various provisions under IOTC Resolution 25/08 via a retention ban and various restrictions on fishing practices in the vicinity of whale sharks. Despite general concern over their population status, estimating the species abundance is challenging (Rowat et al 2021).

While juveniles and sub-adults occur seasonally at aggregation sites, adult whale sharks are rarely encountered. Therefore, most abundance estimates (e.g. Bradshaw et al., 2008) refer only to these younger age classes and there are no estimates of adult breeding abundance for the species. Additionally, while there have been population genetics studies suggesting widespread geneflow over long time scales, determining whether there is defined generational-scale population structure has been difficult. This information paper is to bring the IOTC SC's attention to a set of new results resulting from a broad-scale CSIRO study of the Ningaloo Reef ecosystem (https://research.csiro.au/ningaloo/wp-content/uploads/sites/59/2025/07/Ningaloo-Outlook-Highlights-Report-2025.pdf). Field sampling as part of this project obtained over 600 tissue samples from juvenile whale sharks aggregating at Ningaloo Reef, Western Australia. Further samples were contributed from collaborators in Madagascar and Tanzania.

Close-kin mark recapture is a technique that uses the prevalence of closely related (parent/offspring, half-sibling) pairs detected among pairwise genetic comparisons, to estimate the adult abundance (Bravington et al 2018). As the offspring carry the genetic material of their parents, their relatedness informs directly on the adults without ever having to sample them (Hillary et al 2018; Patterson et al 2022).

A more detailed overview of this work has been submitted to the Twentieth meeting of the CITES Conference of the Parties (Samarkand (Uzbekistan), 24 November – 5 December 2025) and is available here https://cites.org/sites/default/files/documents/E-CoP20-Inf-021.pdf

Results summary 2

For the information of the SC, the key results are reproduced from the CITES information document as follows.

From the resultant genetic data from 608 samples, 49 half sibling pairs were detected with clear evidence of shared parentage across the Indian Ocean basin. Population modelling estimated that the breeding size in 2000 was N = 3688 (95%CI: 2854–5889) individuals and that this has declined to just under N = 2065 (95% CI:1469–3098) in 2019. The model estimated a declining population trend with a 43.47% decline (95% CI:65%-3% decline) in the 19 years between 2000-2019. While this distribution is wide, there was a 97% probability from our model that there was a population decline and a 73% probability of the decline being greater than 2% per year.

The number of detected kin pairs over a ~20-year period covered by the ages contained in our data set, along with the abundance estimates obtained from these data, provide direct and strong evidence of a low and declining adult population size for whale Sharks in the Indian Ocean. Further samples are required from other populations worldwide to obtain estimates of breeding population size on a global ocean basin scale, but these data indicate significant cause for concern for the species in the Indian Ocean. However, the results demonstrate that ocean-scale CKMR is a viable technique for monitoring shark species of conservation and management interest and that research efforts for this and other species, should focus on facilitating tissue sampling and aligned data collection.

References: 3

Bradshaw CJ, Fitzpatrick BM, Steinberg CC, Brook BW, Meekan MG. Decline in whale shark size and abundance at Ningaloo Reef over the past decade: the world's largest fish is getting smaller. Biological Conservation. 2008 Jul 1;141(7):1894-905.

Bravington, M. V., Skaug, H. J., & Anderson, E. C. (2016). Close-Kin Mark-Recapture. Statistical Science, 31(2), 259.

Castro, A. L. F., B. S. Stewart, S. G. Wilson, R. E. Hueter, M. G. Meekan, P. J. Motta, B. W. Bowen, and S. A. Karl. "Population genetic structure of Earth's largest fish, the whale shark (Rhincodon typus)." Molecular Ecology 16, no. 24 (2007): 5183-5192.

Hillary, R. M., Bravington, M. V., Patterson, T. A., Grewe, P., Bradford, R., Feutry, P., ... & Bruce, B. D. (2018). Genetic relatedness reveals total population size of white sharks in eastern Australia and New Zealand. Scientific reports, 8(1), 2661.

Patterson, T. A., Hillary, R. M., Kyne, P. M., Pillans, R. D., Gunasekera, R. M., Marthick, J. R., ... & Feutry, P. (2022). Rapid assessment of adult abundance and demographic connectivity from juvenile kin pairs in a critically endangered species. Science Advances, 8(51), eadd1679.

Rowat, David, F. C. Womersley, Bradley M. Norman, and Simon J. Pierce. "Global threats to whale sharks." Whale Shark Biology, Ecology, and Conservation (2021): 239-265.

As Australia's national science agency, CSIRO is solving the greatest challenges through innovative science and technology.

CSIRO. Creating a better future for everyone.

Contact us

1300 363 400 +61 3 9545 2176 csiro.au/contact csiro.au

For further information

Environment

Toby Patterson

Toby.Patterson@csiro.au

Richard Pillans

Richard.Pillans@csiro.au

Richard Hillary

Richard.Hillary@csiro.au