



# GUIDELINES FOR THE PREPARATION OF NATIONAL REPORTS TO THE IOTC SCIENTIFIC COMMITTEE IN 2025

The National Report is due to be submitted no later than <u>15 days</u> prior to the start of the annual regular session of the Scientific Committee.

# **DEADLINE: 16 NOVEMBER 2025**

**Purpose:** To provide relevant information to the Scientific Committee on research and fishing activities and associated monitoring and research activities of Contracting Parties and Cooperating Non-Contracting Parties operating in the IOTC area of competence. The report should include all fishing activities for species under Pthe IOTC mandate as well as for elasmobranch species and other species taken as bycatch as required by the IOTC Agreement and decisions by the Commission.

**NOTE:** The submission of a National Report is **Mandatory**, irrespective if a CPC intends on attending the annual meeting of the Scientific Committee.

# **Explanatory note**

This report is intended to provide a summary of the main features of the tuna and tuna-like fisheries for Contracting Parties and Cooperating Non-Contracting Parties. As such, it does not replace the need for submission of data according to Resolution 15/02 *Mandatory statistical reporting requirements for IOTC Contracting Parties and Cooperating Non-Contracting Parties (CPCs)* and other data related CMMs.

# **Mandatory versus Desirable information**

National Reports must include all headings as noted in the template below as [Mandatory]. Where data/information is not available for a given [Mandatory] heading, the reason why it is not available should be clearly stated. These mandatory fields for the *National Reports* were agreed to by the Scientific Committee in 2010.

Where available, CPCs are encouraged to provide additional information under the headings shown as [Desirable].

For clarification on minimum reporting requirements for the National Report, please contact the IOTC Secretariat (IOTC-Secretariat@fao.org).

# **NOTE**

Please use the template below when preparing your National Report. Simply delete this explanatory page and add your own cover page/preliminaries if needed.

Please also delete any text shown in red below before submitting your National Report.





# **KENYA National Report to the Scientific Committee of the Indian Ocean Tuna Commission, 2025**

Authors (Stephen Ndegwa<sup>1</sup>, Elizabeth Mueni<sup>1</sup>, Alex Lukhwenda<sup>1</sup>, Zackary Ogari<sup>1</sup>, Benedict Kiilu<sup>1</sup>, Collins Ndoro<sup>1</sup>, Lilian Kabira<sup>1</sup>, Grace Nduku<sup>1</sup>, Edward Kimani<sup>2</sup>, Gladys Okemwa<sup>2</sup>, Esther Fondo<sup>2</sup>)

Author/s affiliation [Kenya Fisheries Service <sup>1</sup>, Kenya Marine Fisheries Research Institute <sup>2</sup>]

# INFORMATION ON FISHERIES, RESEARCH AND STATISTICS

| In accordance with IOTC Resolution 15/02 (and              | YES        |
|------------------------------------------------------------|------------|
| other data related CMMs as noted below), final             |            |
| scientific data for the previous year were provided        | 30/06/2025 |
| to the IOTC Secretariat by 30 June of the current          |            |
| year, for all fleets other than longline [e.g., for a      |            |
| National Report submitted to the IOTC Secretariat          |            |
| in 2025, final data for the 2024 calendar year must        |            |
| be provided to the Secretariat by 30 June 2025)            |            |
| In accordance with IOTC Resolution 15/02,                  | YES        |
| provisional <b>longline data</b> for the previous year was |            |
| provided to the IOTC Secretariat by 30 June of the         | 30/06/2025 |
| current year [e.g., for a National Report submitted        |            |
| to the IOTC Secretariat in 2025, preliminary data          |            |
| for the 2024 calendar year were provided to the            |            |
| IOTC Secretariat by 30 June 2025).                         |            |
| DEMANDED. Final languing data for the provious             |            |
| REMINDER: Final longline data for the previous             |            |
| year are due to the IOTC Secretariat by 30 Dec of          |            |
| the current year [e.g., for a National Report              |            |
| submitted to the IOTC Secretariat in 2025, final           |            |
| data for the 2024 calendar year must be provided           |            |
| to the Secretariat by 30 December 2025).                   | tions      |
| If no, please indicate the reason(s) and intended ac       | uuis.      |
|                                                            |            |
|                                                            |            |
|                                                            |            |
|                                                            |            |





# **Executive Summary [Mandatory] (Ndegwa)**

The Kenyan tuna and tuna-like fishing fleets comprise of the artisanal, semi-industrial, industrial and recreational fisheries which have an impact on IOTC's priority species. The commercial artisanal fishing fleet is composed of a multigear and multi-species fleet operating in the territorial waters. The artisanal boats are broadly categorized as outrigger boats or dhows which come with variants depending on the construction designs. It is estimated that 850 artisanal vessels are engaged in the fishing for tuna and tuna like species in 2024 within the coastal waters. The main gears used are artisanal long line hooks, gillnets, monofilament nets and artisanal trolling lines. In 2024, six (6) Kenya pelagic longline vessels and two purse seiners operated in the IOTC area of competence. The IOTC species landed during the year included swordfish (254.1 tons), yellowfin tuna (3,226.1 tons) Bigeye tuna (296.8 tons), Sharks (46 tons), Marli while other species combined (7.6 tons). The main target species from the recreational fisheries are marlins and sailfish (Istiophiridae), swordfish (Xiiphidae) and tuna (Scombridae). Other species caught include small pelagic species such as barracuda, Spanish mackerel, Wahoo and sharks. The artisanal fisheries and recreational fishing fleets have interactions with sharks where sharks are caught and the carcass is retained and fully utilised in artisanal fisheries and recreational trolling line fisheries have a voluntary shark release policy.

#### 1. BACKGROUND/GENERAL FISHERY INFORMATION

Kenya's coastline is estimated to be 640 km long and 880 km including bays and inlets. Situated in the Western Indian Ocean (WIO), it borders Somalia to the north and Tanzania to the south. Kenya's Exclusive Economic Zone (EEZ) extends 200 nautical miles from the coastal baseline measuring 142,400 km2. The coastline is lined with an almost continuous fringing coral reef that runs parallel to the shoreline. The continental shelf is narrow (3-5 km) in most parts except in Ungwana bay. The richest inshore fishing grounds are located around the Lamu Archipelago, Ungwana Bay, North Kenya Banks and Malindi Bank. The areas where the two major Kenyan rivers (Tana and Sabaki) empty into the sea are also very productive. The annual production from artisanal coastal fisheries in 2024 was estimated at 39,702 MT consisting of demersal (41%), Pelagics (36%), sharks and rays (5%) mollusc (10%) and crustaceans (9%). The artisanal fishing fleet consists of 3,471 vessels, mainly made of wooden and fibre crafts usually for single day fishing trips. Handlines, Troll lines, longlines ringnets, and gillnets are the most common artisanal gear types used to catch tuna and tuna-like species along the Kenya coast. Species under the IOTC mandate that are landed include yellowfin tuna, bigeye tuna, skipjack tuna and kawaka. The bulk of tuna and tuna-like species are caught by troll lines, ringnets, and drift gillnets with proportion of tuna and tuna-like species varying among the gear types. Trolling lines, longlines and drift gillnets are more selective in capturing yellowfin and bigeye tuna, while neritic species are primarily caught by ringnets and reef seines. Billfish, mainly sailfish (Istiophoridae) are also caught by artisanal fishers using troll lines and handlines. Key landing sites for tuna along the Kenya coast are located in Vanga, Gazi, Manarani, Ngomeni, Mayungu, Amu and Kiwayu.

# 2. FLEET STRUCTURE

The national tuna fishing fleet structure consists of an artisanal commercial segment and to a lesser extent recreational fleet which all combined target and impact species under the IOTC mandate. The fishing fleet estimates provided in this report are based on the frame survey estimates of November 2024. The commercial artisanal fishing fleet is composed of a multi-gear and multi- species fleet operating in the territorial waters. The local boats are broadly categorized as outrigger boats or dhows which come with variants depending on the construction designs. It is estimated that 694 artisanal vessels are engaged in the fishing of tuna and tuna like species in 2024. A majority of the vessels are wooden planked propelled by sails and increasingly being motorised. These boats operate day fishing trips within the territorial waters. The mean craft size for tuna fishing vessels based on the frame survey was eight meters. The main gears used are artisanal long lines (59) handlines (107), gillnets (375), trolling lines (84), monofilament nets (17) and other gears (73). Recreational fishing vessels use trolling lines. Table 1: Number of vessels operating in the IOTC area of competence, by gear type and size class

Table 1:Number of vessels operating in the IOTC area of competence, by gear type and size class: 2020-2024;

| Year       | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
|------------|------|------|------|------|------|------|------|
| Longliners | 3    | 3    | 4    | 4    | 6    | 5    | 6    |



| Purse   | 0 | 0 | 6 | 6 | 0 | 0 | 2 |
|---------|---|---|---|---|---|---|---|
| seiners |   |   |   |   |   |   |   |

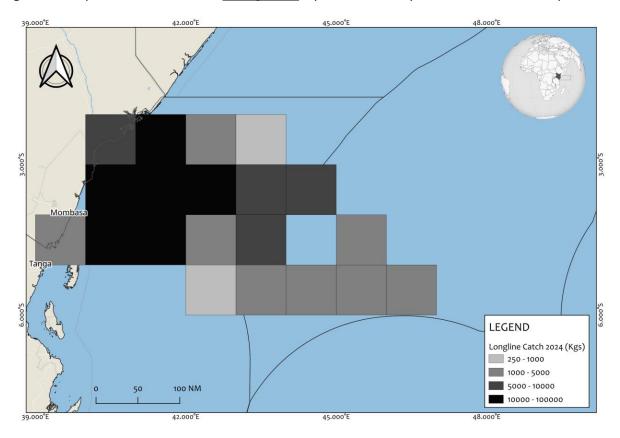
# 3. CATCH AND EFFORT (BY SPECIES AND FISHERY)

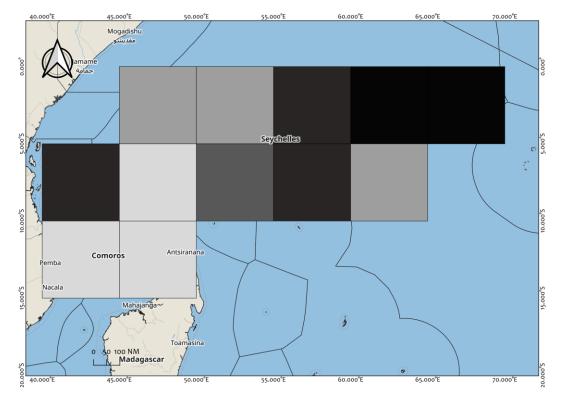
Artisanal Fishery; Table 2 summarises artisanal catch data for year 2020-2025. Landings of tuna from artisanal fishers were 6,778 tons in 2024 which is a 37% increase compared to 4,959 tons in 2023. The artisanal tuna fishery in Kenya is highly seasonal, heavily influenced by the seasonal monsoon cycle. Fishing effort in terms of number of fishers per trip ranges from 3 fishers per vessel for handlines to 23 fishers per vessel for ringnets (Okemwa et al., 2023). The most productive season when catch rates are high is during the calm north east monsoon from September to March when fishing conditions are optimal. A total of 8 gear types catches tuna and tuna like species with the highest proportion being caught by trolling lines (Figure x). Kawakawa is caught by the highest diversity of gear types. Maps of the spatial distribution of fishing effort and the fishing fleet dynamics is not possible due to lack of spatially disaggregated catch information.

Table 2:Annual catch and effort by fishery and primary species in the IOTC area of competence

| Species       | 2020  | 2021 | 2022 | 2023   | 2024  |
|---------------|-------|------|------|--------|-------|
| Istiophoridae | 123   | 263  | 388  | 293    | 254.1 |
| Scombridae    | 1953  | 1613 | 6160 | 4959   | 6,778 |
| Xiphiidae     | 137   | 571  | 0    | 0      | 0     |
| Carcharinidae | 757.7 | 12   | 989  | 1046.2 | 1681  |
| Dasyatidae    | 342   | 0    | 80   | 459.7  | 76.4  |
| Myliobatidae  | 109.8 | 0    | 11   | 146.0  | 50.9  |
| Sphyrnidae    | 487   | 722  | 875  | 867    | 1,018 |

The Kenya flagged industrial longline and purse seiner vessels fished within the EEZ and the high seas in the period of 2020- 2024 with the average number of hooks per vessel per day being 1290 in 2024. The vessel fished for a total of 444 days at sea. The catch and effort data as well as length frequency data was submitted IOTC. A total of 6,540.6 tons of fish was landed in 2024 with Yellowfin tuna (3,226 tons) Skipjack Tuna (2,787 tons), swordfish (298.6 tons) and sharks (43 tons) reported as the main species caught.


Table 3:Historical annual catch for the national fisheries by primary species, for the IOTC area of competence for the entire history of the fisheries.


| Species         | 2020      | 2021      | 2022    | 2023      | 2024    |
|-----------------|-----------|-----------|---------|-----------|---------|
| Yellow Fin Tuna | 131.9     | 12.2      | 18.7    | 129.1     | 3226.1  |
| Bigeye          | 68.7      | 17.6      | 11.6    | 35.3      | 298.6   |
| Sword fish      | 331.9     | 297.7     | 261     | 217.3     | 131.5   |
| Marlins         | 19.3      | 4.1       | 1.4     | 4.8       | 6.6     |
| Sailfish        | 5         | 1.1       | 1.01    | 1.6       | 0.7     |
| Sharks          | 92.8      | 96.5      | 80.7    | 52.3      | 43      |
| Skipjack Tuna   | 0         | 0         | 0       | 0         | 2,787   |
| Others          | 19.13     | 3.4       | 5.2     | 12.2      | 48.1    |
| Effort hooks    | 1,252,160 | 1,406,960 | 123,400 | 2,115,866 | 504,841 |
| Fishing Days    | 728       | 830       | 764     | 824       | 444     |



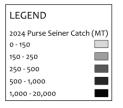
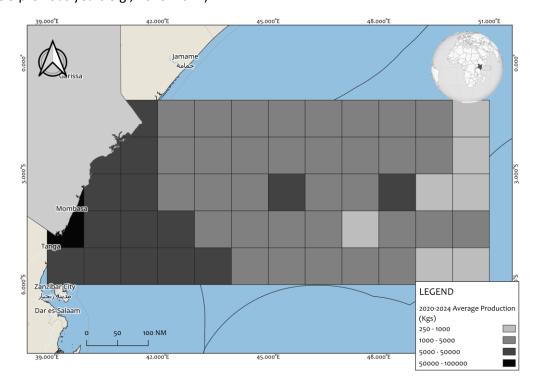
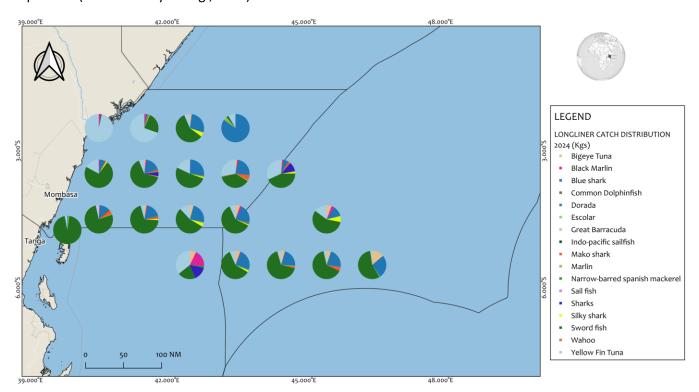



Figure 2a. Map of the distribution of fishing effort, by national fishery in the IOTC area of competence in 2024








**Figure 2b.** Map of the distribution of <u>fishing effort</u>, by national fishery in the IOTC area of competence (average of the 5 previous years e.g., 2020–2024).



**Figure 3a.** Map of distribution of fishing <u>catch</u>, by species for the national fisheries, in the IOTC area of competence (most recent year e.g., 2024).



**Figure 3b.** Map of distribution of fishing <u>catch</u>, by species for the national fisheries, in the IOTC area of competence (average of the 5 previous years e.g., 2020–2024).





# 4. RECREATIONAL FISHERY

Recreational fishing mainly involves sport or big game fishing undertaken mostly in Diani, Mombasa, Watamu, Malindi and Lamu. Fishing activities are defined by two fishing seasons namely the Yellowfin Tuna Season which runs mostly from August to October and Marlin Season from November to end of March. However, during the low season (April to July) the Billfish could be caught. In the year 2024, the Kenya Association of Sea Anglers Tournaments were held from 18th October to 29th December at Malindi, Diani, Mtwapa, Kilifi and Watamu. The Deep Water Sport fishing operates under tag and release policy for all Billfishes and Sharks. This is done by tagging the Billfish at the Boat, so that they can provide vital information for conservation and research purposes. Most of the operating sport fishing clubs and hotels are members to the International Game Fish Association, Kenya Association of Sea Anglers (KASA) and African Billfish Foundation. The fishing expeditions range from a single day to multiple days' deep sea fishing where a single day fishing trip can be between 4 and 8 hours. The main fishing techniques used depending on fishing and seasonal conditions include; trolling baits and/or lures for Sailfish, Tuna, Wahoo and Marlin; Power drifting with live bait for Marlin, shark and Giant Trevally; Baiting for Tiger shark; Bottom fishing with bait for Grouper and Snappers, and Jigging for Giant Trevallies, Yellowtails, Grouper and Snapper.

# **Status**

Sport fishing is faced with data deficiency challenges whereby more often than not no data has been reported, data may be misreported or catches are known to be underestimated. Limited data on sport fishing is mainly attributed to non-compliance due to the fact that fishers are mostly tourists and private individuals with irregular fishing schedules mostly associated with holiday season.

Detailed historical data on sport fishing in Kenya can be obtained from (Pepperell et al., 2017). However, the table below summarizes the information briefly.

Table 4: Active sport fishing establishments in Kenya during 2024

| Establ | ishments     | Main Ports          | Size of Fleet     | Number    | Seasons     | Target    |
|--------|--------------|---------------------|-------------------|-----------|-------------|-----------|
|        |              |                     | (Charter/Private) | of        |             | species   |
|        |              |                     |                   | fishing   |             | per       |
|        |              |                     |                   | Days per  |             | season    |
|        |              |                     |                   | Year      |             |           |
|        |              |                     |                   | (Charter) |             |           |
| i.     | Kenya        | -Watamu – Ocean     | -42 Charter boats | 75 - 180  | Monsoon     | August to |
|        | Association  | Sports; African     |                   | days per  | Season      | October:  |
|        | of Sea       | Billfish Foundation | -20 Private boats | Year      | (Mid-       | Yellowfin |
|        | Anglers      | (ABF).              |                   |           | March/Early | Tuna      |
|        | (KASA)       | -Malindi – Malindi  |                   |           | April to    |           |
| ii.    | Watamu       | Sea Fishing Club.   |                   |           | Mid-July    | November  |
|        | Sea Fishing  | -Shimoni (Pemba     |                   |           |             | to end of |
|        | Club         | Channel)            |                   |           |             | March:    |
| iii.   | Captain      | -Diani              |                   |           |             | Marlin    |
|        | Andy's       | -Kilifi             |                   |           |             | Season    |
|        | Fishing      | -Mtwapa             |                   |           |             |           |
|        | Supply       | -Mombasa            |                   |           |             |           |
| iv.    | Kingfisher   | -Lamu               |                   |           |             |           |
| v.     | Deep         |                     |                   |           |             |           |
|        | Water        |                     |                   |           |             |           |
|        | Sportfishing |                     |                   |           |             |           |
| vi.    | Mnarani      |                     |                   |           |             |           |
|        | Fishing club |                     |                   |           |             |           |





| vii. | Diani<br>Fishing club |  |  |  |
|------|-----------------------|--|--|--|
|      |                       |  |  |  |
|      |                       |  |  |  |
|      |                       |  |  |  |

Further, the status on sport fishing fleet indicates that Kilifi has the highest number of sport fishing vessels. However, data on catches is largely missing and all the available information is scanty and unpublished. This hinders effective management of the resource.

During the KASA Tournaments held in 2024, the inaugural South Coast Series had 20 boats participating in the Mike Durnford Fishing Tournament held in in Mombasa. Three striped marlin and one sailfish were caught while one sailfish along with wahoo and dorado were released. During the same year 795kg of Blue marlin were caught in Diani Beach in the month of December while 3 Black Marlins were released in Malindi in the month of September.

To address, some of the challenges faced in billfish conservation including data deficiency, the International Game Fish Association (IGFA) has undertaking a Billfish Research and Conservation Endowment campaign (<a href="https://igfa.org/igfa-billfish-endowment/">https://igfa.org/igfa-billfish-endowment/</a>). The campaign is dedicated to funding initiatives that directly or indirectly benefit billfish stocks by enhancing our knowledge on their biology and ecology, obtaining management measures that improve their abundance on national, regional and international levels, and improving recreational fisheries for these species.

# 5. ECOSYSTEM AND BYCATCH ISSUES

Kenya's tuna and tuna-like fisheries operate within a dynamic marine ecosystem that supports a wide range of ecologically related species and varied ecosystems within the high seas. In line with IOTC Resolutions and national conservation priorities, Kenya has made significant progress in mitigating the impacts of fishing activities on non-target species through adoption of various relevant IOTC resolutions, research and collaboration within national institutions charged with the mandates of research and fisheries management.

# 5.1 Sharks

Twenty species of sharks (n = 14) and rays (n = 6) are known to interact with the industrial pelagic longline fishery targeting tuna in Kenya (Table 5). Overall, in 2024, two species of sharks were caught and landed by the longliners namely, Blue sharks (*Prionace glauca*), and Shortfin mako, (*Isurus oxyrinchus*) (Table 6)

Table 5:Sharks and rays species commonly interacting with the longline fleet in Kenya

| Family         | Common Names               | Species name      |
|----------------|----------------------------|-------------------|
| Carcharhinidae | Scalloped hammerhead shark | Sphyrna lewini    |
| Carcharhinidae | Blue shark                 | Prionace glauca   |
| Mobulidae      | Shortfin devil ray         | Mobula kuhlii     |
| Lamnidae       | Porbeagle shark            | Lamna nasus       |
| Lamnidae       | Longfin mako               | Isurus paucus     |
| Lamnidae       | Shortfin Mako              | Isurus oxyrinchus |
| Carcharhinidae | Tiger shark                | Galeocerdo cuvier |



Indian Ocean Tuna Commission
Commission des Thons de l'Ocean Indien

IOTC-2025-SC28-NR12

| Carcharhinidae | Great white shark          | Carcharodon carcharias      |
|----------------|----------------------------|-----------------------------|
| Carcharhinidae | Silky shark                | Carcharhinus falciformis    |
| Carcharhinidae | Oceanic whitetip shark     | Carcharhinus longimanus     |
| Carcharhinidae | Silvertip shark            | Carcharhinus albimarginatus |
| Alopiidae      | Bigeye thresher            | Alopias superciliosus       |
| Carcharhinidae | Pelagic thresher           | Alopias pelagicus           |
| Mobulidae      | Giant oceanic manta ray    | Manta birostris             |
| Carcharhinidae | Smooth hammerhead shark    | Sphyrna zygaena             |
| Mobulidae      | Devil fish                 | Mobula mobular              |
| Carcharhinidae | Sandbar shark              | Carcharhinus plumbeus       |
| Dasyatidae     | Pelagic stingray           | Pteroplatytrygon violacea   |
| Rhinopteridae  | Shorttail cownose ray      | Rhinoptera jayakari         |
| Mobulidae      | Longhorned pygmy devil ray | Mobula eregoodoo            |

Table 6: Quantity of fish by species landed by industrial longlining (2023 and 2024). Rows in dark grey color highlight Blue shark and Mako shark landings for the same period

| Species        | Weight MT (2023) | Weight MT (2024) |
|----------------|------------------|------------------|
| Swordfish      | 217.3            | 131.5            |
| Yellowfin tuna | 129.1            | 33.1             |
| Blue shark     | 38.0             | 33.1             |
| Bigeye tuna    | 35.3             | 4.1              |
| Mako shark     | 9.8              | 3.9              |
| Other species  | 23.1             | 10.9             |
|                | 452.6            | 216.6            |

A vulnerability assessment carried out in 2024 (Kiilu, et al., 2024) showed that of the 13 shark species interacting with the industrial longlines, four are assessed to have high vulnerability to the longline fishery, including the Endangered IUCN listed Sandbar shark (*Carcharhinus plumbeus*), the Vulnerable Great white shark (*Carcharodon carcharias*) and Silky shark (*Carcharhinus falciformis*), and the Near Threatened Blue shark (*P. glauca*). The remaining nine species are assessed as being medium vulnerability to industrial longline fishery. None of the seventeen species is assessed to have low vulnerability to the fishery, indicating the high threat that longlines have to these species.

For the ray species, two are assessed to have high vulnerability to the industrial longlines, that is, the Giant oceanic manta ray (*Mobula birostris*) and Shorttail cownose ray (*Rhinoptera jayakari*) (Kiilu, et al., 2024). The other two species, Pelagic stingray (*Pteroplatytrygon violacea*) and Longhorned Pygmy Devil Ray (*Mobula eregoodoo*) are assessed to be of medium vulnerability. With regard to IUCN listing of the ray species, *P. violacea* is listed as of Least Concern (LC), while the remaining three are all listed as Endangered with extinction on a global scale and thereby aligning well with the medium to high vulnerability assessment.

During the assessment, it was apparent that the combination of low productivity and high susceptibility to pelagic longline gear places several species at high risk of overexploitation, most notably, the pelagic rays, the make sharks and the IOTC protected species, such as the oceanic whitetip, thresher sharks and silky sharks. The pelagic stingray, common thresher and blue shark appear to have the lowest risk in the longlines.

The spatial distribution of fishing vessels effort and the sharks species composition proportions during the study period are shown in Figure 4. There is a spatial overlap between vessel effort hotspots and the dominance of sharks particularly *Prionace glauca*, pointing to possible ecological preferences and fleet behavior. *P. glauca* and *Carcharhinus falciformis* sharks are known to aggregate in warm, productive offshore waters (Queiroz et al., 2016; Wambiji et al., 2022), which matches the southern EEZ hotspots in 2022–2024. The vessel effort hotspots are also concentrated in offshore southern EEZ zones, suggesting targeted effort or migratory aggregations of pelagic sharks like *Prionace glauca* and *Carcharhinus falciformis*.

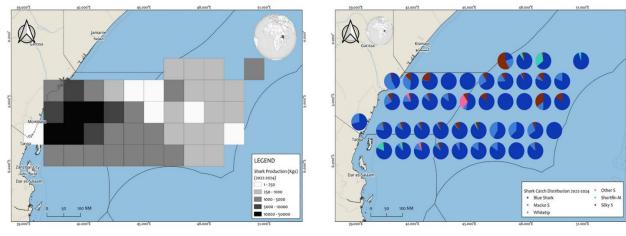



Figure 4: Spatial distribution of longline fishing vessel effort (left panel) and species composition of shark catches (right panel) in Kenya's Exclusive Economic Zone (EEZ) from 2022–2024.

Grid cells (fishing effort) near Somalia and Tanzania common borders show moderate production probably due to border fishing integrity but highlight the vulnerability of shared fish stocks and migratory species and therefore the need for regional cooperation and the full implementation of the IOTC Conservation and Management Measures by all parties, and the need to prioritize enhanced monitoring (e.g., observer coverage, port inspections).

# 5.1.1. NPOA sharks

Kenya has maintained its commitment to shark conservation through the implementation of the National Plan of Action for Sharks (NPOA-Sharks), which is currently is awaiting national validation. This will align with emerging regional and global frameworks.

# 5.1.2. Blue shark

Observer data and port sampling continues to indicate that blue shark (*Prionace glauca*) remains the most frequently encountered shark species in offshore longline operations. In accordance with Resolution 18/02, Kenya has initiated domestic monitoring protocols for blue shark catches, including logbook verification and observer-based length-frequency sampling.

The 2023 and 2024 catch composition shows that Blue sharks significantly contributed to the overall longline landings (>15%), with swordfish (*Xiphias qladius*) remaining as the dominant catch (>60%).

# 5.2 Seabirds

The National plan of action for sea bird was validated by the stakeholders in October 2025 and is now awaiting endorsement. During the year 2024 no seabirds were recorded by the observers as the flagged vessels did not fish within the sea bird area.





# 5.3 Marine Turtles

The National plan of action for marine turtles was validated by the stakeholders in October 2025 and is now awaiting endorsement. During the year 2024, the observers did not encounter any sea turtle during the fishing expedition.

# 5.4 Other ecologically related species (e.g., cetaceans, mobulid rays, whale sharks)

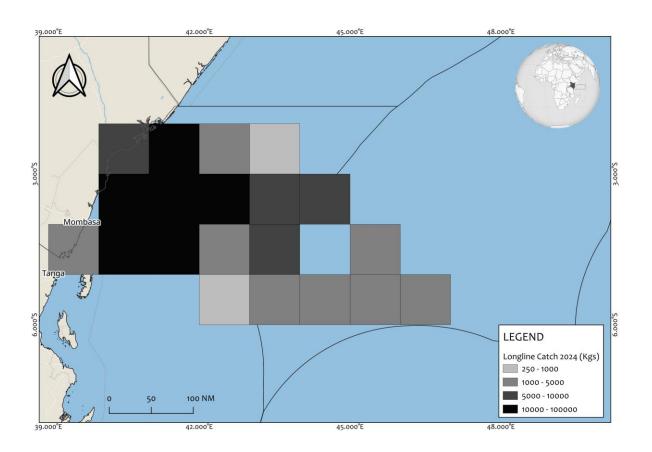
Interactions with cetaceans, mobulid rays, and whale sharks are rare, and are stringently monitored through observer logs and port sampling. In accordance with Resolution 19/03, Kenya has planned to develop a targeted sampling program for mobulid rays focusing on artisanal fisheries across the coastal counties.

### 6. NATIONAL DATA COLLECTION AND PROCESSING SYSTEMS

# 6.1. Logsheet data collection and verification

Data reporting is a requirement according to the Fisheries management and Development Act Cap 378 section 75 to 79. Kenya initiated the implementation of artisanal fishers' data log sheets since 2020 and monitoring through the Beach Management Units at the landing site level for both daily catch fisher data and catch assessment survey, which is conducted 10 days a month. In 2022, a mobile application was launched to support data collection and submission onto a centralised database.

A recreational fisheries log sheet was developed and introduced to the fishing clubs. The data collection and reporting forms have been published and are fully integrated into the Fisheries Information Management system (FIMs) currently under development. Further capacity building on data collection protocols, manuals and species identification has been conducted and refresher trainings continue. As a license condition all fishing vessels are required to fill data in the vessel logbook and submit the logbooks for inspection when they call to port. The logbooks are verified on routine basis during inspection, quarterly and annually for both regional and national reporting to the Government for all artisanal and industrial fishing.


Table 7: Validation methods for different fishery types

| Fishery Type | Routine Schedule                       | Validation                                                                                   |
|--------------|----------------------------------------|----------------------------------------------------------------------------------------------|
| Artisanal    | -Daily/Routine monitoring              | -Data collection mentors/BMU clerks validate daily                                           |
| Longline     | -Weekly and during end of fishing Trip | -Validate through observer data and during port inspections and/or through the AREP document |
| Purse Seine  | -Weekly and during end of fishing Trip | -Validate through observer data and during port inspections and/or through the AREP document |



# 6.2. Observer scheme

Currently, the local Fleet consists of 6 Longliners and two purse seiners with 100% observer coverage. The Fisheries Observer program has a total of 18 observers composed of three (3) Observer TOTs, four (4) fully trained observers including Standards of training, Certification and Watchkeeping (STCW) training and eleven (11) fully trained observers who are yet to undergo the STCW training. All the observers are trained to the IOTC observer training standards and have IOTC registration numbers. The observers are deployed on board the vessels for periods ranging from 1-4 months depending on the fishery (including date commenced and status; number of observer, include percentage of coverage by fishery.



# 6.3. Port sampling programme

There was no port sampling carried out during the year

Table 4. Number of vessel trips or vessels active monitored, by species and fishery] [Mandatory]

| Vessel Type | Active | Number of trips monitored |
|-------------|--------|---------------------------|
| Longline    | 3      | 6                         |
| Purse seine | 2      | 2                         |

**Table 5.** Number of fish measured, by species and fishery

|          |                                     | Count of species |  |
|----------|-------------------------------------|------------------|--|
| Fishery  | Species                             | sampled          |  |
| Longline | Acanthocybium solandri              | 3                |  |
| Longline | Carcharhinus falciformis            | 17               |  |
| Longline | ongline   Carcharhinus longimanus 2 |                  |  |
| Longline | Coryphaena equiselis                | 3                |  |

|          |                            | _     |
|----------|----------------------------|-------|
| Longline | Etelis carbunculus         | 1     |
| Longline | Etelis coruscans           | 1     |
| Longline | Euthynnus affinis          | 1     |
| Longline | Galeocerdo cuvier          | 2     |
| Longline | Istiophorus platypterus    | 10    |
| Longline | Isurus oxyrinchus          | 13    |
| Longline | Isurus paucus              | 3     |
| Longline | Katsuwonus pelamis         | 12    |
| Longline | Lepidocybium flavobrunneum | 1     |
| Longline | Coryphaena hippurus        | 85    |
| Longline | Makaira indica             | 8     |
| Longline | Makaira nigricans          | 5     |
| Longline | Prionace glauca            | 70    |
| Longline | Ruvettus pretiosus         | 6     |
| Longline | Scomberomorus commerson    | 21    |
| Longline | Sphyraena barracuda        | 66    |
| Longline | Sphyraena genie            | 4     |
| Longline | Tetrapturus albidus        | 1     |
| Longline | Tetrapturus audax          | 49    |
| Longline | Thunnus obesus             | 24    |
| Longline | Uraspis secunda            | 1     |
| Longline | Thunnus albacares          | 1,592 |
| Longline | Xiphias gladius            | 1,179 |
| Total    |                            | 3,180 |

# 6.4. Actions taken to monitor catches & manage fisheries for Striped Marlin, Black Marlin, Blue Marlin and Indo-pacific Sailfish

KMFRI conducts a catch assessment survey program at selected landing sites where billfish are recorded when encountered. In addition, there is a scientific observer program and logbooks submitted from the commercial fisheries especially the longlines, where the billfish species records are monitored.

# 6.5. Gillnet observer coverage and monitoring

The land-based observer monitoring of the gillnet fishery is conducted through field sampling for both daily/routine data collection and catch assessment survey at the landing site unit, whereby, stratified sampling of a total of 33 landing sites are involved. The landing sites are selected as per proportions of boat-gear combination and patterns of landings as well as the species composition landed. Therefore, the gillnet fishery is associated with three gear types that capture tuna and tuna-like species: monofilament gillnets, drift gillnets and set gillnets. Monofilament gillnets mainly catch kawakawa and mackerels. Drift gillnets mainly catch skipjack, bigeye and some kawakawa while set gillnets mainly catch kawakawa, sailfish and frigate tuna. Kenya does not have industrial gillnet fishery for monitoring.

Table 8: Craft-Gear Combination and effort monitored as per Frame Survey 2024

| Craft-Gear     | Craft-Gear (n) | Crew (n) |
|----------------|----------------|----------|
| Dau-Gillnet    | 1057           | 5036     |
| Mashua-Gillnet | 858            | 4505     |

Indian Ocean Tuna Commission Commission des Thons de l'Ocean Indien

IOTC-2025-SC28-NR12

| Dugout-Gillnet     | 528 | 1223 |
|--------------------|-----|------|
| Footfisher-Gillnet | 442 | 656  |
| Hori-Gillnet       | 283 | 886  |
| Mtori-Gillnet      | 33  | 248  |
| Ngalawa-Gillnet    | 2   | 4    |

#### 6.6 Sampling plans for mobulid rays

The monitoring and sampling of mobulid rays is conducted by both landbased (at the landing site) and at-sea observers onboard longline or purse seine fishing vessels. The sampling plan implemented is the observer sampling protocol, which provides highest priority to protected, endangered and threatened species. The sampling procedure ensures that at-sea observers must record details of each incidental catch of mobulid rays and record biological parameters as well as the status/fate of the species upon catch and release. This is vital in monitoring best handling practices and survival rates for the species. The FMDA Cap 378 requires that PET species are reported entirely. Whereas, landbased sampling implements the catch assessment survey protocols and manual. The land-based sampling requires that data collectors capture data from fishers on mobulid rays that may interact with the fishing gear besides those species that have been landed.

#### 6.7 **Electronic Monitoring Standards**

The country has been piloting an electronic monitoring system on four vessels since August 2023 and will complete the exercise by 2026. Upon completion, the country will report to the IOTC on the progress and eventual implementation of the EMS.

#### 7. **N**ATIONAL RESEARCH PROGRAMS

During the year 2024, there was no targeted monitoring of small scale tuna fisheries for research.

# 7.1. National research programs on blue shark

There is no targeted program on blues shark research in Kenya. However, the observer program reports the catches of blue sharks from industrial longline fishery.

# 7.2. National research programs on Striped Marlin, Black Marlin, Blue Marlin and Indo-pacific Sailfish

There is no targeted program on marlins and sailfish research in Kenya. However, the observer program reports the catches of the marlins and sailfish from industrial longline fishery.

# 7.3. National research programs on sharks

There is no targeted program on shark research in Kenya. However, the observer program reports the catches of sharks from industrial longline fishery.

# 7.4. National research programs on oceanic whitetip sharks

There is no targeted program on oceanic white tip shark research in Kenya.

# 7.5. National research programs on marine turtles

There is no targeted program on oceanic white tip shark research in Kenya.

# 7.6. National research programs on thresher sharks

There is no targeted program on thresher shark research in Kenya.





# 8. IMPLEMENTATION OF SCIENTIFIC COMMITTEE RECOMMENDATIONS AND RESOLUTIONS OF THE IOTC RELEVANT TO THE SC.

Table 9. Scientific requirements contained in Resolutions of the Commission, adopted between 2012 and 2024.

| Res.<br>No. | Resolution                                                                                                                                                      | Scientific requirement | CPC progress                                                                                                                                                                                                                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12/0<br>4   | On the conservation of marine turtles                                                                                                                           | Paragraphs 3, 4, 6–10  | Conservation measures gazetted                                                                                                                                                                                                                        |
| 12/0<br>9   | On the conservation of thresher sharks (family alopiidae) caught in association with fisheries in the IOTC area of competence                                   | Paragraphs 4–8         | Conservation measures gazetted                                                                                                                                                                                                                        |
| 13/0<br>4   | On the conservation of cetaceans                                                                                                                                | Paragraphs 7–9         | Conservation measures gazetted                                                                                                                                                                                                                        |
| 13/0<br>5   | On the conservation of whale sharks (Rhincodon typus)                                                                                                           | Paragraphs 7–9         | Conservation measures gazetted                                                                                                                                                                                                                        |
| 13/0<br>6   | On a scientific and management framework on the conservation of shark species caught in association with IOTC managed fisheries                                 | Paragraph 5–6          | Research taking place in the Kenyan EEZ                                                                                                                                                                                                               |
| 15/0<br>1   | On the recording of catch and effort by fishing vessels in the IOTC area of competence                                                                          | Paragraphs 1–10        | Catch assessment survey to monitor catch and effort in artisanal fishery                                                                                                                                                                              |
| 15/0<br>2   | Mandatory statistical reporting requirements for IOTC Contracting Parties and Cooperating Non-Contracting Parties (CPCs)                                        | Paragraphs 1–7         | The longline data collected as per the requirement and submitted to the IOTC by 30 <sup>th</sup> June. The coastal fisheries length frequency data has also been submitted by 30th June. The nominal catch data and effort by gear has also submitted |
| 17/0<br>5   | On the conservation of sharks caught in association with fisheries managed by IOTC                                                                              | Paragraphs 6, 9, 11    | Re. Para. 6: Data on sharks reported according the 15/02<br>Re. Para. 9: Kenya has finalised development of the NPOA<br>sharks.                                                                                                                       |
| 18/0<br>2   | On management measures for the conservation of blue shark caught in association with IOTC fisheries                                                             | Paragraphs 2-5         | Re. Para. 2 – 4: Data on Blue sharks has been collected and reported to the IOTC according to Res. 15/02. Re. Para. 5: Kenya research institutions have been working on the blue sharks                                                               |
| 18/0<br>5   | On management measures for the conservation of the Billfishes: Striped marlin, black marlin, blue marlin and Indo-Pacific sailfish                              | Paragraphs 7 – 11      | Kenya has been monitoring the billfishes and attending the Working Party of Billfish where the country has been reporting the results of the monitoring                                                                                               |
| 18/0<br>7   | On measures applicable in case of non-<br>fulfilment of reporting obligations in the IOTC                                                                       | Paragraphs 1, 4        | Re. Para 1: Kenya reported in the Implementation Report actions taken to implement reporting obligations. Re. Para 4; Catch reported in 30th June using the IOTC template                                                                             |
| 19/0<br>1   | On an Interim Plan for Rebuilding the Indian Ocean Yellowfin Tuna Stock in the IOTC Area of Competence (If not provided under Res 21/01 below)                  | Paragraph 22           | Re. Para 22. Kenyan catches are below the required threshold                                                                                                                                                                                          |
| 19/0<br>3   | On the Conservation of Mobulid Rays Caught in Association with Fisheries in the IOTC Area of Competence                                                         | Paragraph 11           | Have developed measures to implement Resolutions 13/05 whale sharks. Awaiting gazettement                                                                                                                                                             |
| 21/0<br>1   | On an Interim Plan for Rebuilding the Indian<br>Ocean Yellowfin Tuna Stock in the IOTC Area<br>of Competence ( <i>If not provided under Res</i><br>19/01 above) | Paragraph 23           | Re. Para 22. Kenyan catches are below the required threshold                                                                                                                                                                                          |
| 23/0<br>7   | On reducing the incidental bycatch of seabirds in longline fisheries.                                                                                           | Paragraphs 3–7         | Kenyan vessels did not operate in the seabird zones                                                                                                                                                                                                   |





| Res.<br>No. | Resolution                                            | Scientific requirement | CPC progress                                                                  |
|-------------|-------------------------------------------------------|------------------------|-------------------------------------------------------------------------------|
| 23/0<br>8   | On electronic monitoring standards for IOTC fisheries | Paragraphs 3c          | Kenya is in the process of undertaking trials with the EMS                    |
| 24/0<br>4   | On a regional observer scheme                         | Paragraph 12           | National observer program - 21 observers accredited observers already trained |

# 9. LITERATURE CITED

Benedict Kiilu, Boaz Kaunda-Arara, Remmy Oddenyo, Gladys Okemwa, Elizabeth Mueni, Peter Musembi, Bernerd Fulanda, Lameck Menya-Otieno, Maurine Okeri, Grace Nduku, Jonathan Musembei, Mohamed Omar, Edward Kimani (2024). Vulnerability assessment of elasmobranch species to fisheries in coastal Kenya: Implications for conservation and management policies, Marine Policy, Volume 171, 2025, 106459, ISSN 0308-597X, https://doi.org/10.1016/j.marpol.2024.106459.

Nina Wambiji, Nelly Isigi Kadagi, Bernadine I. Everett, Andrew J. Temple, Jeremy J. Kiszka, Edward Kimani and Per Berggren (2022). Integrating long-term citizen science data and contemporary artisanal fishery survey data to investigate recreational and small-scale shark fisheries in Kenya. https://doi.org/10.1002/aqc.3829

Queiroz N., Humphries N.E., Mucientes G., Hammerschlag N., Lima F.P., Scales K.L., Miller P.I., Sousa L.L., Seabra R. and Sims D.W. (2016). Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots, Proc. Natl. Acad. Sci. U.S.A. 113 (6) 1582-1587, https://doi.org/10.1073/pnas.1510090113 (2016).