How Observation Coverage Shapes Bycatch Metrics in the Tropical Tuna Purse Seine Fishery

Giancarlo M. Correa¹, Jon Ruiz¹, María Lourdes Ramos², Arnaitz Mugerza¹, Miguel Herrera³, Nekane Alzorriz⁴

Abstract

Investigating the effects of fishing on non-targeted (bycatch) species is crucial for conservation and management matters. On-board observers information provides a valuable source for estimating bycatch; however, due to several factors such as their high costs and logistic challenges, observer programmes usually cover a small percentage of the fishery. In order to estimate bycatch for the unobserved fishing activity, a ratio estimator is commonly used, which assumes a linear relationship between the ratio of bycatch and total target catch or effort. In this study, we implemented a simulation experiment to evaluate the performance of the ratio and modelbased estimator under different sampling coverage scenarios. We used the Spanish tuna purse seine fishery operating in the Atlantic Ocean as a case study. Our results suggest that the ratio estimator may produce by catch estimates with large negative bias (i.e., underestimation) when the sampling coverage is lower than 20%, even for common taxa. Conversely, the model-based estimator produced unbiased estimates even under low sampling coverage scenarios. However, the model-based estimator may be only suitable for taxa with intermediate and high prevalence in the bycatch composition. This study presents a simulation framework that may be applied to other moderately data-rich fisheries and supports the implementation of observer programmes from which appropriate estimates of bycatch for species of interest to the Commission can be obtained.

Keywords

bycatch, sampling coverage, spatiotemporal models, purse seine fishery, tunas

¹AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Bizkaia, Spain

²Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO-CSIC), C. Farola del Mar 22, 38180 San Andrés, Santa Cruz de Tenerife, Spain

³Organización Productores Asociados Grandes Atuneros Congeladores (OPAGAC-AGAC), Cl. de Ayala, 54, 28001 Salamanca, Madrid, Spain

⁴Asociación Nacional de Armadores de Buques Atuneros Congeladores (ANABAC), Txibitxiaga Kalea, 24, 48370 Bermeo, Bizkaia, Spain

1 Introduction

Purse seine fishing is a technique that targets and catch entire fish schools on the surface by encircling them with a fishing net called "seine". In the tropical oceans, purse seine is employed to target tropical tunas such as skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (Thunnus obesus). In addition to target species, tropical tuna fisheries catch nontarget species collectively referred to as bycatch, which can be released, discarded at sea, or retained (e.g., due to regulatory requirements, to be sold on local markets, or consumed on board) (Hall et al., 2017). The ratio of bycatch to target tuna catch in the purse seine fleet is considered relatively low in comparison to other fishing gears, such as longlines, that can result in substantial levels of bycatch (Amandè et al., 2010; Liu et al., 2008; Peatman et al., 2023). However, the impact on pelagic populations and ecosystems may be important, especially for some vulnerable long-lived species with low reproductive rates (Dulvy et al., 2014). Therefore, it is essential to conduct studies on bycatch rates and their variability over space and time; however, these are often complicated by a lack of bycatch data recorded in fisheries logbooks, difficulties in taxonomic identification of bycatch species, and other factors.

One of the most reliable sources of information to quantify the amount of bycatch is the use of on-board trained scientific data collectors (a.k.a. observers). When designing a scientific observer sampling program, the required level of coverage will depend on the objectives of the observer program, which might vary from estimating by eatch of protected species, to improving by catch and catch data for assessment of fish populations, or collecting biological data. In some cases, it may be necessary to have an exact count of the total incidental mortality of bycatch species, especially threatened or endangered species, so a 100% observer coverage may be needed. However, in most cases, a level of 100% observer coverage is not attainable, then the coverage level chosen must ensure that the total bycatch estimate is sufficiently accurate and precise. Then, assuming these observed units are representative of unobserved activity, design-based (e.g., ratio estimators, Cochran (1977)) or model-based (e.g., generalized linear models, Coelho et al. (2020)) approaches can be used to expand the observed by catch to the remainder of the fishery. One of the main features of ratio estimators is that they do not incorporate a formal underlying statistical model (i.e., they are free of any assumptions regarding data structure), and therefore are broadly used in fisheries worldwide, including tuna purse seine fisheries (Amandè et al., 2012; Amandè et al., 2010; Hall and Roman, 2013).

Despite their widespread use, there are a number of potential issues in applying ratio estimators to estimate bycatch. First, using observed catches of target species or any other measure of effort implicitly makes an assumption about a linear relationship between non-target and target catches (Amandè et al., 2012; Fonteneau and Richard, 2003). This may be unrealistic since the distribution of catches of non-target species is often zero-inflated or has a small number of observations containing extremely high values (Ortiz and Arocha, 2004), and the assumed linear relationship may not hold (Stock et al., 2019). Second, the boundaries of strata used in a ratio estimator can be somewhat arbitrary whenever poststratified boundaries are used. For instance, Amandè et al. (2010) defined strata in the Atlantic Ocean based on ecological features for estimating bycatch of the tuna EU purse seine fishery, which may not be adequate for all bycatch species. Third, for rare-event bycatch species, it is common for zero bycatch events to be observed in a given year (ratio estimator is equal to 0), and when bycatch events are observed, the ratio estimator often delivers implausibly high estimates. Lastly, a final and related point is that within each stratum, bycatch rates are assumed to be uniform, while in reality they may vary by season or environmental conditions.

Spatiotemporal models are increasingly adopted in multiple fisheries applications (Ducharme-Barth et al., 2022; Grüss et al., 2023; Thorson, 2019), including undertaking bycatch analyses (e.g., Yan et al. (2022)). These models can provide detailed predictions for any location based on spatial autocorrelation in the observations. However, they are also complicated and require more data to generate robust predictions, which makes them unsuitable for data-poor fisheries. In the majority of cases, spatially explicit model-based estimators have increased precision relative to simpler estimators that assign observations to strata (Thorson et al., 2015; Thorson and Ward, 2013). There are a number of additional advantages of spatial models, including the ability to better quantify shifts in distribution (Thorson et al., 2016) and improved ability to identify fine-scale hotspots of high bycatch (Cosandey-Godin et al., 2015). For tuna fisheries, spatiotemporal models like generalized additive models (GAMs) have recently been used to obtain annual estimates of the most important bycatch species (Dumont et al., 2024).

In this study, we implemented a simulation experiment to evaluate the impacts of different levels of sampling coverage on the annual bycatch estimates derived from a ratio and model-based estimators. Our hypothesis is that model-based estimators may provide more accurate bycatch estimates under low sampling coverage scenarios. We used data from the Spanish purse seine tuna fishery operating in the Atlantic Ocean as a case study. We performed our analyses independently for each fishing mode: sets on free schools (FSC) or floating objects (FOB), since they have different bycatch composition and magnitude (Peatman et al., 2023). Our simulation experiment may be extended to other fisheries with fine-scale bycatch information and support the implementation of sampling programmes across tuna RFMOs.

2 Methods

In the following sections, we describe the data used in our analyses, the ratio and model-based estimators, and the simulation framework. The analyses described below were performed by fishing mode independently.

2.1 Data

Our analyses use data collected by scientific observers on board tropical tuna purse seine vessels operating in the Atlantic Ocean between 2015 and 2023 (observers data). This dataset includes records from both the Spanish scientific monitoring program (EU Data Collection Framework) and the industry-funded Best Practices program, covering Spanish-owned vessels under various flags, from shipowners member of the tuna purse seine associations ANABAC and OPAGAC-AGAC.

Regardless of the monitoring program, observers follow a standardized protocol. They record detailed information for each fishing set, including estimates of bycatch and weight categories for target tuna catch, which are then used to estimate total target catch. For larger bycatch species such as elasmobranchs and billfishes, all individuals are counted. For smaller, more abundant species, estimates are often based on visual assessments and estimated in weight. In addition to counts, observers also conduct length sampling to convert numbers into biomass using species-specific length-weight relationships when weight estimates are not available. Taxa are identified to the species level whenever possible, although in rare cases, only higher taxonomic groups (e.g., family) are recorded. Our analyses use bycatch data in weight since it was available for all taxa in the dataset.

The effort data used in our analyses pertain exclusively to the Spanish fleet for the same period and fishing ground. This information is sourced from the logbooks completed by the captains, who are required to record details of each fishing trip, including the location, fishing mode, and date of every fishing operation. Figure S1 and Figure S2 display the number of sets by fishing mode in the observers and effort data.

This study does not present results for all taxa found in the purse seine fleet's bycatch. We removed tuna-like species from our analyses. Then, a targeted selection of species or groups of species was made to represent three categories: the most abundant taxa, the rare or less prevalent ones, and those considered vulnerable or of special interest. The list of these taxa differed by fishing mode and is presented in Table 1 and Figure 1. Some taxa are included at the species level, while others group multiple species within the same family. In these cases, Table 1 reports the predominant species, if present.

2.2 Model fitting

We use the sdmTMB geostatistical spatiotemporal model (Anderson et al., 2024) to fit taxon-specific bycatch per set (in weight) using the observers data. Geostatistical spatiotemporal models have become widely used in fisheries over the last decade (Anderson et al., 2024; Thorson, 2019), and are used when georeferenced data (e.g., each has a corresponding latitude and longitude) with an underlying spatial process is available. sdmTMB is written in Template Model Builder (TMB, Kristensen et al. (2016)) and R (Team, 2025) for a friendly user interface, and can be viewed as an extension of generalized linear mixed models (GLMMs), but with additional spatial and spatiotemporal components, which are approximated as random effects.

Mathematically, the model structure can be expressed as:

$$u_{s=1:S,t} = f^{-1}(Xb + \omega + \epsilon_t)$$

where u represents the by catch predictions at locations s=1:S for a given year $t, f^{-1}()$ is the inverse link function, X represents the design matrix of fixed effects, b is the vector of estimated parameters, ω are the estimated latent spatial effects, and ϵ_t represents year-to-year latent spatial effects. ω represents a spatial intercept that is constant with time, while ϵ_t represents spatial deviations over time, and both are modelled as Gaussian random fields (GRFs):

$$\omega \sim MVN(0, \Sigma_{\omega})$$

$$\epsilon \sim MVN(0, \Sigma_{\epsilon})$$

where MVN is the multivariate normal distribution, and the covariance matrix Σ is modelled with Matérn covariance (Lindgren et al., 2011; Matérn, 1986), which defines the rate at which spatial covariance decays with distance. sdmTMB approximates the GRF by relying on the Stochastic Partial Differential Equation (SPDE) approach using the Integrated Nested Laplace Approximation in R-INLA to reduce computational costs (Rue et al., 2009). The first step when using the SPDE approach is to construct the mesh, which, in our case, was composed of triangles covering the studied area with a minimum allowed triangle edge length (cutoff) of 1.5 degrees (Figure S3 and Figure S4). The mesh discretizes a continuous spatial or spatiotemporal

phenomenon into a set of discrete points (i.e., triangles), which allows for the computation of spatial autocorrelation and enables the model to estimate and interpolate the continuous field.

For some taxa, especially the less recurrent ones, the inclusion of both the spatial and spatiotemporal terms may cause convergence issues. For those cases, we reran the model only including the spatial term in order to simplify the model structure.

We used the Tweedie distribution $Tweedie(\mu, \phi^2, p)$, where 1 , and a log link function (Tweedie, 1984). The Tweedie model is an extension of the compound Poisson model derived from the stochastic process where the weight of the response variable (e.g., catch data) has a gamma distribution and has the advantage of handling the zero-catch data in a unified way (Shono, 2008). For fixed effects, we incorporated the year and quarter effects as factors, and the target tuna catch (the sum of skipjack, yellowfin, and bigeye tunas) as a continuous covariate.

For all fitted models, we checked that the maximum gradient was smaller than 1e-03, the Hessian was invertible, and standard errors were estimated for all fixed effects and did not look unreasonably large ("sanity checks"). We then used the *DHARMa* R package (Hartig, 2022) to evaluate the model residuals. Standard raw residuals are not always appropriate when using generalized linear models, and other types of residuals are commonly used instead. *DHARMa* uses a simulation-based approach to create readily interpretable scaled (quantile) residuals for generalized linear mixed models. We analyzed two plots produced by *DHARMa*: 1) the QQ plot residuals, which detect overall deviations from the expected distribution, and 2) the residual vs. predicted plot, which detects trends in residuals along model predictions and simulation outliers.

2.3 Simulation

One of the advantages of using models like sdmTMB is that we can simulate new observations using a new dataset ("prediction dataset") containing the same covariates used when fitting the model. In our case, we used the effort data as the prediction dataset and simulated new observations (i.e., bycatch in weight for every fishing set in the effort data) using the fitted models for each taxa in Section 2.2. These simulated observations keep the statistical properties of the original bycatch data. We refer to the effort data with simulated bycatch observations as the $simulated\ data$.

We then took a subset of the simulated data with different sampling coverage scenarios: 5%, 10%, 20%, 30%, 40%, 50%, 70%, and 90%. To approximate real-case situations, we performed this subsetting stratified by year, and then randomly selected the fishing trips observed under that sampling coverage scenario. The obtained *sampled data* represent the observers data that would have been obtained from an observers program with the specified sampling coverage. Figure S5 and Figure S6 show how the presence of a common and rare taxa, respectively, in the sampled data is affected by the sampling coverage.

Then, using the sampled data, we estimated the annual bycatch using two approaches: ratio and model-based estimator, which are described below.

2.3.1 Ratio estimator

We used the spatially-stratified bycatch-over-target catch ratio. For a given taxon, the ratio $(R_{u,a})$ was calculated for every defined $5 \times 5^{\circ}$ grid a in the study area and year y as follows:

$$R_{y,a} = \frac{B_{y,a}}{T_{y,a}}$$

where $B_{y,a}$ is the total by catch and $T_{y,a}$ the total tropical tuna catch obtained from the sampled data. In a few cases, there could happen that $T_{y,a}=0$ (e.g., sets with target catch equal to zero or "null sets"), so $R_{y,a}$ could not be calculated. Therefore, exclusively for those cases, we assumed that $R_{y,a}=0$.

Then, assuming a linear relationship between bycatch and target catch, we calculated the total bycatch:

$$\hat{B}_{u,a} = R_{u,a} T_{u,a}^*$$

where $T_{y,a}^*$ is the total target catch in grid a and year y obtained from the effort data. Especially for low sampling coverage scenarios, it is expected to have missing $R_{y,a}$ values for some grids due to the sampled data do not cover all the grids in the study area. Therefore, for those grids only, $R_{y,a}$ was calculated as B_y/T_y , where B_y and T_y are the total bycatch and target catch in the whole area, respectively, derived from the information in the sampled data.

Finally, the annual by catch estimate is calculated: $\hat{B}_y = \sum_a \hat{B}_{y,a}$.

2.3.2 Model-based estimator

We followed the same modelling framework described in Section 2.2. Once the fitted model is obtained, we then made predictions using the effort data, which generated predicted by catch observations for every fishing set in that dataset. Then, we summed the predicted by catch values per year to estimate the annual by catch \hat{B}_{y} .

Especially when the sampling coverage is low, we could find cases when a given taxon is not detected in the sampled data (i.e., by catch equal to zero for all fishing sets). In those cases, the model-based estimator was not run, and we assumed $\hat{B}_y=0$ for all years. Another special case is when the model did not pass the sanity checks (see Section 2.2). In those cases, we were not able to produce model-based by catch estimates \hat{B}_y and reported the rate of model failure.

2.4 Performance

The procedure explained in Section 2.3 was repeated 100 times ("replicates") with different seeds to produce the simulated data, therefore we obtained 100 annual by catch estimates by the ratio and model-based estimators for each tax a q. We calculated the relative error for every replicate i: $RE_{i,q,y} = (\hat{B}_{i,q,y} - B_{i,q,y})/B_{i,q,y}$, where $B_{i,q,y}$ represents the true annual by catch obtained from the simulated data. The width of the 95% quantile of RE over replicates was used as a measure of precision and the median as a proxy of bias, and these metrics were used to compare the performance of the ratio and model-based estimators.

3 Results

3.1 Fishing object sets

For common taxa, the model-based estimator converged for all replicates and included both the spatial ω and spatiotemporal ϵ terms when the sampling coverage was larger than 20% (Figure 2). However, when the sampling coverage was lower than 20%, the model-based estimator still converged but had a simpler structure by only including the spatial term in most replicates. Likewise, for taxa with special interest, the model-based estimator still converged for intermediate and large sampling coverage, although we observed that the model failed to pass the sanity check for some taxa (e.g., *Makaira nigricans* or Mobulidae) when the sampling coverage was lower than 10% (Figure 2). For rare taxa, the model-based estimator usually failed when the sampling coverage was low and needed a coverage larger than 50% to provide estimates. The model-based estimator was not even run for Alopiidae under low sampling coverage scenarios due to missing observations for this taxon (Figure 2).

Regarding the performance of the assessed estimators, we noticed that the model-based estimator outperformed the ratio estimator for most taxa, showing smaller bias and better precision, particularly for low sampling coverage scenarios (Figure 3). The ratio estimator started to display negative bias and worse precision for most taxa when the sampling coverage was lower than 30%, but performed quite well for a sampling coverage larger than 40%, especially for the most common taxa. We observed the worst precision for rare taxa for both estimators, even under large sampling coverage. For very rare taxa like Alopiidae, the large negative bias (-100%) was likely caused by the omission of this taxon in the sample data when the sampling coverage was low. When analyzing the bias and precision over the years, we found that they did not largely vary, always observing a better performance of the model-based estimator under low sampling coverage (Figure S7, Figure S8 and Figure S9).

3.2 Free-school sets

For common taxa, the model-based estimator converged for most replicates when the sampling coverage was larger than 10%, although it was only able to include the spatial term ω in most cases (Figure 4). However, when the sampling coverage was equal to or lower than 10%, the model-based estimator failed to converge in most replicates. For taxa with special interest, the model-based estimator still converged for intermediate and large sampling coverage, usually larger than 30%, although we observed that the model generally failed for some taxa, like *Makaira nigricans*, even when the sampling coverage was large (Figure 4). For rare taxa like Lamnidae, the model-based estimator generally failed to converge even for large sampling coverage (> 50%) scenarios.

Regarding the performance of the assessed estimators, we noticed that the model-based estimator generally outperformed the ratio estimator for most taxa, showing smaller bias, particularly for low sampling coverage scenarios (< 20%, Figure 5). However, unlike the FOB sets, the model-based estimator still showed poor precision even under large sampling coverage. The ratio estimator started to display negative bias and worse precision for most taxa when the sampling coverage was lower than 50%, but was relatively unbiased for larger sampling coverage, especially for the most common taxa. We observed the worst precision for rare taxa for both estimators, even under large sampling coverage (> 50%). When analyzing the bias and precision over the

years, we found that they did not vary much, consistently showing better performance of the model-based estimator under low sampling coverage (Figure S10, Figure S11 and Figure S12).

4 Discussion

In this study, we explored the impacts of different levels of sampling coverage on bycatch estimates of the Spanish tuna purse seine fishery operating in the Atlantic Ocean. We evaluated the performance of two types of estimators: ratio estimator, widely used to derive annual bycatch estimates for several fisheries worldwide (Stock et al., 2019), and model-based estimator, following the geostatistical spatiotemporal modelling approach (Thorson et al., 2015). Our results suggest that the performance of the ratio estimator is negatively impacted by sampling coverage scenarios usually lower than 20%, producing underestimation and poor precision in bycatch estimates, even for the most common taxa. However, for scenarios with sampling coverage larger than 40%, the performance of both estimators was comparable. In addition, this study also suggests that our model-based estimator is a recommended alternative for prevalent taxa, especially under low sampling coverage, since it may provide unbiased bycatch estimates.

There are a few considerations we need to be aware of when using a model-based estimator like the one used in our study. First, spatiotemporal models require fine-scale information; therefore, they may only be suitable for moderately data-rich fisheries (i.e., data on longitude and latitude of fishing operations is available and observers program covers reasonably well the fishing ground). Second, as shown in our results, the convergence rate of the model-based estimator may decrease under low sampling coverage scenarios. In our simulation, we only attempted to improve convergence rates by making the model simpler (i.e., excluding the spatiotemporal term ϵ); however, other strategies may be also explored in real-case situations. For example, modifying the mesh size used in the model (Figure S3 and Figure S4), testing the exclusion/inclusion of covariates, or specifying other statistical families (e.g., delta families) might improve the model convergence. However, we did not explore those options in our study since they might be unsuitable in a simulation experiment where hundreds of replicates are run. Third, a spatiotemporal model-based estimator may not perform well for taxa with very low prevalence (i.e., rare taxa). For example, we found that the model-based estimator performed quite badly for Alopiidae (Figure 3), which had a frequency of less than 1% in FOB sets. Lastly, like in CPUE standardizations (Hoyle et al., 2024), a model-based approach may produce slightly different annual bycatch estimates when the data to fit the model is modified, which typically happens when a new year of information is available.

Spatiotemporal models are only one type of model-based approach that may be explored. Dumont et al. (2024) used random forest and GAMs to estimate bycatch of the most common taxa in the French tuna purse seine fishery, while Peatman et al. (2023) used generalized estimating equations (Prentice and Zhao, 1991), an extension of generalized linear models, to estimate bycatch for Pacific tuna fisheries. Long et al. (2024) used an ensemble random forest for bycatch estimation of protected species, which showed a good performance for species with an interaction rate greater than 2% and might be recommended for rare bycatch taxa (Siders et al., 2020). See Yin et al. (2024) for a thorough review of the main methods used to estimate bycatch. Therefore, we recommend further investigation on the performance of different model-based estimators under diverse circumstances since the results might be case-specific (Stock et al., 2019).

For the tuna purse seine fishery in the Pacific Ocean, Lennert-Cody (2001) used data from onboard observers and resampling techniques to explore the impacts of the sampling coverage on the bycatch estimates of three species groups, recommending a minimum coverage of 20-33%. In that study, the observers program covered \$ 97 5\$% coverage) from the tuna purse seine fishery and Monte Carlo techniques to evaluate the impacts of sampling coverage on bycatch estimates of sharks, recommending a coverage of 25%. These two studies agree with the results obtained from our simulation experiment. We generally found that a sampling coverage lower than 20% may, overall, largely underestimate bycatch estimates if the ratio estimator is used. Therefore, we recommend achieving a minimum of 20% sampling coverage for tuna purse seine fisheries if the ratio estimator is used. In case that level of coverage cannot be attained, we recommend exploring alternative estimators that are robust to sampling coverage scenarios lower than 20% (e.g., model-based estimator). The progress in electronic monitoring in the last decade (Van Helmond et al., 2020) may help to make the implementation of onboard observer programmes more feasible. Finally, these conclusions may apply to tuna purse seine fisheries; however, we recommend carrying out independent analyses for other fisheries with different gears, fishing grounds, and bycatch composition and magnitudes.

5 References

- Amandè, M.J., Ariz, J., Chassot, E., De Molina, A.D., Gaertner, D., Murua, H., Pianet, R., Ruiz, J., Chavance, P., 2010. Bycatch of the European purse seine tuna fishery in the Atlantic Ocean for the 2003–2007 period. Aquatic Living Resources 23, 353–362. https://doi.org/10.1051/alr/2011003
- Amandè, M.J., Chassot, E., Chavance, P., Murua, H., De Molina, A.D., Bez, N., 2012. Precision in bycatch estimates: The case of tuna purse-seine fisheries in the Indian Ocean. ICES Journal of Marine Science 69, 1501–1510. https://doi.org/10.1093/icesjms/fss106
- Anderson, S.C., Ward, E.J., English, P.A., Barnett, L.A.K., Thorson, J.T., 2024. sdmTMB: An R package for fast, flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotemporal random fields. bioRxiv: the preprint server for biology. https://doi.org/10.1101/2022.03.24.485545
- Cochran, W.G., 1977. Sampling Techniques, 3rd ed. John Wiley & Sons, New York.
- Coelho, R., Infante, P., Santos, M.N., 2020. Comparing GLM, GLMM, and GEE modeling approaches for catch rates of bycatch species: A case study of blue shark fisheries in the South Atlantic. Fisheries Oceanography 29, 169–184. https://doi.org/10.1111/fog.12462
- Cosandey-Godin, A., Krainski, E.T., Worm, B., Flemming, J.M., 2015. Applying Bayesian spatiotemporal models to fisheries bycatch in the Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences 72, 186–197. https://doi.org/10.1139/cjfas-2014-0159
- Ducharme-Barth, N.D., Grüss, A., Vincent, M.T., Kiyofuji, H., Aoki, Y., Pilling, G., Hampton, J., Thorson, J.T., 2022. Impacts of fisheries-dependent spatial sampling patterns on catch-per-unit-effort standardization: A simulation study and fishery application. Fisheries Research 246, 106169. https://doi.org/10.1016/j.fishres.2021.106169
- Dulvy, N.K., Fowler, S.L., Musick, J.A., Cavanagh, R.D., Kyne, P.M., Harrison, L.R., Carlson, J.K., Davidson, L.N., Fordham, S.V., Francis, M.P., Pollock, C.M., Simpfendorfer, C.A., Burgess, G.H., Carpenter, K.E., Compagno, L.J., Ebert, D.A., Gibson, C., Heupel, M.R., Livingstone, S.R., Sanciangco, J.C., Stevens, J.D., Valenti, S., White, W.T., 2014. Extinction risk and conservation of the world's sharks and rays. eLife 3, e00590. https://doi.org/10.7554/eLife.00590
- Dumont, A., Duparc, A., Sabarros, P.S., Kaplan, D.M., 2024. Modeling by catch abundance in tropical tuna purse seine fisheries on floating objects using the Δ method. ICES Journal of Marine Science 81, 887–908. https://doi.org/10.1093/icesjms/fsae043

- Fonteneau, A., Richard, N., 2003. Relationship between catch, effort, CPUE and local abundance for non-target species, such as billfishes, caught by Indian Ocean longline fisheries. Marine and Freshwater Research 54, 383–392. https://doi.org/10.1071/MF01268
- Grüss, A., McKenzie, J.R., Lindegren, M., Bian, R., Hoyle, S.D., Devine, J.A., 2023. Supporting a stock assessment with spatio-temporal models fitted to fisheries-dependent data. Fisheries Research 262, 106649. https://doi.org/10.1016/j.fishres.2023.106649
- Hall, M., Gilman, E., Minami, H., Mituhasi, T., Carruthers, E., 2017. Mitigating bycatch in tuna fisheries. Reviews in Fish Biology and Fisheries 27, 881–908. https://doi.org/10.1007/s11160-017-9478-x
- Hall, M., Roman, M., 2013. Bycatch and non-tuna catch in the tropical tuna purse seine fisheries of the world (Technical {{Paper}} No. 568). FAO Fisheries and Aquaculture, Rome.
- Hartig, F., 2022. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models.
- Hoyle, S.D., Campbell, R.A., Ducharme-Barth, N.D., Grüss, A., Moore, B.R., Thorson, J.T., Tremblay-Boyer, L., Winker, H., Zhou, S., Maunder, M.N., 2024. Catch per unit effort modelling for stock assessment: A summary of good practices. Fisheries Research 269, 106860. https://doi.org/10.1016/j.fishres.2023.106860
- Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., Bell, B.M., 2016. TMB: Automatic Differentiation and Laplace Approximation. Journal of Statistical Software 70. https://doi.org/10.18637/jss.v070.i05
- Lennert-Cody, C.E., 2001. Effects of sample size on bycatch estimation using systematic sampling and spatial post-stratification: Summary of preliminary results. ({{IOTC Proceedings}} No. 4). Indian Ocean Tuna Comission, Seychelles.
- Lindgren, F., Rue, H., Lindström, J., 2011. An Explicit Link between Gaussian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach. Journal of the Royal Statistical Society Series B: Statistical Methodology 73, 423–498. https://doi.org/10.1111/j.1467-9868.2011.00777.x
- Liu, K.-M., Tsai, W.-P., Joung, S.-J., 2008. Preliminary estimates of blue and make sharks bycatch and cpue of Taiwanese longline fishery in the Atlantic Ocean (No. SCRS/2008/153). ICCAT (International Commission for the Conservation of Atlantic Tunas), Madrid, Spain.
- Long, C.A., Ahrens, R.N.M., Jones, T.T., Siders, Z.A., 2024. A machine learning approach for protected species bycatch estimation. Frontiers in Marine Science 11, 1331292. https://doi.org/10.3389/fmars.2024.1331292
- Matérn, B., 1986. Spatial Variation, 2nd ed. Springer-Verlag, New York, NY.
- Ortiz, M., Arocha, F., 2004. Alternative error distribution models for standardization of catch rates of non-target species from a pelagic longline fishery: Billfish species in the Venezuelan tuna longline fishery. Fisheries Research 70, 275–297. https://doi.org/10.1016/j.fishres.2004.08.028
- Peatman, T., Allain, V., Bell, L., Muller, B., Panizza, A., Phillip, N.B., Pilling, G., Nicol, S., 2023. Estimating trends and magnitudes of bycatch in the tuna fisheries of the Western and Central Pacific Ocean. Fish and Fisheries 24, 812–828. https://doi.org/10.1111/faf.12771
- Prentice, R.L., Zhao, L.P., 1991. Estimating Equations for Parameters in Means and Covariances of Multivariate Discrete and Continuous Responses. Biometrics 47, 825. https://doi.org/10.2307/2532642
- Rue, H., Martino, S., Chopin, N., 2009. Approximate Bayesian Inference for Latent Gaussian models by using Integrated Nested Laplace Approximations. Journal of the Royal Statistical Society Series B: Statistical Methodology 71, 319–392. https://doi.org/10.1111/j.1467-9868. 2008.00700.x
- Shono, H., 2008. Application of the Tweedie distribution to zero-catch data in CPUE analysis.

- Fisheries Research 93, 154–162. https://doi.org/10.1016/j.fishres.2008.03.006
- Siders, Z., Ducharme-Barth, N., Carvalho, F., Kobayashi, D., Martin, S., Raynor, J., Jones, T., Ahrens, R., 2020. Ensemble Random Forests as a tool for modeling rare occurrences. Endangered Species Research 43, 183–197. https://doi.org/10.3354/esr01060
- Stock, B.C., Ward, E.J., Thorson, J.T., Jannot, J.E., Semmens, B.X., 2019. The utility of spatial model-based estimators of unobserved bycatch. ICES Journal of Marine Science 76, 255–267. https://doi.org/10.1093/icesjms/fsy153
- Team, R.C., 2025. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Thorson, J.T., 2019. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fisheries Research 210, 143–161. https://doi.org/10.1016/j.fishres.2018.10.013
- Thorson, J.T., Pinsky, M.L., Ward, E.J., 2016. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods in Ecology and Evolution 7, 990–1002. https://doi.org/10.1111/2041-210X.12567
- Thorson, J.T., Shelton, A.O., Ward, E.J., Skaug, H.J., 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast ground-fishes. ICES Journal of Marine Science 72, 1297–1310. https://doi.org/10.1093/icesjms/fsu243
- Thorson, J.T., Ward, E.J., 2013. Accounting for space—time interactions in index standardization models. Fisheries Research 147, 426–433. https://doi.org/10.1016/j.fishres.2013.03.012
- Tweedie, M.C.K., 1984. An Index Which Distinguishes between Some Important Exponential Families, in: Statistics: Applications and New Directions: Proceedings of the Indian Statistical Institute Golden Jubilee International Conference. Indian Statistical Institute, Calcutta, Calcutta, pp. 579–604.
- Van Helmond, A.T.M., Mortensen, L.O., Plet-Hansen, K.S., Ulrich, C., Needle, C.L., Oesterwind, D., Kindt-Larsen, L., Catchpole, T., Mangi, S., Zimmermann, C., Olesen, H.J., Bailey, N., Bergsson, H., Dalskov, J., Elson, J., Hosken, M., Peterson, L., McElderry, H., Ruiz, J., Pierre, J.P., Dykstra, C., Poos, J.J., 2020. Electronic monitoring in fisheries: Lessons from global experiences and future opportunities. Fish and Fisheries 21, 162–189. https://doi.org/10.1111/faf.12425
- Yan, Y., Cantoni, E., Field, C., Treble, M., Flemming, J.M., 2022. Spatiotemporal modeling of bycatch data: Methods and a practical guide through a case study in a Canadian Arctic fishery. Canadian Journal of Fisheries and Aquatic Sciences 79, 148–158. https://doi.org/10.1139/cjfas-2020-0267
- Yin, Y., Bowlby, H.D., Benoît, H.P., 2024. A roadmap for generating annual bycatch estimates from sparse at-sea observer data. ICES Journal of Marine Science 81, 1850–1867. https://doi.org/10.1093/icesjms/fsae110

6 Tables

Table 1: List of by catch taxa by set type (FOB=floating object, FSC=free school), and their classification ('Group' column).

Set type	Taxon	Short name	Description	Group
FOB	Elagatis bipinnulata	E. bipinnulata	-	Common
FOB	Balistidae	Balistidae	Mostly Canthidermis maculata	Common
FOB	Coryphaenidae	Coryphaenidae	Mostly Coryphaena hippurus	Common
FOB	$A can tho cybium \\ solandri$	A. solandri	-	Common
FOB	Carangidae	Carangidae	Mostly Caranx crysos	Common
FOB	Carcharhinidae	Carcharhinidae	Mostly Carcharhinus falciformis	Special interest
FOB	$Makaira \ nigricans$	M. nigricans	-	Special interest
FOB	Sphyrnidae	Sphyrnidae	Mix of Sphyrna mokarran, Sphyrna lewini, and Sphyrna zygaena	Special interest
FOB	Cheloniidae	Cheloniidae	Mix of Eretmochelys imbricata, Chelonia mydas, Lepidochelys olivacea, Lepidochelys kempii, and Dermochelys coriacea	Special interest
FOB	Mobulidae	Mobulidae	Mix of <i>Mobula</i> birostris and Mobula mobular	Special interest
FOB	Alopiidae	Alopiidae	Mostly Alopias vulpinus	Rare
FOB	Lamnidae	Lamnidae	Mostly Isurus oxyrinchus	Rare
FOB	Prionace glauca	P. glauca	-	Rare
FSC	Carcharhinidae	Carcharhinidae	See above	Common
FSC	Mobulidae	Mobulidae	See above	Common

Set type	Taxon	Short name	Description	Group
FSC	$Is tiophorus \\ albicans$	I. albicans	-	Common
FSC	$Makaira \ nigricans$	M. nigricans	-	Special interest
FSC	Sphyrnidae	Sphyrnidae	See above	Special interest
FSC	Cheloniidae	Cheloniidae	See above	Special interest
FSC	Molidae	Molidae	Mostly $Mola$ $mola$	Special interest
FSC	Lamnidae	Lamnidae	See above	Rare
FSC	Prionace glauca	P. glauca	-	Rare
FSC	Istiophoridae	Istiophoridae	Marlin species other than Istiophorus albicans and Makaira nigricans	Rare

7 Figures

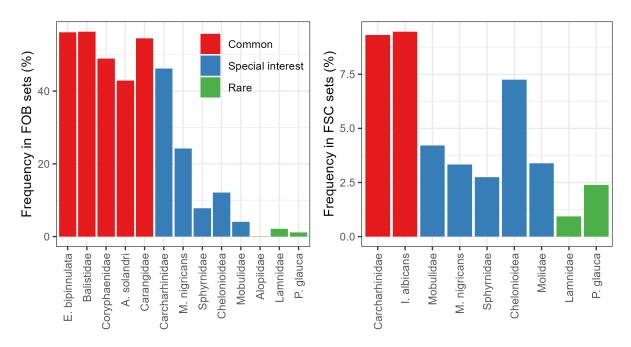


Figure 1: Frequency of sets (2015-2023) with presence of taxa analyzed in this study. The taxa categorization is shown in color (see Table 1 for details).

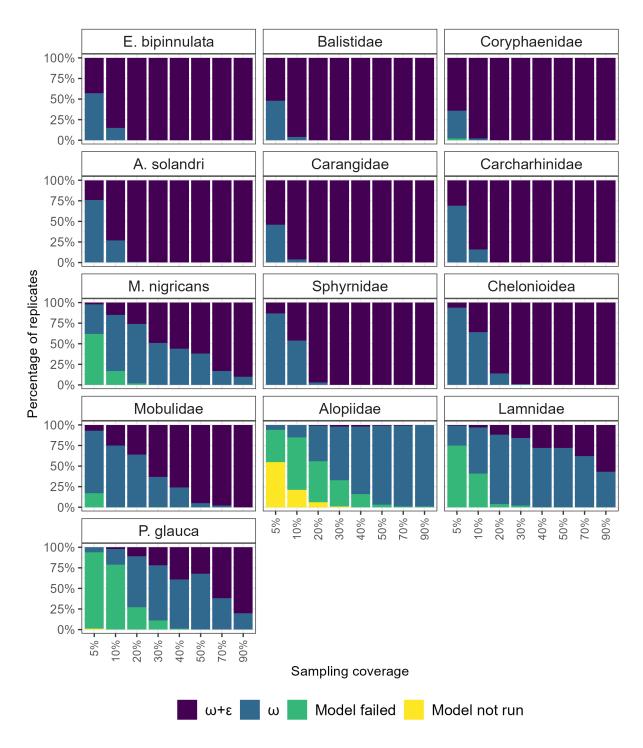


Figure 2: Frequency of replicates for which the model-based estimator was not run due to missing data, failed, included only the spatial component (ω) , or included the spatial and spatiotemporal component $(\omega + \epsilon)$. Information for FOB sets and shown by taxa and sampling coverage scenario.

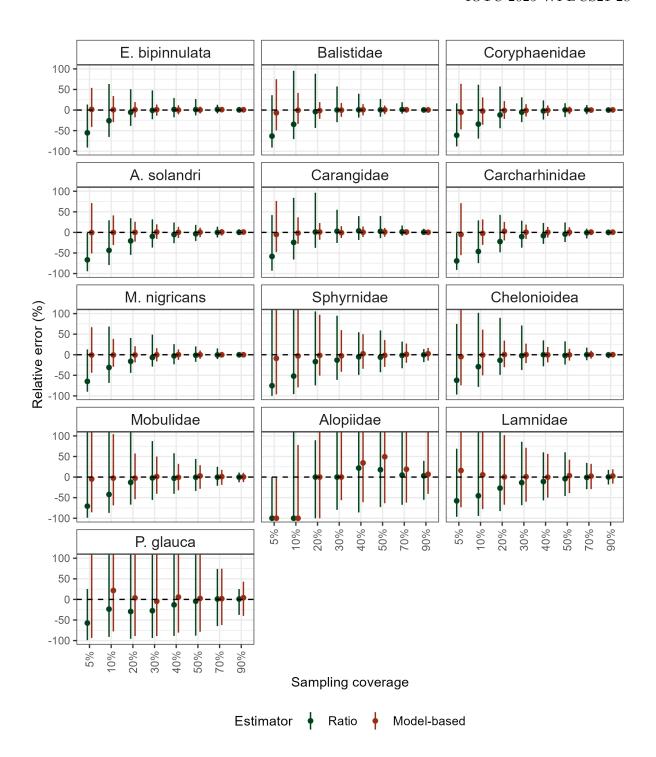


Figure 3: Relative error by ratio and model-based estimator aggregated over the years. The dots and line range represent the median and the 95% of values across replicates, respectively. Information for FOB sets and shown by taxa and sampling coverage scenario.

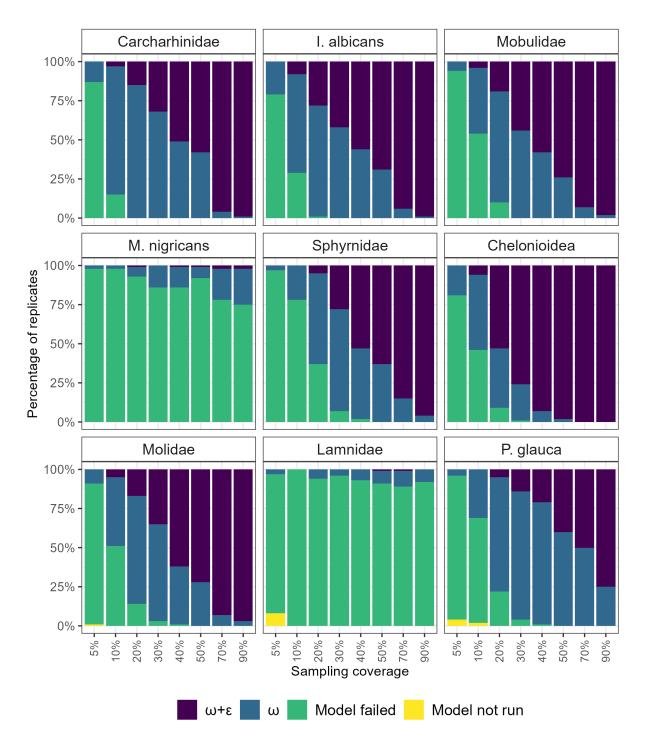


Figure 4: Frequency of replicates for which the model-based estimator was not run due to missing data, failed, included only the spatial component (ω) , or included the spatial and spatiotemporal component $(\omega + \epsilon)$. Information for FSC sets and shown by taxa and sampling coverage scenario.

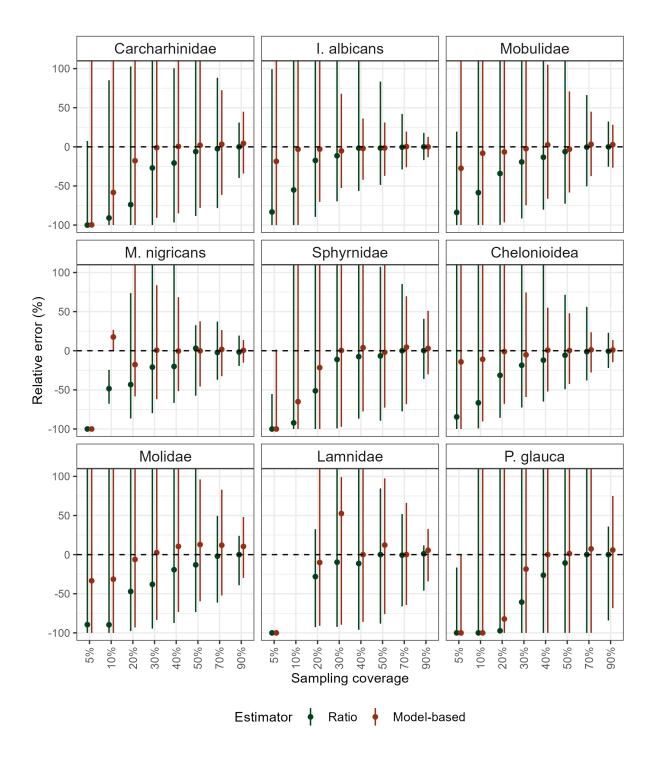


Figure 5: Relative error by ratio and model-based estimator aggregated over the years. The dots and line range represent the median and the 95% of values across replicates, respectively. Information for FSC sets and shown by taxa and sampling coverage scenario.

8 Supplementary Material

8.1 Figures

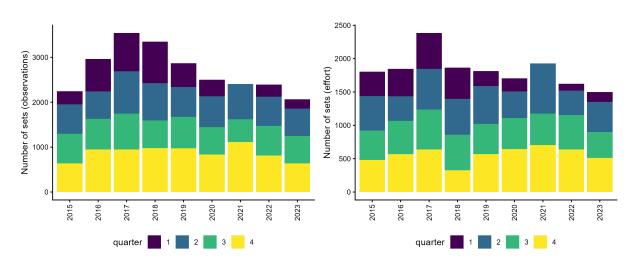


Figure S1: Number of FOB sets in the observers (left) and effort (right) data used in our analyses by year and quarter.

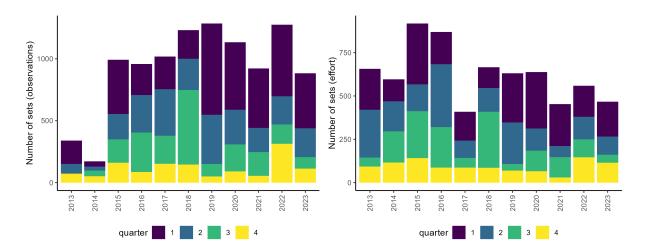


Figure S2: Number of FSC sets in the observers (left) and effort (right) data used in our analyses by year and quarter.

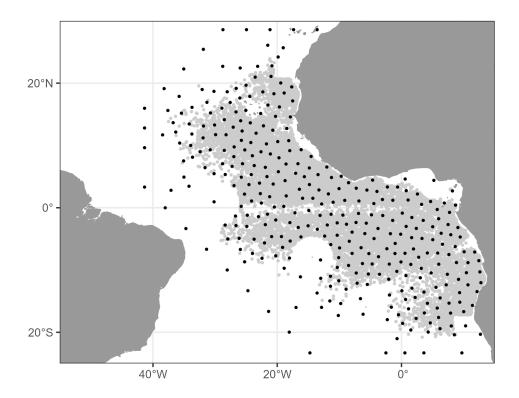


Figure S3: Mesh used in sdmTMB models fitting by catch taxa in FOB sets. The black dots are the mesh nodes and the gray dots are the FOB sets locations in the observers data from 2015 to 2023.

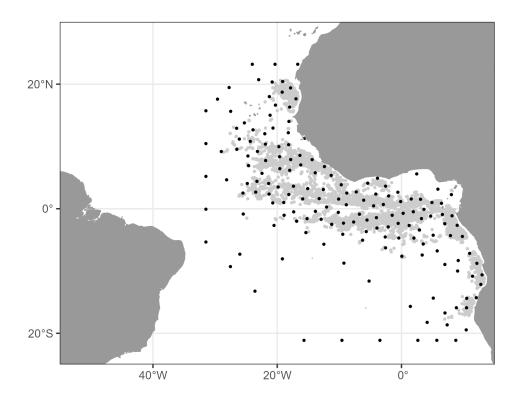


Figure S4: Mesh used in sdmTMB models fitting by catch taxa in FSC sets. The black dots are the mesh nodes and the gray dots are the FSC sets locations in the observers data from 2015 to 2023.

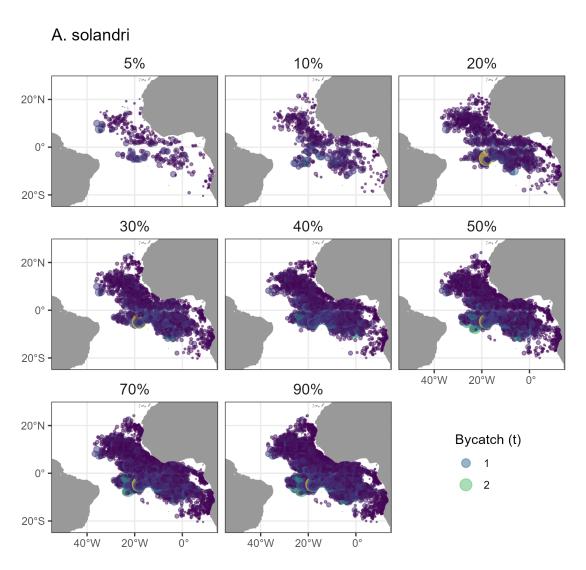


Figure S5: Locations of FOB sets with presence of a common taxon ($Acanthocybium\ solandri$) in the bycatch composition under different sampling coverage scenarios.

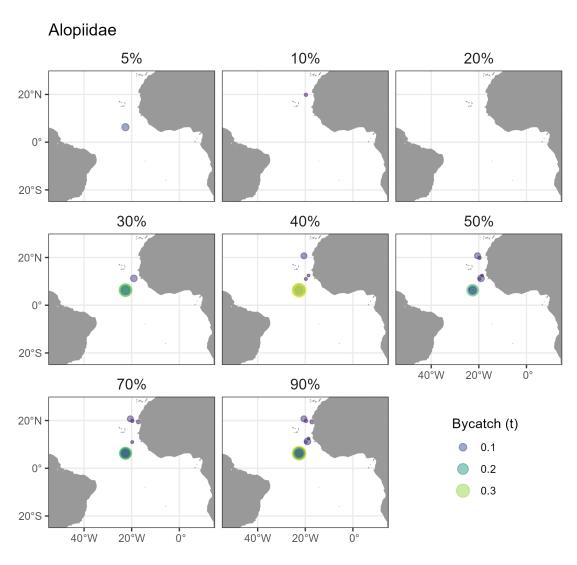


Figure S6: Locations of FOB sets with presence of a rare taxon (Alopiidae) in the bycatch composition under different sampling coverage scenarios.

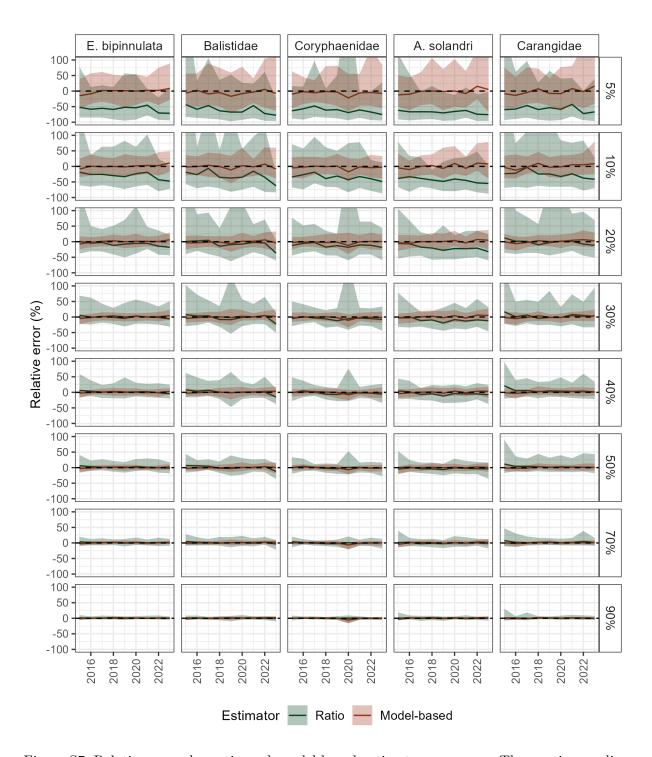


Figure S7: Relative error by ratio and model-based estimator per year. The continuous line and the shaded area represent the median and the 95% of values across replicates, respectively. Information for FOB sets and common taxa (see Table 1) and shown by sampling coverage scenario.

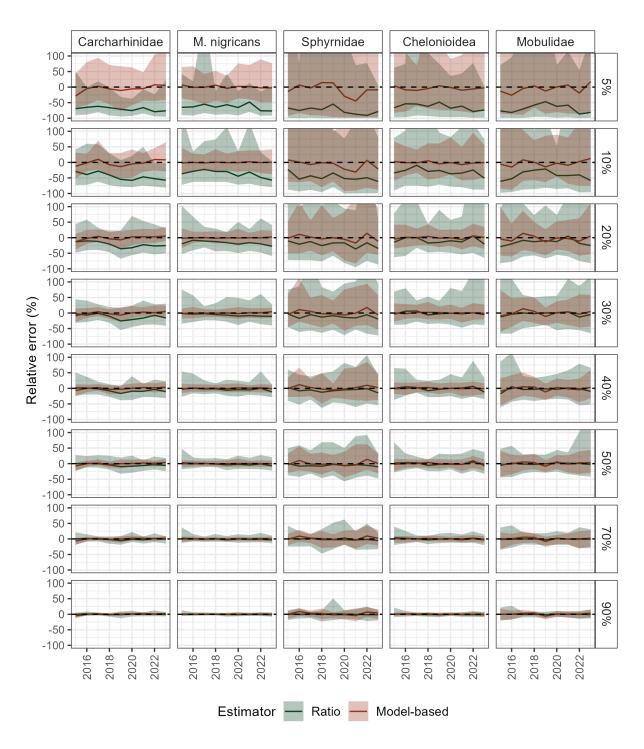


Figure S8: Relative error by ratio and model-based estimator per year. The continuous line and the shaded area represent the median and the 95% of values across replicates, respectively. Information for FOB sets and special interest taxa (see Table 1) and shown by sampling coverage scenario.

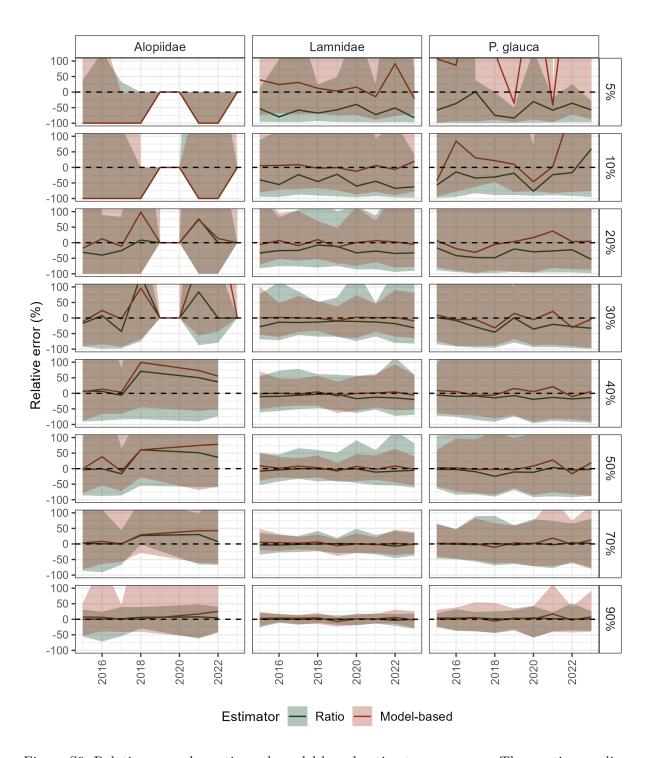


Figure S9: Relative error by ratio and model-based estimator per year. The continuous line and the shaded area represent the median and the 95% of values across replicates, respectively. Information for FOB sets and rare taxa (see Table 1) and shown by sampling coverage scenario.

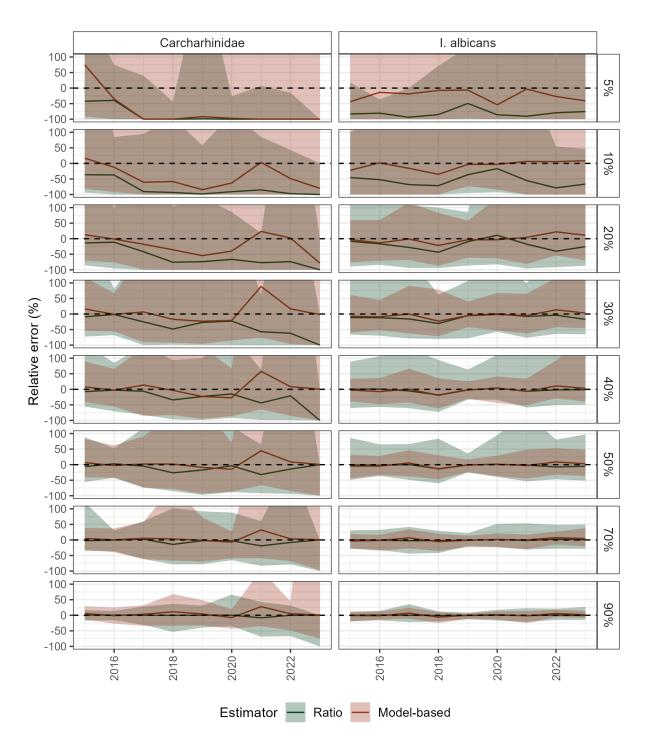


Figure S10: Relative error by ratio and model-based estimator per year. The continuous line and the shaded area represent the median and the 95% of values across replicates, respectively. Information for FSC sets and common taxa (see Table 1) and shown by sampling coverage scenario.

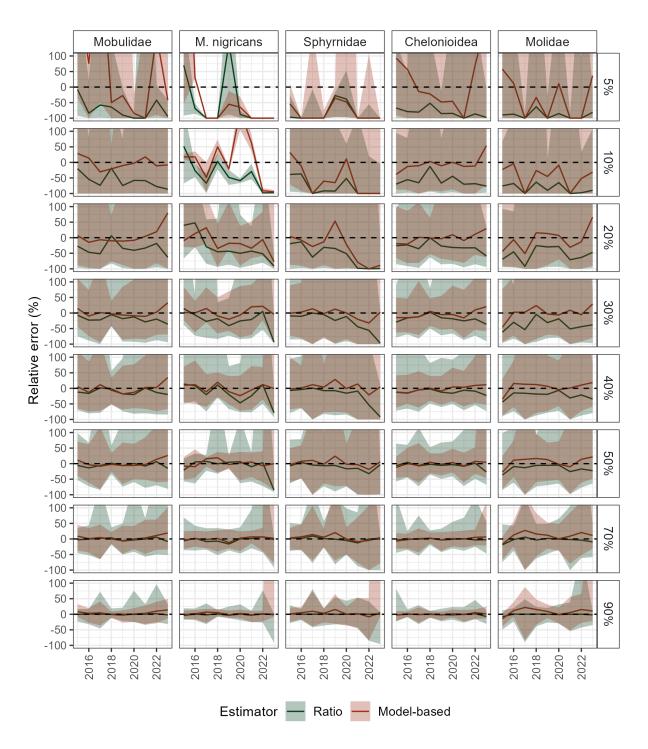


Figure S11: Relative error by ratio and model-based estimator per year. The continuous line and the shaded area represent the median and the 95% of values across replicates, respectively. Information for FSC sets and special interest taxa (see Table 1) and shown by sampling coverage scenario.

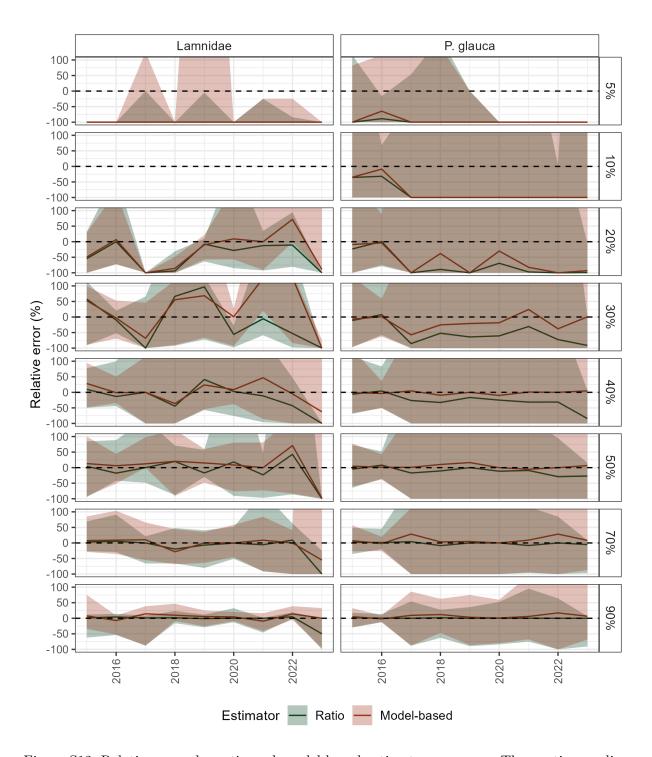


Figure S12: Relative error by ratio and model-based estimator per year. The continuous line and the shaded area represent the median and the 95% of values across replicates, respectively. Information for FSC sets and rare taxa (see Table 1) and shown by sampling coverage scenario.