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Abstract

Investigating the effects of fishing on non-targeted (bycatch) species is crucial for conservation
and management matters. On-board observers information provides a valuable source for esti-
mating bycatch; however, due to several factors such as their high costs and logistic challenges,
observer programmes usually cover a small percentage of the fishery. In order to estimate by-
catch for the unobserved fishing activity, a ratio estimator is commonly used, which assumes a
linear relationship between the ratio of bycatch and total target catch or effort. In this study,
we implemented a simulation experiment to evaluate the performance of the ratio and model-
based estimator under different sampling coverage scenarios. We used the Spanish tuna purse
seine fishery operating in the Atlantic Ocean as a case study. Our results suggest that the ratio
estimator may produce bycatch estimates with large negative bias (i.e., underestimation) when
the sampling coverage is lower than 20%, even for common taxa. Conversely, the model-based
estimator produced unbiased estimates even under low sampling coverage scenarios. However,
the model-based estimator may be only suitable for taxa with intermediate and high prevalence
in the bycatch composition. This study presents a simulation framework that may be applied to
other moderately data-rich fisheries and supports the implementation of observer programmes
from which appropriate estimates of bycatch for species of interest to the Commission can be
obtained.
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1 Introduction

Purse seine fishing is a technique that targets and catch entire fish schools on the surface by
encircling them with a fishing net called “seine”. In the tropical oceans, purse seine is employed
to target tropical tunas such as skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares),
and bigeye (Thunnus obesus). In addition to target species, tropical tuna fisheries catch non-
target species collectively referred to as bycatch, which can be released , discarded at sea, or
retained (e.g., due to regulatory requirements, to be sold on local markets, or consumed on
board) (Hall et al., 2017). The ratio of bycatch to target tuna catch in the purse seine fleet is
considered relatively low in comparison to other fishing gears, such as longlines, that can result
in substantial levels of bycatch (Amande et al., 2010; Liu et al., 2008; Peatman et al., 2023).
However, the impact on pelagic populations and ecosystems may be important, especially for
some vulnerable long-lived species with low reproductive rates (Dulvy et al., 2014). Therefore,
it is essential to conduct studies on bycatch rates and their variability over space and time;
however, these are often complicated by a lack of bycatch data recorded in fisheries logbooks,
difficulties in taxonomic identification of bycatch species, and other factors.

One of the most reliable sources of information to quantify the amount of bycatch is the use
of on-board trained scientific data collectors (a.k.a. observers). When designing a scientific
observer sampling program, the required level of coverage will depend on the objectives of the
observer program, which might vary from estimating bycatch of protected species, to improving
bycatch and catch data for assessment of fish populations, or collecting biological data. In some
cases, it may be necessary to have an exact count of the total incidental mortality of bycatch
species, especially threatened or endangered species, so a 100% observer coverage may be needed.
However, in most cases, a level of 100% observer coverage is not attainable, then the coverage
level chosen must ensure that the total bycatch estimate is sufficiently accurate and precise.
Then, assuming these observed units are representative of unobserved activity, design-based
(e.g., ratio estimators, Cochran (1977)) or model-based (e.g., generalized linear models, Coelho
et al. (2020)) approaches can be used to expand the observed bycatch to the remainder of the
fishery. One of the main features of ratio estimators is that they do not incorporate a formal
underlying statistical model (i.e., they are free of any assumptions regarding data structure), and
therefore are broadly used in fisheries worldwide, including tuna purse seine fisheries (Amande
et al., 2012; Amande et al., 2010; Hall and Roman, 2013).

Despite their widespread use, there are a number of potential issues in applying ratio estimators
to estimate bycatch. First, using observed catches of target species or any other measure of
effort implicitly makes an assumption about a linear relationship between non-target and target
catches (Amande et al., 2012; Fonteneau and Richard, 2003). This may be unrealistic since
the distribution of catches of non-target species is often zero-inflated or has a small number
of observations containing extremely high values (Ortiz and Arocha, 2004), and the assumed
linear relationship may not hold (Stock et al., 2019). Second, the boundaries of strata used in
a ratio estimator can be somewhat arbitrary whenever poststratified boundaries are used. For
instance, Amande et al. (2010) defined strata in the Atlantic Ocean based on ecological features
for estimating bycatch of the tuna EU purse seine fishery, which may not be adequate for all
bycatch species. Third, for rare-event bycatch species, it is common for zero bycatch events to
be observed in a given year (ratio estimator is equal to 0), and when bycatch events are observed,
the ratio estimator often delivers implausibly high estimates. Lastly, a final and related point is
that within each stratum, bycatch rates are assumed to be uniform, while in reality they may
vary by season or environmental conditions.
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Spatiotemporal models are increasingly adopted in multiple fisheries applications (Ducharme-
Barth et al., 2022; Griiss et al., 2023; Thorson, 2019), including undertaking bycatch analyses
(e.g., Yan et al. (2022)). These models can provide detailed predictions for any location based on
spatial autocorrelation in the observations. However, they are also complicated and require more
data to generate robust predictions, which makes them unsuitable for data-poor fisheries. In
the majority of cases, spatially explicit model-based estimators have increased precision relative
to simpler estimators that assign observations to strata (Thorson et al., 2015; Thorson and
Ward, 2013). There are a number of additional advantages of spatial models, including the
ability to better quantify shifts in distribution (Thorson et al., 2016) and improved ability to
identify fine-scale hotspots of high bycatch (Cosandey-Godin et al., 2015). For tuna fisheries,
spatiotemporal models like generalized additive models (GAMs) have recently been used to
obtain annual estimates of the most important bycatch species (Dumont et al., 2024).

In this study, we implemented a simulation experiment to evaluate the impacts of different
levels of sampling coverage on the annual bycatch estimates derived from a ratio and model-
based estimators. Our hypothesis is that model-based estimators may provide more accurate
bycatch estimates under low sampling coverage scenarios. We used data from the Spanish purse
seine tuna fishery operating in the Atlantic Ocean as a case study. We performed our analyses
independently for each fishing mode: sets on free schools (FSC) or floating objects (FOB), since
they have different bycatch composition and magnitude (Peatman et al., 2023). Our simulation
experiment may be extended to other fisheries with fine-scale bycatch information and support
the implementation of sampling programmes across tuna RFMOs.

2 Methods

In the following sections, we describe the data used in our analyses, the ratio and model-based
estimators, and the simulation framework. The analyses described below were performed by
fishing mode independently.

2.1 Data

Our analyses use data collected by scientific observers on board tropical tuna purse seine vessels
operating in the Atlantic Ocean between 2015 and 2023 (observers data). This dataset includes
records from both the Spanish scientific monitoring program (EU Data Collection Framework)
and the industry-funded Best Practices program, covering Spanish-owned vessels under various
flags, from shipowners member of the tuna purse seine associations ANABAC and OPAGAC-
AGAC.

Regardless of the monitoring program, observers follow a standardized protocol. They record
detailed information for each fishing set, including estimates of bycatch and weight categories for
target tuna catch, which are then used to estimate total target catch. For larger bycatch species
such as elasmobranchs and billfishes, all individuals are counted. For smaller, more abundant
species, estimates are often based on visual assessments and estimated in weight. In addition to
counts, observers also conduct length sampling to convert numbers into biomass using species-
specific length-weight relationships when weight estimates are not available. Taxa are identified
to the species level whenever possible, although in rare cases, only higher taxonomic groups
(e.g., family) are recorded. Our analyses use bycatch data in weight since it was available for
all taxa in the dataset.
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The effort data used in our analyses pertain exclusively to the Spanish fleet for the same period
and fishing ground. This information is sourced from the logbooks completed by the captains,
who are required to record details of each fishing trip, including the location, fishing mode, and
date of every fishing operation. Figure S1 and Figure S2 display the number of sets by fishing
mode in the observers and effort data.

This study does not present results for all taxa found in the purse seine fleet’s bycatch. We
removed tuna-like species from our analyses. Then, a targeted selection of species or groups
of species was made to represent three categories: the most abundant taxa, the rare or less
prevalent ones, and those considered vulnerable or of special interest. The list of these taxa
differed by fishing mode and is presented in Table 1 and Figure 1. Some taxa are included at
the species level, while others group multiple species within the same family. In these cases,
Table 1 reports the predominant species, if present.

2.2 Model fitting

We use the sdmTMB geostatistical spatiotemporal model (Anderson et al., 2024) to fit taxon-
specific bycatch per set (in weight) using the observers data. Geostatistical spatiotemporal
models have become widely used in fisheries over the last decade (Anderson et al., 2024; Thor-
son, 2019), and are used when georeferenced data (e.g., each has a corresponding latitude and
longitude) with an underlying spatial process is available. sdmTMB is written in Template
Model Builder (TMB, Kristensen et al. (2016)) and R (Team, 2025) for a friendly user inter-
face, and can be viewed as an extension of generalized linear mixed models (GLMMs), but with
additional spatial and spatiotemporal components, which are approximated as random effects.

Mathematically, the model structure can be expressed as:

Ug—1.5¢ = fHUXb+w+e)

where u represents the bycatch predictions at locations s = 1 : S for a given year t, f1()
is the inverse link function, X represents the design matrix of fixed effects, b is the vector of
estimated parameters, w are the estimated latent spatial effects, and €, represents year-to-year
latent spatiotemporal effects. w represents a spatial intercept that is constant with time, while
€, represents spatial deviations over time, and both are modelled as Gaussian random fields
(GRFs):

w~ MVN(,%,)
¢~ MVN(0,5,)

where MV N is the multivariate normal distribution, and the covariance matrix ¥ is modelled
with Matérn covariance (Lindgren et al., 2011; Matérn, 1986), which defines the rate at which
spatial covariance decays with distance. sdmTMB approximates the GRF by relying on the
Stochastic Partial Differential Equation (SPDE) approach using the Integrated Nested Laplace
Approximation in R-INLA to reduce computational costs (Rue et al., 2009). The first step
when using the SPDE approach is to construct the mesh, which, in our case, was composed of
triangles covering the studied area with a minimum allowed triangle edge length (cutoff) of 1.5
degrees (Figure S3 and Figure S4). The mesh discretizes a continuous spatial or spatiotemporal
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phenomenon into a set of discrete points (i.e., triangles), which allows for the computation of
spatial autocorrelation and enables the model to estimate and interpolate the continuous field.

For some taxa, especially the less recurrent ones, the inclusion of both the spatial and spatiotem-
poral terms may cause convergence issues. For those cases, we reran the model only including
the spatial term in order to simplify the model structure.

We used the Tweedie distribution Tweedie(u, ¢?,p), where 1 < p < 2, and a log link function
(Tweedie, 1984). The Tweedie model is an extension of the compound Poisson model derived
from the stochastic process where the weight of the response variable (e.g., catch data) has a
gamma distribution and has the advantage of handling the zero-catch data in a unified way
(Shono, 2008). For fixed effects, we incorporated the year and quarter effects as factors, and the
target tuna catch (the sum of skipjack, yellowfin, and bigeye tunas) as a continuous covariate.

For all fitted models, we checked that the maximum gradient was smaller than 1e-03, the Hes-
sian was invertible, and standard errors were estimated for all fixed effects and did not look
unreasonably large (“sanity checks”). We then used the DHARMa R package (Hartig, 2022)
to evaluate the model residuals. Standard raw residuals are not always appropriate when using
generalized linear models, and other types of residuals are commonly used instead. DHARMa
uses a simulation-based approach to create readily interpretable scaled (quantile) residuals for
generalized linear mixed models. We analyzed two plots produced by DHARMa: 1) the QQ
plot residuals, which detect overall deviations from the expected distribution, and 2) the resid-
ual vs. predicted plot, which detects trends in residuals along model predictions and simulation
outliers.

2.3 Simulation

One of the advantages of using models like sdmTMB is that we can simulate new observations
using a new dataset (“prediction dataset”) containing the same covariates used when fitting
the model. In our case, we used the effort data as the prediction dataset and simulated new
observations (i.e., bycatch in weight for every fishing set in the effort data) using the fitted
models for each taxa in Section 2.2. These simulated observations keep the statistical properties
of the original bycatch data. We refer to the effort data with simulated bycatch observations as
the simulated data.

We then took a subset of the simulated data with different sampling coverage scenarios: 5%,
10%, 20%, 30%, 40%, 50%, 70%, and 90%. To approximate real-case situations, we performed
this subsetting stratified by year, and then randomly selected the fishing trips observed under
that sampling coverage scenario. The obtained sampled data represent the observers data that
would have been obtained from an observers program with the specified sampling coverage.
Figure S5 and Figure S6 show how the presence of a common and rare taxa, respectively, in the
sampled data is affected by the sampling coverage.

Then, using the sampled data, we estimated the annual bycatch using two approaches: ratio
and model-based estimator, which are described below.

2.3.1 Ratio estimator

We used the spatially-stratified bycatch—over-target catch ratio. For a given taxon, the ratio

(Ryya) was calculated for every defined 5 x 5° grid a in the study area and year y as follows:
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where B, , is the total bycatch and T}, , the total tropical tuna catch obtained from the sampled
data. In a few cases, there could happen that 7, , = 0 (e.g., sets with target catch equal to
zero or “null sets”), so R, , could not be calculated. Therefore, exclusively for those cases, we
assumed that R, , = 0.

a

Then, assuming a linear relationship between bycatch and target catch, we calculated the total
bycatch:

Byo=RyTy,
where T} , is the total target catch in grid a and year y obtained from the effort data. Especially
for low sampling coverage scenarios, it is expected to have missing R, , values for some grids
due to the sampled data do not cover all the grids in the study area. Therefore, for those grids
only, R, , was calculated as B, /T,, where B, and T, are the total bycatch and target catch in
the whole area, respectively, derived from the information in the sampled data.

Finally, the annual bycatch estimate is calculated: By => B

a y,a*

2.3.2 Model-based estimator

We followed the same modelling framework described in Section 2.2. Once the fitted model is
obtained, we then made predictions using the effort data, which generated predicted bycatch
observations for every fishing set in that dataset. Then, we summed the predicted bycatch values
per year to estimate the annual bycatch By.

Especially when the sampling coverage is low, we could find cases when a given taxon is not
detected in the sampled data (i.e., bycatch equal to zero for all fishing sets). In those cases, the
model-based estimator was not run, and we assumed By = 0 for all years. Another special case
is when the model did not pass the sanity checks (see Section 2.2). In those cases, we were not
able to produce model-based bycatch estimates By and reported the rate of model failure.

2.4 Performance

The procedure explained in Section 2.3 was repeated 100 times (“replicates”) with different seeds
to produce the simulated data, therefore we obtained 100 annual bycatch estimates by the ratio
and model-based estimators for each taxa gq. We calculated the relative error for every replicate
i RE; ., = (Bi,q,y — B, 4y)/Bi gy Where B, represents the true annual bycatch obtained
from the simulated data. The width of the 95% quantile of RE over replicates was used as a
measure of precision and the median as a proxy of bias, and these metrics were used to compare

the performance of the ratio and model-based estimators.
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3 Results

3.1 Fishing object sets

For common taxa, the model-based estimator converged for all replicates and included both the
spatial w and spatiotemporal € terms when the sampling coverage was larger than 20% (Fig-
ure 2). However, when the sampling coverage was lower than 20%, the model-based estimator
still converged but had a simpler structure by only including the spatial term in most replicates.
Likewise, for taxa with special interest, the model-based estimator still converged for intermedi-
ate and large sampling coverage, although we observed that the model failed to pass the sanity
check for some taxa (e.g., Makaira nigricans or Mobulidae) when the sampling coverage was
lower than 10% (Figure 2). For rare taxa, the model-based estimator usually failed when the
sampling coverage was low and needed a coverage larger than 50% to provide estimates. The
model-based estimator was not even run for Alopiidae under low sampling coverage scenarios
due to missing observations for this taxon (Figure 2).

Regarding the performance of the assessed estimators, we noticed that the model-based estimator
outperformed the ratio estimator for most taxa, showing smaller bias and better precision,
particularly for low sampling coverage scenarios (Figure 3). The ratio estimator started to
display negative bias and worse precision for most taxa when the sampling coverage was lower
than 30%, but performed quite well for a sampling coverage larger than 40%, especially for the
most common taxa. We observed the worst precision for rare taxa for both estimators, even
under large sampling coverage. For very rare taxa like Alopiidae, the large negative bias (-100%)
was likely caused by the omission of this taxon in the sample data when the sampling coverage
was low. When analyzing the bias and precision over the years, we found that they did not
largely vary, always observing a better performance of the model-based estimator under low
sampling coverage (Figure S7, Figure S8 and Figure S9).

3.2 Free-school sets

For common taxa, the model-based estimator converged for most replicates when the sampling
coverage was larger than 10%, although it was only able to include the spatial term w in most
cases (Figure 4). However, when the sampling coverage was equal to or lower than 10%, the
model-based estimator failed to converge in most replicates. For taxa with special interest,
the model-based estimator still converged for intermediate and large sampling coverage, usually
larger than 30%, although we observed that the model generally failed for some taxa, like Makaira
nigricans, even when the sampling coverage was large (Figure 4). For rare taxa like Lamnidae,
the model-based estimator generally failed to converge even for large sampling coverage (> 50%)
scenarios.

Regarding the performance of the assessed estimators, we noticed that the model-based estimator
generally outperformed the ratio estimator for most taxa, showing smaller bias, particularly for
low sampling coverage scenarios (< 20%, Figure 5). However, unlike the FOB sets, the model-
based estimator still showed poor precision even under large sampling coverage. The ratio
estimator started to display negative bias and worse precision for most taxa when the sampling
coverage was lower than 50%), but was relatively unbiased for larger sampling coverage, especially
for the most common taxa. We observed the worst precision for rare taxa for both estimators,
even under large sampling coverage (> 50%). When analyzing the bias and precision over the
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years, we found that they did not vary much, consistently showing better performance of the
model-based estimator under low sampling coverage (Figure S10, Figure S11 and Figure S12).

4 Discussion

In this study, we explored the impacts of different levels of sampling coverage on bycatch esti-
mates of the Spanish tuna purse seine fishery operating in the Atlantic Ocean. We evaluated
the performance of two types of estimators: ratio estimator, widely used to derive annual by-
catch estimates for several fisheries worldwide (Stock et al., 2019), and model-based estimator,
following the geostatistical spatiotemporal modelling approach (Thorson et al., 2015). Our re-
sults suggest that the performance of the ratio estimator is negatively impacted by sampling
coverage scenarios usually lower than 20%, producing underestimation and poor precision in by-
catch estimates, even for the most common taxa. However, for scenarios with sampling coverage
larger than 40%, the performance of both estimators was comparable. In addition, this study
also suggests that our model-based estimator is a recommended alternative for prevalent taxa,
especially under low sampling coverage, since it may provide unbiased bycatch estimates.

There are a few considerations we need to be aware of when using a model-based estimator like
the one used in our study. First, spatiotemporal models require fine-scale information; therefore,
they may only be suitable for moderately data-rich fisheries (i.e., data on longitude and lati-
tude of fishing operations is available and observers program covers reasonably well the fishing
ground). Second, as shown in our results, the convergence rate of the model-based estimator
may decrease under low sampling coverage scenarios. In our simulation, we only attempted
to improve convergence rates by making the model simpler (i.e., excluding the spatiotemporal
term €); however, other strategies may be also explored in real-case situations. For example,
modifying the mesh size used in the model (Figure S3 and Figure S4), testing the exclusion/in-
clusion of covariates, or specifying other statistical families (e.g., delta families) might improve
the model convergence. However, we did not explore those options in our study since they might
be unsuitable in a simulation experiment where hundreds of replicates are run. Third, a spa-
tiotemporal model-based estimator may not perform well for taxa with very low prevalence (i.e.,
rare taxa). For example, we found that the model-based estimator performed quite badly for
Alopiidae (Figure 3), which had a frequency of less than 1% in FOB sets. Lastly, like in CPUE
standardizations (Hoyle et al., 2024), a model-based approach may produce slightly different
annual bycatch estimates when the data to fit the model is modified, which typically happens
when a new year of information is available.

Spatiotemporal models are only one type of model-based approach that may be explored. Du-
mont et al. (2024) used random forest and GAMs to estimate bycatch of the most common
taxa in the French tuna purse seine fishery, while Peatman et al. (2023) used generalized es-
timating equations (Prentice and Zhao, 1991), an extension of generalized linear models, to
estimate bycatch for Pacific tuna fisheries. Long et al. (2024) used an ensemble random forest
for bycatch estimation of protected species, which showed a good performance for species with
an interaction rate greater than 2% and might be recommended for rare bycatch taxa (Siders
et al., 2020). See Yin et al. (2024) for a thorough review of the main methods used to estimate
bycatch. Therefore, we recommend further investigation on the performance of different model-
based estimators under diverse circumstances since the results might be case-specific (Stock et
al., 2019).

For the tuna purse seine fishery in the Pacific Ocean, Lennert-Cody (2001) used data from on-
board observers and resampling techniques to explore the impacts of the sampling coverage on
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the bycatch estimates of three species groups, recommending a minimum coverage of 20-33%. In
that study, the observers program covered $ 97 58% coverage) from the tuna purse seine fishery
and Monte Carlo techniques to evaluate the impacts of sampling coverage on bycatch estimates
of sharks, recommending a coverage of 25%. These two studies agree with the results obtained
from our simulation experiment. We generally found that a sampling coverage lower than 20%
may, overall, largely underestimate bycatch estimates if the ratio estimator is used. Therefore,
we recommend achieving a minimum of 20% sampling coverage for tuna purse seine fisheries if
the ratio estimator is used. In case that level of coverage cannot be attained, we recommend
exploring alternative estimators that are robust to sampling coverage scenarios lower than 20%
(e.g., model-based estimator). The progress in electronic monitoring in the last decade (Van
Helmond et al., 2020) may help to make the implementation of onboard observer programmes
more feasible. Finally, these conclusions may apply to tuna purse seine fisheries; however, we
recommend carrying out independent analyses for other fisheries with different gears, fishing
grounds, and bycatch composition and magnitudes.
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Table 1: List of bycatch taxa by set type (FOB=floating object, FSC=free school), and their
classification (‘Group’ column).

Set type Taxon Short name Description Group
FOB Elagatis E. bipinnulata - Common
bipinnulata
FOB Balistidae Balistidae Mostly Common
Canthidermis
maculata
FOB Coryphaenidae Coryphaenidae Mostly Common
Coryphaena
hippurus
FOB Acanthocybium A. solandri - Common
solandri
FOB Carangidae Carangidae Mostly Caranz Common
CrYysos
FOB Carcharhinidae Carcharhinidae Mostly Special interest
Carcharhinus
falciformis
FOB Makaira M. nigricans - Special interest
nigricans
FOB Sphyrnidae Sphyrnidae Mix of Sphyrna  Special interest
mokarran,
Sphyrna lewini,
and Sphyrna
2Ygaena
FOB Cheloniidae Cheloniidae Mix of Special interest
Eretmochelys
imbricata,
Chelonia mydas,
Lepidochelys
olivacea,
Lepidochelys
kempii, and
Dermochelys
coriacea
FOB Mobulidae Mobulidae Mix of Mobula Special interest
birostris and
Mobula mobular
FOB Alopiidae Alopiidae Mostly Alopias Rare
vulpinus
FOB Lamnidae Lamnidae Mostly Isurus Rare
oxyrinchus
FOB Prionace glauca  P. glauca - Rare
FSC Carcharhinidae Carcharhinidae See above Common
FSC Mobulidae Mobulidae See above Common
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Set type Taxon Short name Description Group

FSC Istiophorus I. albicans - Common
albicans

FSC Makaira M. nigricans - Special interest
nigricans

FSC Sphyrnidae Sphyrnidae See above Special interest

FSC Cheloniidae Cheloniidae See above Special interest

FSC Molidae Molidae Mostly Mola Special interest

mola

FSC Lamnidae Lamnidae See above Rare

FSC Prionace glauca  P. glauca - Rare

FSC Istiophoridae Istiophoridae Marlin species Rare

other than
Istiophorus
albicans and
Makaira
nigricans
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Figure 1: Frequency of sets (2015-2023) with presence of taxa analyzed in this study. The taxa
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categorization is shown in color (see Table 1 for details).
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Figure 2: Frequency of replicates for which the model-based estimator was not run due to missing
data, failed, included only the spatial component (w), or included the spatial and
spatiotemporal component (w + €). Information for FOB sets and shown by taxa and

sampling coverage scenario.
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Figure 3: Relative error by ratio and model-based estimator aggregated over the years.
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Figure 4: Frequency of replicates for which the model-based estimator was not run due to missing
data, failed, included only the spatial component (w), or included the spatial and
spatiotemporal component (w + €). Information for FSC sets and shown by taxa and
sampling coverage scenario.
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Figure 5: Relative error by ratio and model-based estimator aggregated over the years. The
dots and line range represent the median and the 95% of values across replicates,
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scenario.
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Figure S1: Number of FOB sets in the observers (left) and effort (right) data used in our analyses
by year and quarter.
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Figure S2: Number of FSC sets in the observers (left) and effort (right) data used in our analyses
by year and quarter.
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Figure S3: Mesh used in sdmTMB models fitting bycatch taxa in FOB sets. The black dots are
the mesh nodes and the gray dots are the FOB sets locations in the observers data
from 2015 to 2023.
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Figure S4: Mesh used in sdmTMB models fitting bycatch taxa in FSC sets. The black dots are
the mesh nodes and the gray dots are the FSC sets locations in the observers data
from 2015 to 2023.
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Figure S5: Locations of FOB sets with presence of a common taxon (Acanthocybium solandri)
in the bycatch composition under different sampling coverage scenarios.
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Figure S6: Locations of FOB sets with presence of a rare taxon (Alopiidae) in the bycatch
composition under different sampling coverage scenarios.
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E. bipinnulata Balistidae Coryphaenidae A. solandri Carangidae

100
50 +

%S

-50 4
-100 -

%01

-100 -

%0¢

-100 -
100 4
50

%0€

-50 A
100 -
100 4
50 4

Relative error (%)
%0%

RRRRATIE S ) |
RAARIR 40 f 5 §
LEHEREE

-50 4
-100 -
100 A
50 +

%09

-50 4
-100 -
100 4

50

%04

-50 4
-100 -
100 o

50 +

%06

-50 4
-100 -

2020 A
2022

20204
20224
20161
20184

20204
20224
20161
20184

2020 A
2022
2016 o
2018 A

2016
20184

Estimator = Ratio t Model-based

Figure S7: Relative error by ratio and model-based estimator per year. The continuous line
and the shaded area represent the median and the 95% of values across replicates,
respectively. Information for FOB sets and common taxa (see Table 1) and shown
by sampling coverage scenario.
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Carcharhinidae M. nigricans Sphyrnidae Chelonioidea Mobulidae
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Figure S8: Relative error by ratio and model-based estimator per year. The continuous line
and the shaded area represent the median and the 95% of values across replicates,
respectively. Information for FOB sets and special interest taxa (see Table 1) and
shown by sampling coverage scenario.
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Figure S9: Relative error by ratio and model-based estimator per year. The continuous line
and the shaded area represent the median and the 95% of values across replicates,
respectively. Information for FOB sets and rare taxa (see Table 1) and shown by
sampling coverage scenario.
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Carcharhinidae |. albicans
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Figure S10: Relative error by ratio and model-based estimator per year. The continuous line
and the shaded area represent the median and the 95% of values across replicates,
respectively. Information for FSC sets and common taxa (see Table 1) and shown
by sampling coverage scenario.
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Mobulidae M. nigricans Sphyrnidae Chelonioidea Molidae
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Figure S11: Relative error by ratio and model-based estimator per year. The continuous line
and the shaded area represent the median and the 95% of values across replicates,
respectively. Information for FSC sets and special interest taxa (see Table 1) and
shown by sampling coverage scenario.
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Lamnidae P. glauca
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Figure S12: Relative error by ratio and model-based estimator per year. The continuous line
and the shaded area represent the median and the 95% of values across replicates,
respectively. Information for FSC sets and rare taxa (see Table 1) and shown by
sampling coverage scenario.
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