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ABSTRACT

Understanding spatiotemporal variability is crucial for accurate stock assessments and effective fishery
management. This study examines the relative abundance of blue sharks (Prionace glauca) in the Indian
Ocean using observer-based catch per unit effort (CPUE) data from the Taiwanese large-scale longline
fishery collected between 2005 and 2023. We applied a spatiotemporal modeling approach (sdmTMB)
to standardize the CPUE index. The nominal CPUE series displayed significant interannual variability,
particularly a sharp decline in 2015. In contrast, the standardized CPUE exhibited a clearer trend: it
increased steadily from 2005 to 2013, then fluctuated moderately but remained relatively stable through
2023. The coefficient of variation of standardized estimates decreased significantly from 28.0% to
12.0% during 2005-2013, indicating enhanced model precision, and stayed consistently below 25%
thereafter. Spatial analyses identified recurring hotspots of blue shark abundance in the southwestern
and southeastern Indian Ocean, especially during specific years and quarters, along with notable seasonal
and interannual shifts in distribution. These findings highlight the importance of spatiotemporal
standardization and suggest that blue shark abundance has remained relatively stable over the past two
decades, potentially indicating optimal utilization. Future assessments should integrate environmental
covariates to improve inference and support ecosystem-based management.

Keywords: blue shark; CPUE standardization; Indian Ocean; sdmTMB model; sustainable shark fishing;
spatiotemporal model.

1. Introduction

The blue shark (Prionace glauca) is a resilient pelagic species often caught as bycatch in
longline fisheries targeting tuna (Thunnus spp.) and swordfish (Xiphias gladius) (Aires-da-Silva
and Gallucci, 2007; Coelho et al., 2012). Global annual mortality is estimated at 10.74 million
individuals (Clarke et al., 2006). In the Indian Ocean, the blue shark coexists with at least ten
other shark bycatch species, yet it makes up only 2.0% of the overall bycatch composition
(Huang, 2011). It is currently listed as Near Threatened by the IUCN (Rigby et al., 2019).
Despite its ecological significance (Lucrezi et al., 2024), assessments often focus heavily on
landings from industrial fleets, neglecting discards and unreported catches. This oversight
undermines effective ecosystem-based management (Huang, 2011; Lascelles et al., 2014).

Uncertainty in stock assessments remains high due to underreporting; only 72% of catches
were reported in 2019 (IOTC, 2019), which has resulted in an underestimation of fishing
mortality (IOTC, 2021). Catch-per-unit-effort (CPUE) is a commonly used proxy for relative
abundance, but its reliability depends on rigorous standardization to reduce biases in fisheries-
dependent data (Ducharme-Barth et al., 2022; Hoyle et al., 2024). Recent advances in
spatiotemporal modeling, particularly the use of generalized linear mixed models (GLMMs)
(Thorson, 2019; Griiss et al., 2023), have greatly enhanced stock assessments by capturing
spatial heterogeneity and temporal dynamics. Notably, the simTMB framework accounts for
both spatial autocorrelation and temporal variation by integrating spatial random fields and
time-varying effects (Anderson et al., 2024). This modeling approach enables more realistic
inference from fisheries-dependent data by capturing distributional shifts and spatial
heterogeneity, which are critical for interpreting changes in blue shark abundance over time.

This working paper expands on earlier research that utilized a delta-lognormal model to
estimate standardized CPUE for blue sharks from 2005 to 2020 (I0TC-2022—WPEB18-19). In
this study, we extend the analysis to include data up to 2023 and implement the sdmTMB
framework, which allows us to incorporate spatial and temporal correlation structures. This
enhanced approach provides a more thorough investigation of blue shark distribution dynamics
in the Indian Ocean, offering valuable insights for regional stock assessments and conservation
planning.
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2. Materials and methods
2.1. Fisheries observer data

Catch and effort data for blue sharks (BSH) were collected from scientific observers on
Taiwanese large-scale longline vessels, coordinated by the Overseas Fisheries Development
Council of Taiwan, from 2005 to 2023. This dataset includes comprehensive records of catch
quantities, the number of hooks deployed, and spatiotemporal coordinates (date, latitude,
longitude) for each fishing operation. The analysis also incorporates additional variables such
as hooks, hooks per basket (HPB), and vessel size (CTNO).

2.3. Filtering and exploration of data

Prior to standardization, records lacking essential information (e.g., latitude, longitude,
hooks, or HPB) were excluded. Between 2005 and 2023, the filtered dataset comprised
78,244,649 hooks and 56,584 blue sharks (BSH), forming the basis for CPUE analyses (annual
trends shown in Fig. 1). Nominal CPUE (nCPUE), calculated as the number of BSH caught per
1,000 hooks, ranged from 0 to 49.3, with a mean of 0.73 and a standard deviation of 1.77.
Notably, 53.7% of the observations recorded a value of zero. The data exhibited a high degree
of right skewness (skewness = 9.53) and overdispersion, indicative of the infrequent nature of
catch events. The Anderson—Darling test strongly rejected the assumption of normality (A =
5127.8; p < 2.2 x 107'%; Anderson and Darling, 1954). Given the zero inflation, skewness, and
discreteness of the data, a tailored CPUE standardization approach was required to obtain
reliable abundance indices.

2.3. CPUE standardization statistical modeling

To standardize nCPUE while accounting for variable fishing effort and spatiotemporal
dependencies, we applied a spatiotemporal generalized linear mixed model (GLMM) using the
sdmTMB framework. This approach enhances traditional GLMMs by integrating spatial and
spatiotemporal structures through Gaussian Random Fields (GRFs). In this way, fisheries data
can be used to estimate abundance indices better (Anderson et al., 2024). The expected catch
per set 4; = E[BSH;] was modeled as:

log(,ul.) =X, f+w(s,)+e&(s,,t,)+1og(effort,)
where X;f represents the fixed effects; w(s;) is the spatial random effect modeled using a GRFs;
and &(s;,t;) 1s the spatiotemporal random effect following an AR(1) process at each location s;:

&(s;,t)= pe(s;,t._)+n(s,,t,_,) with p: temporal autocorrelation coefficient (-1 < p < 1);

n(sit;) ~ M0, 0) normally distributed innovations.; log(effort;): offset term (number of hooks
used). Fishing effort was standardized by including the log-transformed number of hooks per
set as an offset term. A spatial mesh with 212 knots was constructed (Fig. 2) to balance spatial
resolution and computational efficiency.

The explanatory variables included: Year (2005-2023); Quarter Q1 (January—March), Q2
(April-June), Q3 (July—September), and Q4 (October—December); gear configuration (HPBC),
categorized as shallow (<5 HPB), middle (5-10), deep (10-15), and ultra-deep (>15); and
CTNO, classified into CTS5, CT6, and CT7.

2.4. Models selection

Model selection was conducted in two stages. In the first stage, several observation families:
Poisson, Negative Binomial 1 (NB1, linear), Negative Binomial 2 (NB2, quadratic), Tweedie,
delta-gamma, and delta-lognormal - were assessed using a full fixed-effects structure to ensure

comparability. The best-performing family was identified based on the Akaike Information
Criterion (AIC; Akaike, 1973) and Bayesian Information Criterion (BIC; Schwarz, 1978). In
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the second stage, the fixed-effects structure was refined using the chosen family. Candidate
variables were iteratively added or removed, with model selection guided by statistical
significance and information-theoretic criteria, including AIC, BIC, and Akaike weights, to
optimize the balance between model fit and complexity.

Model adequacy was evaluated using residual diagnostics from the sdmTMB framework.
This included Q—Q (quantile-quantile) plots and dispersion tests utilizing the DHARMa
package, along with annual Q—Q plots to assess temporal consistency. Spatial autocorrelation
was analyzed using Moran’s I, and residual maps were reviewed to identify potential spatial
biases.

2.5. Estimation of standardized CPUE and uncertainty

Standardized CPUE trends and associated uncertainty were estimated using the best-
performing sdmTMB model. We conducted posterior simulations to generate CPUE predictions
and derived 95% confidence intervals using a bias-corrected percentile method. To facilitate
year-to-year comparisons, all standardized CPUE values were normalized to their overall mean.
This approach enhances the clarity of trends and highlights differences between nominal and
standardized indices while accounting for variations in sampling effort.

The coefficient of variation (CV) for each year’s CPUE was calculated as the ratio of the
standard error to the mean, providing a relative measure of uncertainty across years. All
analyses and visualizations were performed in R (v4.4.2) using the sdmTMB package
(Anderson et al., 2024; github.com/pbs-assess/sdmTMB).

3. Results and discussion
3.1. Selection of the best model

All candidate families successfully converged (maximum gradient < 0.0001), with the delta-
lognormal model (M-6) providing the best fit according to AIC and BIC (Table 1). Using this
family, we tested multiple sdmTMB models, among which Model M-5 demonstrated the
strongest support, indicated by the lowest AIC and BIC values and an Akaike weight of 1.00.
All models in this set, except for the NULL model (gradient = 0.0019), also converged well
(Table 2). Consequently, Model M-5 was chosen for further analysis.

The adequacy of Model M-5 was confirmed through diagnostic checks (Figs. 3—6). Residual
plots (Fig. 3) indicated no significant deviation from uniformity (KS test, p = 0.536), although
overdispersion and outliers were significant (both p < 0.001). No spatial autocorrelation was
found (Moran’s [ = 0.004, p = 0.16; Fig. 4), and temporal Q-Q plots, along with spatiotemporal
residuals (Figs. 5-6), revealed no major deviations or clustering.

3.2. The trends of CPUE

The nominal CPUE series exhibited significant interannual variability, particularly with a
marked decline in 2015. In contrast, the standardized CPUE estimates from the sdmTMB
model indicated a clearer trend, showing a steady increase from 2005 to 2013, followed by
moderate fluctuations. During the period from 2005 to 2013, the CV decreased significantly
from 28.0% to 12.0%, representing a 57.1% reduction and demonstrating notable
improvements in model precision. Although some interannual variability continued after
2013, all CV values remained below 25%, suggesting a stable and reliable phase for
abundance estimation. These findings indicate that blue shark abundance in the Indian Ocean
has remained relatively stable, with potential signs of optimal utilization between 2005 and
2023 (Table 3; Fig. 7).
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3.3. Spatiotemporal dynamics

The spatial distribution of standardized CPUE for blue sharks ranged from 10°S to 45°S,
featuring two high-abundance cores: (1) the southwestern region (20°E—40°E) and (2) the
southeastern region (80°E—110°E), both concentrated around 30°S to 45°S. Moderate
abundance was observed patchily across central longitudes (50°E—80°E) (Fig. 8). Quarterly
patterns revealed dynamic shifts in blue shark distribution, with higher CPUE noted in the
southeastern Indian Ocean during Quarter 1, while other quarters displayed varying hotspots
(Fig. 9). Interannual variability in blue shark CPUE from 2005 to 2023 indicated intermittent
hotspots in the southwestern Indian Ocean, alongside low abundance in northern areas (Fig.
10). Notably, hotspots were present in both the southwestern and southeastern regions in 2009.
After 2015, spatial coverage expanded, resulting in widespread moderate-to-high CPUE.

This paper highlights the effectiveness of spatiotemporal modeling in analyzing the
distribution and relative abundance of blue sharks in the Indian Ocean (Griiss et al., 2019;
Fuster-Alonso et al., 2024; Hoyle et al., 2024). The findings indicate quarterly and interannual
variations in CPUE, which reflect the species' extensive mobility and habitat utilization. These
variations are likely influenced by changing oceanographic conditions, prey availability, and
fishing effort. Although environmental variables were not included in the model, it still provides
valuable insights into spatiotemporal trends.

Despite its contributions, the study has limitations, such as the lack of fishery-independent
data and incomplete spatial coverage. Future research should incorporate environmental
covariates, extend the observer data series, and consider size- or sex-specific habitat use to
enhance stock assessments and spatial management.

Overall, this working paper supports the application of spatiotemporal standardization in
data-limited contexts and advocates for utilizing predicted CPUE from Taiwanese longline
fisheries as a reliable abundance index for blue sharks in the Indian Ocean.
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Fig. 1. Annual summary of observer data for BSH, including longline fishing sets, the number of hooks used, and the total BSH

catch (in numbers).
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Fig. 2. Mesh structure and observed nominal CPUE values for sdmTMB modeling. Each circle represents a fishing set location,
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Table 1. Comparison of alternative observation model families for blue shark CPUE in the Indian Ocean, using a full fixed-
effects structure. The table reports the number of parameters, AIC, AAIC, BIC, ABIC, and maximum gradient. “A” indicates
the difference from the minimum value. The best-performing model (bolded) was selected for further refinement.

Model Model type No. AIC AAIC BIC Apic  Maximum
parameters gradient
M-1  Tweedie 37 103649.1 4765.1 103800.7 4638.8 <0.0001
M-2  Poisson 35 133275.8 34391.8 133410.5 34248.6 <0.0001
M-3  Delta-gamma 52 101076.4 2192.4 101354.3 2192.4 <0.0001
M-4  Negative Binomial 1 (linear) 36 101882.4 2998.4 102025.6 2863.7 <0.0001
M-5  Negative Binomial 2 (quadratic) 36 100711.3 1827.3 100854.4 1692.6 <0.0001

M-6  Delta-lognormal 52 98884.0 0.0 99161.9 0.0 <0.0001
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Table 2. Comparison of fixed-effects structures using the delta-lognormal model (sdmTMB) for blue shark CPUE. Metrics
include the number of parameters (No. pa), residual degrees of freedom (Res. DF), AIC, AAIC, BIC, ABIC, Akaike weight,
and maximum gradient. “Station” represents spatial (latitude and longitude) effects. The NULL model includes only the
intercept. The best-fitting model (bolded) was selected for further analysis..

Model Model structure No.Res. A1c AAIC BIC agic  Akaike  Maximun
pa DF weight  gradient
M-1  NULL 22 33509 1103704  11486.4 110395.7  11233.81 0.00 0.0019

Catch ~ Year + Station, offset =
log(Hooks)
Catch ~ Year + Station + HPBC +
M-3 CTNO, offset = log(Hooks) 38 33505 99007.78 123.74 99167.75 5.86 0.00 <0.0001
Catch ~ Year + Station + HPBC +
M-4  Quarter + CTNO + Year:HPBC, 46 33501  98949.59 65.55 99176.92 15.03 0.00 < 0.0001
offset = log(Hooks)
Catch ~ Year + Station + HPBC +
M-5  Quarter + CTNO + Year:HPBC + 52 33498 98884.04 0.00 99161.89 0.00 1.00 <0.0001
HPBC:Quarter, offset = log(Hooks)

M-2 32 33508 99201.72 317.68 99311.17 149.28 0.00 <0.0001
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Table 3. Summary of yearly trends in blue shark CPUE in the Indian Ocean: relative nominal and standardized
estimates from sdmTMB models, along with 95% ClIs and CV for the best-fitting model.

Year Relative nominal CPUE Standardized CPUE (95%Cls) CV

2005 0.395 0.452 (0.296 — 0.671) 0.280
2006 0.580 0.562 (0.368 — 0.830) 0.301
2007 0.716 0.738 (0.488 — 1.067) 0.298
2008 0.617 0.666 (0.420 — 1.000) 0.335
2009 1.525 1.421 (1.062 — 1.859) 0.213
2010 0.689 0.718 (0.527 — 0.952) 0.185
2011 1.053 0.902 (0.642 — 1.230) 0.271
2012 1.722 1.428 (1.163 — 1.751) 0.221
2013 1.929 1.745 (1.410 — 2.125) 0.120
2014 1.155 1.098 (0.827 — 1.413) 0.152
2015 0.486 0.563 (0.354-0.837) 0.217
2016 0.807 0.849 (0.581 — 1.181) 0.198
2017 1.042 1.012 (0.764 — 1.305) 0.153
2018 1.017 1.091 (0.807 — 1.435) 0.175
2019 0.831 0.816 (0.593 — 1.099) 0.215
2020 0.634 0.727 (0.513 — 0.988) 0.208
2021 0.745 0.786 (0.555 — 1.070) 0.231
2022 1.711 1.406 (1.078 — 1.795) 0.177
2023 1.346 1.352 (1.044 -1.716) 0.170




