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ABSTRACT 
Understanding spatiotemporal variability is crucial for accurate stock assessments and effective fishery 

management. This study examines the relative abundance of blue sharks (Prionace glauca) in the Indian 

Ocean using observer-based catch per unit effort (CPUE) data from the Taiwanese large-scale longline 

fishery collected between 2005 and 2023. We applied a spatiotemporal modeling approach (sdmTMB) 

to standardize the CPUE index. The nominal CPUE series displayed significant interannual variability, 

particularly a sharp decline in 2015. In contrast, the standardized CPUE exhibited a clearer trend: it 

increased steadily from 2005 to 2013, then fluctuated moderately but remained relatively stable through 

2023. The coefficient of variation of standardized estimates decreased significantly from 28.0% to 

12.0% during 2005–2013, indicating enhanced model precision, and stayed consistently below 25% 

thereafter. Spatial analyses identified recurring hotspots of blue shark abundance in the southwestern 

and southeastern Indian Ocean, especially during specific years and quarters, along with notable seasonal 

and interannual shifts in distribution. These findings highlight the importance of spatiotemporal 

standardization and suggest that blue shark abundance has remained relatively stable over the past two 

decades, potentially indicating optimal utilization. Future assessments should integrate environmental 

covariates to improve inference and support ecosystem-based management. 
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1. Introduction 

The blue shark (Prionace glauca) is a resilient pelagic species often caught as bycatch in 

longline fisheries targeting tuna (Thunnus spp.) and swordfish (Xiphias gladius) (Aires-da-Silva 

and Gallucci, 2007; Coelho et al., 2012). Global annual mortality is estimated at 10.74 million 

individuals (Clarke et al., 2006). In the Indian Ocean, the blue shark coexists with at least ten 

other shark bycatch species, yet it makes up only 2.0% of the overall bycatch composition 

(Huang, 2011). It is currently listed as Near Threatened by the IUCN (Rigby et al., 2019). 

Despite its ecological significance (Lucrezi et al., 2024), assessments often focus heavily on 

landings from industrial fleets, neglecting discards and unreported catches. This oversight 

undermines effective ecosystem-based management (Huang, 2011; Lascelles et al., 2014). 

Uncertainty in stock assessments remains high due to underreporting; only 72% of catches 

were reported in 2019 (IOTC, 2019), which has resulted in an underestimation of fishing 

mortality (IOTC, 2021). Catch-per-unit-effort (CPUE) is a commonly used proxy for relative 

abundance, but its reliability depends on rigorous standardization to reduce biases in fisheries-

dependent data (Ducharme-Barth et al., 2022; Hoyle et al., 2024). Recent advances in 

spatiotemporal modeling, particularly the use of generalized linear mixed models (GLMMs) 

(Thorson, 2019; Grüss et al., 2023), have greatly enhanced stock assessments by capturing 

spatial heterogeneity and temporal dynamics. Notably, the sdmTMB framework accounts for 

both spatial autocorrelation and temporal variation by integrating spatial random fields and 

time-varying effects (Anderson et al., 2024). This modeling approach enables more realistic 

inference from fisheries-dependent data by capturing distributional shifts and spatial 

heterogeneity, which are critical for interpreting changes in blue shark abundance over time.  

This working paper expands on earlier research that utilized a delta-lognormal model to 

estimate standardized CPUE for blue sharks from 2005 to 2020 (IOTC–2022–WPEB18-19). In 

this study, we extend the analysis to include data up to 2023 and implement the sdmTMB 

framework, which allows us to incorporate spatial and temporal correlation structures. This 

enhanced approach provides a more thorough investigation of blue shark distribution dynamics 

in the Indian Ocean, offering valuable insights for regional stock assessments and conservation 

planning. 
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2. Materials and methods 

2.1. Fisheries observer data 

Catch and effort data for blue sharks (BSH) were collected from scientific observers on 

Taiwanese large-scale longline vessels, coordinated by the Overseas Fisheries Development 

Council of Taiwan, from 2005 to 2023. This dataset includes comprehensive records of catch 

quantities, the number of hooks deployed, and spatiotemporal coordinates (date, latitude, 

longitude) for each fishing operation. The analysis also incorporates additional variables such 

as hooks, hooks per basket (HPB), and vessel size (CTNO). 

2.3. Filtering and exploration of data   

Prior to standardization, records lacking essential information (e.g., latitude, longitude, 

hooks, or HPB) were excluded. Between 2005 and 2023, the filtered dataset comprised 

78,244,649 hooks and 56,584 blue sharks (BSH), forming the basis for CPUE analyses (annual 

trends shown in Fig. 1). Nominal CPUE (nCPUE), calculated as the number of BSH caught per 

1,000 hooks, ranged from 0 to 49.3, with a mean of 0.73 and a standard deviation of 1.77. 

Notably, 53.7% of the observations recorded a value of zero. The data exhibited a high degree 

of right skewness (skewness = 9.53) and overdispersion, indicative of the infrequent nature of 

catch events. The Anderson–Darling test strongly rejected the assumption of normality (A = 

5127.8; p < 2.2 × 10-16; Anderson and Darling, 1954). Given the zero inflation, skewness, and 

discreteness of the data, a tailored CPUE standardization approach was required to obtain 

reliable abundance indices. 

 

2.3. CPUE standardization statistical modeling 

To standardize nCPUE while accounting for variable fishing effort and spatiotemporal 

dependencies, we applied a spatiotemporal generalized linear mixed model (GLMM) using the 

sdmTMB framework. This approach enhances traditional GLMMs by integrating spatial and 

spatiotemporal structures through Gaussian Random Fields (GRFs). In this way, fisheries data 

can be used to estimate abundance indices better (Anderson et al., 2024). The expected catch 

per set µi = E[BSHi] was modeled as:  

( )log ( ) ( , ) log( )i i i i i iX s s t effort   = + + + , 

where Xiβ represents the fixed effects; ω(si) is the spatial random effect modeled using a GRFs; 

and (si,ti) is the spatiotemporal random effect following an AR(1) process at each location si: 

1 1( , ) ( , ) ( , )i i i i i is t s t s t  − −= +   with : temporal autocorrelation coefficient (-1 < p < 1); 

(si,ti) ~ (0,2) normally distributed innovations.; log(efforti): offset term (number of hooks 

used). Fishing effort was standardized by including the log-transformed number of hooks per 

set as an offset term. A spatial mesh with 212 knots was constructed (Fig. 2) to balance spatial 

resolution and computational efficiency. 

The explanatory variables included: Year (2005–2023); Quarter Q1 (January–March), Q2 

(April–June), Q3 (July–September), and Q4 (October–December); gear configuration (HPBC), 

categorized as shallow (<5 HPB), middle (5–10), deep (10–15), and ultra-deep (≥15); and 

CTNO, classified into CT5, CT6, and CT7. 

 

2.4. Models selection 

Model selection was conducted in two stages. In the first stage, several observation families: 

Poisson, Negative Binomial 1 (NB1, linear), Negative Binomial 2 (NB2, quadratic), Tweedie, 

delta-gamma, and delta-lognormal - were assessed using a full fixed-effects structure to ensure 

comparability. The best-performing family was identified based on the Akaike Information 

Criterion (AIC; Akaike, 1973) and Bayesian Information Criterion (BIC; Schwarz, 1978). In 
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the second stage, the fixed-effects structure was refined using the chosen family. Candidate 

variables were iteratively added or removed, with model selection guided by statistical 

significance and information-theoretic criteria, including AIC, BIC, and Akaike weights, to 

optimize the balance between model fit and complexity. 

Model adequacy was evaluated using residual diagnostics from the sdmTMB framework. 

This included Q–Q (quantile-quantile) plots and dispersion tests utilizing the DHARMa 

package, along with annual Q–Q plots to assess temporal consistency. Spatial autocorrelation 

was analyzed using Moran’s I, and residual maps were reviewed to identify potential spatial 

biases. 

 

2.5. Estimation of standardized CPUE and uncertainty 

Standardized CPUE trends and associated uncertainty were estimated using the best-

performing sdmTMB model. We conducted posterior simulations to generate CPUE predictions 

and derived 95% confidence intervals using a bias-corrected percentile method. To facilitate 

year-to-year comparisons, all standardized CPUE values were normalized to their overall mean. 

This approach enhances the clarity of trends and highlights differences between nominal and 

standardized indices while accounting for variations in sampling effort. 

The coefficient of variation (CV) for each year’s CPUE was calculated as the ratio of the 

standard error to the mean, providing a relative measure of uncertainty across years. All 

analyses and visualizations were performed in R (v4.4.2) using the sdmTMB package 

(Anderson et al., 2024; github.com/pbs-assess/sdmTMB). 

 

3. Results and discussion 

3.1. Selection of the best model  

All candidate families successfully converged (maximum gradient < 0.0001), with the delta-

lognormal model (M-6) providing the best fit according to AIC and BIC (Table 1). Using this 

family, we tested multiple sdmTMB models, among which Model M-5 demonstrated the 

strongest support, indicated by the lowest AIC and BIC values and an Akaike weight of 1.00. 

All models in this set, except for the NULL model (gradient = 0.0019), also converged well 

(Table 2). Consequently, Model M-5 was chosen for further analysis. 

The adequacy of Model M-5 was confirmed through diagnostic checks (Figs. 3–6). Residual 

plots (Fig. 3) indicated no significant deviation from uniformity (KS test, p = 0.536), although 

overdispersion and outliers were significant (both p < 0.001). No spatial autocorrelation was 

found (Moran’s I = 0.004, p = 0.16; Fig. 4), and temporal Q-Q plots, along with spatiotemporal 

residuals (Figs. 5–6), revealed no major deviations or clustering. 

 

3.2. The trends of CPUE  

The nominal CPUE series exhibited significant interannual variability, particularly with a 

marked decline in 2015. In contrast, the standardized CPUE estimates from the sdmTMB 

model indicated a clearer trend, showing a steady increase from 2005 to 2013, followed by 

moderate fluctuations. During the period from 2005 to 2013, the CV decreased significantly 

from 28.0% to 12.0%, representing a 57.1% reduction and demonstrating notable 

improvements in model precision. Although some interannual variability continued after 

2013, all CV values remained below 25%, suggesting a stable and reliable phase for 

abundance estimation. These findings indicate that blue shark abundance in the Indian Ocean 

has remained relatively stable, with potential signs of optimal utilization between 2005 and 

2023 (Table 3; Fig. 7). 
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3.3. Spatiotemporal dynamics  

The spatial distribution of standardized CPUE for blue sharks ranged from 10°S to 45°S, 

featuring two high-abundance cores: (1) the southwestern region (20°E–40°E) and (2) the 

southeastern region (80°E–110°E), both concentrated around 30°S to 45°S. Moderate 

abundance was observed patchily across central longitudes (50°E–80°E) (Fig. 8). Quarterly 

patterns revealed dynamic shifts in blue shark distribution, with higher CPUE noted in the 

southeastern Indian Ocean during Quarter 1, while other quarters displayed varying hotspots 

(Fig. 9). Interannual variability in blue shark CPUE from 2005 to 2023 indicated intermittent 

hotspots in the southwestern Indian Ocean, alongside low abundance in northern areas (Fig. 

10). Notably, hotspots were present in both the southwestern and southeastern regions in 2009. 

After 2015, spatial coverage expanded, resulting in widespread moderate-to-high CPUE.  

This paper highlights the effectiveness of spatiotemporal modeling in analyzing the 

distribution and relative abundance of blue sharks in the Indian Ocean (Grüss et al., 2019; 

Fuster-Alonso et al., 2024; Hoyle et al., 2024). The findings indicate quarterly and interannual 

variations in CPUE, which reflect the species' extensive mobility and habitat utilization. These 

variations are likely influenced by changing oceanographic conditions, prey availability, and 

fishing effort. Although environmental variables were not included in the model, it still provides 

valuable insights into spatiotemporal trends. 

Despite its contributions, the study has limitations, such as the lack of fishery-independent 

data and incomplete spatial coverage. Future research should incorporate environmental 

covariates, extend the observer data series, and consider size- or sex-specific habitat use to 

enhance stock assessments and spatial management.  

Overall, this working paper supports the application of spatiotemporal standardization in 

data-limited contexts and advocates for utilizing predicted CPUE from Taiwanese longline 

fisheries as a reliable abundance index for blue sharks in the Indian Ocean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IOTC-2025-WPEB21(AS)-10



References 
Aires-da-Silva, A.M. and Gallucci, V.F., 2007. Demographic and risk analyses applied to management and 

conservation of the blue shark (Prionace glauca) in the North Atlantic Ocean. Marine and Freshwater Research, 

58(6), pp.570-580. 

Akaike, H., 1973. Information theory and an extension of maximum likelihood principle, pp. 267-281. 

Anderson, S.C., Ward, E.J., English, P.A. and Barnett, L.A.  2024. sdmTMB: an R package for fast, flexible, and 

user-friendly generalized linear mixed effects models with spatial and spatiotemporal random fields. BioRxiv, 

2022.2003. 2024.485545. 

Anderson, T. W., Darling, D. A., 1954. A Test of Goodness of Fit. Journal of American Statistical Association, 49, 

765-769. 

Clarke, S.C., McAllister, M.K., Milner‐Gulland, E.J., Kirkwood, G.P., Michielsens, C.G., Agnew, D.J., Pikitch, E.K., 

Nakano, H. and Shivji, M.S., 2006. Global estimates of shark catches using trade records from commercial 

markets. Ecology letters, 9(10), pp.1115-1126. 

Coelho, R., Fernandez-Carvalho, J., Lino, P.G. and Santos, M.N., 2012. An overview of the hooking mortality of 

elasmobranchs caught ina swordfish pelagic longline fishery in the Atlantic Ocean. Aquatic Living Resources, 

25(4), pp.311-319. 

Ducharme-Barth, N.D., Grüss, A., Vincent, M.T., Kiyofuji, H., Aoki, Y., Pilling, G., Hampton, J. and Thorson, J.T., 

2022. Impacts of fisheries-dependent spatial sampling patterns on catch-per-unit-effort standardization: a 

simulation study and fishery application. Fisheries Research, 246, p.106169. 

Fuster-Alonso, A., Conesa, D., Cousido-Rocha, M., Izquierdo, F., Paradinas, I., Cerviño, S., Pennino, M. G., 2024. 

Accounting for spatio-temporal and sampling dependence in survey and CPUE biomass indices: simulation 

and Bayesian modeling framework. ICES Journal of Marine Science 81(5), 984-995. 

Grüss, A., McKenzie, J.R., Lindegren, M., Bian, R., Hoyle, S.D. and Devine, J.A., 2023. Supporting a stock 

assessment with spatio-temporal models fitted to fisheries-dependent data. Fisheries Research, 262, p.106649. 

Grüss, A., Walter III, J.F., Babcock, E.A., Forrestal, F.C., Thorson, J.T., Lauretta, M.V. and Schirripa, M.J., 2019. 

Evaluation of the impacts of different treatments of spatio-temporal variation in catch-per-unit-effort 

standardization models. Fisheries Research, 213, pp.75-93. 

Hoyle, S. D., Campbell, R. A., Ducharme-Barth, N. D., Grüss, A., Moore, B. R., Thorson, J. T., Tremblay-Boyer, L., 

Winker, H., Zhou, S., Maunder, M. N., 2024. Catch per unit effort modelling for stock assessment: A summary 

of good practices. Fisheries Research 269, 106860. 

Hoyle, S.D., Campbell, R.A., Ducharme-Barth, N.D., Grüss, A., Moore, B.R., Thorson, J.T., Tremblay-Boyer, L., 

Winker, H., Zhou, S. and Maunder, M.N., 2024. Catch per unit effort modelling for stock assessment: A 

summary of good practices. Fisheries Research, 269, p.106860. 

Huang, H.W., 2011. Bycatch of high sea longline fisheries and measures taken by Taiwan: Actions and challenges. 

Marine Policy, 35(5), pp.712-720. 

IOTC., 2019. Report on IOTC data collection and statistics. Mahé, Seychelles: IOTC Secretariat. 

IOTC., 2021. Review of the statistical data available for bycatch species Mahé, Seychelles: Indian Ocean Tuna 

Commission. 

Lascelles, B., Notarbartolo Di Sciara, G., Agardy, T., Cuttelod, A., Eckert, S., Glowka, L., Hoyt, E., Llewellyn, F., 

Louzao, M., Ridoux, V. and Tetley, M.J., 2014. Migratory marine species: their status, threats and conservation 

management needs. Aquatic Conservation: Marine and Freshwater Ecosystems, 24(S2), pp.111-127. 

Lucrezi, S. and Matiza, T., 2024. Sharks, tourism and conservation: a test of causative and mediating effects on scuba 

divers’ attitude. Marine Policy, 160, p.105996. 

Rigby, C.L., Barreto, R., Carlson, J., et al., 2019. Prionace glauca. IUCN Red. List Threat Species. 

https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T39381A2915850.en. 

Schwarz, G., 1978. Estimating the dimension of a model. The annals of statistics, pp.461-464. 

Thorson, J.T., 2019. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in 

stock, ecosystem, habitat and climate assessments. Fisheries Research, 210(February), pp.143-161. 

 

 

 

 

 

IOTC-2025-WPEB21(AS)-10

https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T39381A2915850.en


 

 

 
Fig. 1. Annual summary of observer data for BSH, including longline fishing sets, the number of hooks used, and the total BSH 

catch (in numbers). 
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Fig. 2. Mesh structure and observed nominal CPUE values for sdmTMB modeling. Each circle represents a fishing set location, 

with size and color indicating relative nominal CPUE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IOTC-2025-WPEB21(AS)-10



 

 

 
 

 

Fig. 3. Residual diagnostics for sdmTMB model using DHARMa. 
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Fig. 4. Residual diagnostics for sdmTMB model: Spatial residual patterns with Moran’s I test results. 
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Fig. 5. Residual diagnostics for sdmTMB: Yearly Q–Q plots. 
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Fig. 6. Residual diagnostics for sdmTMB: Spatiotemporal residual distributions by year.  
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Fig. 7. Top: Time series of nominal and standardized CPUE estimates for blue sharks in the Indian Ocean (2005 –2023), 

derived from sdmTMB models. Shaded areas represent 95% confidence intervals. Bottom: Coefficient of variation (CV) 

for the standardized abundance indices. 
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Fig. 8. Spatial distribution of standardized CPUE for blue sharks in the Indian Ocean, using aggregated data from 2005 to 2023. 
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Fig. 9. Distribution of the standardized CPUE for blue sharks in the Indian Ocean over the period of 2005 to 2023 by quarterly 

patterns. 
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Fig. 10. Annual spatiotemporal distribution of standardized CPUE for blue sharks in the Indian Ocean from 2005 to 2023. 
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Table 1. Comparison of alternative observation model families for blue shark CPUE in the Indian Ocean, using a full fixed-

effects structure. The table reports the number of parameters, AIC, ΔAIC, BIC, ΔBIC, and maximum gradient. “” indicates 

the difference from the minimum value. The best-performing model (bolded) was selected for further refinement. 

 

Model Model type 
No. 

parameters 
AIC AIC BIC BIC 

Maximum 

gradient 

M-1 Tweedie 37 103649.1 4765.1 103800.7 4638.8 <0.0001 

M-2 Poisson 35 133275.8 34391.8 133410.5 34248.6 <0.0001 

M-3 Delta-gamma 52 101076.4 2192.4 101354.3 2192.4 <0.0001 

M-4 Negative Binomial 1 (linear) 36 101882.4 2998.4 102025.6 2863.7 <0.0001 

M-5 Negative Binomial 2 (quadratic) 36 100711.3 1827.3 100854.4 1692.6 <0.0001 

M-6 Delta-lognormal 52 98884.0 0.0 99161.9 0.0 <0.0001 
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Table 2. Comparison of fixed-effects structures using the delta-lognormal model (sdmTMB) for blue shark CPUE. Metrics 

include the number of parameters (No. pa), residual degrees of freedom (Res. DF), AIC, ΔAIC, BIC, ΔBIC, Akaike weight, 

and maximum gradient. “Station” represents spatial (latitude and longitude) effects. The NULL model includes only the 

intercept. The best-fitting model (bolded) was selected for further analysis.. 

 

Model Model structure  
No. 

pa 

Res. 

DF 
AIC AIC BIC BIC 

Akaike 

weight 

Maximun 

gradient 

M-1 NULL 22 33509 110370.4 11486.4 110395.7 11233.81 0.00 0.0019 

M-2 
Catch ~ Year + Station, offset = 

log(Hooks) 
32 33508 99201.72 317.68 99311.17 149.28 0.00 < 0.0001 

M-3 
Catch  ~ Year + Station + HPBC + 

CTNO, offset = log(Hooks) 
38 33505 99007.78 123.74 99167.75 5.86 0.00 < 0.0001 

M-4 

Catch  ~ Year + Station + HPBC + 

Quarter + CTNO + Year:HPBC , 

offset = log(Hooks) 

46 33501 98949.59 65.55 99176.92 15.03 0.00 < 0.0001 

M-5 

Catch  ~ Year + Station + HPBC + 

Quarter + CTNO + Year:HPBC + 

HPBC:Quarter, offset = log(Hooks) 

52 33498 98884.04 0.00 99161.89 0.00 1.00 < 0.0001 
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Table 3. Summary of yearly trends in blue shark CPUE in the Indian Ocean: relative nominal and standardized 

estimates from sdmTMB models, along with 95% CIs and CV for the best-fitting model. 

 

Year Relative nominal CPUE Standardized CPUE (95%CIs) CV 

2005 0.395 0.452 (0.296 – 0.671) 0.280 

2006 0.580 0.562 (0.368 – 0.830) 0.301 

2007 0.716 0.738 (0.488 – 1.067) 0.298 

2008 0.617 0.666 (0.420 – 1.000) 0.335 

2009 1.525 1.421 (1.062 – 1.859) 0.213 

2010 0.689 0.718 (0.527 – 0.952) 0.185 

2011 1.053 0.902 (0.642 – 1.230) 0.271 

2012 1.722 1.428 (1.163 – 1.751) 0.221 

2013 1.929 1.745 (1.410 – 2.125) 0.120 

2014 1.155 1.098 (0.827 – 1.413) 0.152 

2015 0.486 0.563 (0.354 – 0.837 ) 0.217 

2016 0.807 0.849 (0.581 – 1.181) 0.198 

2017 1.042 1.012 (0.764 – 1.305) 0.153 

2018 1.017 1.091 (0.807 – 1.435) 0.175 

2019 0.831 0.816 (0.593 – 1.099) 0.215 

2020 0.634 0.727 (0.513 – 0.988) 0.208 

2021 0.745 0.786 (0.555 – 1.070) 0.231 

2022 1.711 1.406 (1.078 – 1.795) 0.177 

2023 1.346 1.352 (1.044 -1.716) 0.170 
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