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Introduction  

Strengthening tuna management is one of the primary tasks 
for the new Indian Ocean Tuna Commission (IOTC). Stock 
assessment and the prediction of the dynamics of the tuna 
resources will become increasingly important research topics 
because they provide the basic information for the 
management decision process. Under these circumstances, 
this paper attempts to develop the stock analyses and 
prediction techniques using neural networks. As a first step 
and as a test study, analyses and predictions of catch rates of 
the Japanese yellowfin tuna longline fisheries are attempted. 

Neural networks 

Background 

Because fisheries data are uncertain in quality, and thus not 
adequate to fit rigid and logical mathematical models like 
those used in physics, engineering or chemistry, in recent 
years Artificial Intelligence (AI) methods have been 
introduced to fisheries resource analyses. Three major 
approaches have been applied with the AI techniques in 
fisheries: fuzzy logic, expert systems, and neutral networks. 
Fuzzy logic and expert systems are appropriate approaches 
for handling qualitative and descriptive data (thus, discrete 
variables) (Appendix A), while the neural network is a 
suitable method for prediction using the continuous variables 
that we usually handle, such as catch, effort, and CPUE as 
the input data.  
Neural networks do not require a particular functional 
relationship and distribution assumptions for the data. Hence, 
they can be easily applied by non-statisticians and novice 
users (Cherkassky et al., 1994). They conduct parallel 
processing of all the information by non-linear interaction 
treatment. Neural networks have two special functions, 
‘learning’ ability and the ability to recognize and classify 
patterns (Aihara, 1988). They can therefore learn complex 
non-linear events, then through a ‘teaching – learning’ 
process classify new information into a particular pattern. 
They are thus useful for predictions. 
In recent years, a number of studies have been conducted in 
Japan using neural networks on the prediction analyses. In 
fisheries, Aoki and Komatsu (1995a) predicted fluctuation of 
sardine abundance, Hawing et al (1996) and Asano et al 
(1996) forecast catch of jack mackerels and Japanese sardine, 
respectively, and Kusakabe et al (1997) predicted recruitment 
of sand eel. In fisheries oceanography, Komatsu et al (1994) 
predicted the path type and offshore distance of the Kuroshio 
Current, Aoki and Komatsu (1995b) conducted neural 
network analyses of zooplankton abundance and long-term 

climate-ocean fluctuations, and Tameishi et al (1986) 
reported forecasting fishing and oceanographic conditions 
using a neural network. The predictions resulting from all of 
these studies were fairly accurate. 
We therefore applied a neural network to our yellowfin tuna 
data to develop a prediction technique for the CPUE of adult 
fish in the longline fisheries. Appendix A provides more 
information on fuzzy logic and expert systems. These AI 
techniques in fisheries and oceanography are still 
experimental, hence a careful examination is necessary to see 
if they are feasible for analyses of tuna fisheries resources. 

Theory 

In the nervous system of living creatures there is a neural 
network system which is composed of (a) many neurons and 
(b) the synapses, which exchange the weighted signals 
among neurons (Figure 1). The neural network system shares 
the following characteristics with electrical circuits (Azabu, 
1988).  Neurons receive a stimulus (electrical signals) from 
other neurons. That stimulus has the accumulated values of 
the various neurons, and each neuron is weighted by each 
synapse. If the value of the summed neuron exceeds the 
threshold value, then that neuron (electrical signal) is re-
transferred to other neurons.. 
There are two types of neural network system, depending 
upon the bonding structure among neurons (Figure 2): (a) 
feed-forward (layered) networks, in which the signals are 
transmitted in only one direction, and (b) a mutual bond 
networks, in which signals are exchanged in any direction 
among neurons (Kikuchi, 1988). The former is suitable for 
developing a pattern recognition technique, while the latter is 
suitable for solving problems of association, combination, 
and optimisation. In this study, we applied the first type of 
neural network because a pattern recognition problem is 
involved in the study. 
A layered neural network has an input layer and an output 
layer, with several intermediate (hidden) layers in between 
(Figure 2). The input signal goes through units in the input 
layer, is transmitted into units in the intermediate layer, and 
finally becomes an output signal. A layered neural network 
generally uses the back-propagation technique. This 
technique has the function of adjusting the weight and 
threshold values in the units (neurons) in order to minimize 
errors between output signal values and the correct signal 
values (or ‘teacher’ signal values). This process is called 
‘supervised learning’. Computer software that can perform 
such processes is called a neural network simulator.  
In practice, it has been shown that greater weight values in 
the neural network, given after completing the ‘learning’ 
process, affect the output value greatly, while smaller values 
affect it less. Based on this relationship, it is possible to find 
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out which input data greatly contribute to output values by 
checking the size of the weight values in the neural network 
that completes the ‘learning’ process. We used a commercial 
neural network simulator, RHINE (CRC Inc.), on a personal 
computer in this study.  

Analyses 

Data 

In this analysis, two types of the data sets are prepared: 
CPUE of Japanese longline fisheries and catch-at-age of all 
fisheries. The yellowfin (YFT) stock in the  western Indian 
Ocean is assumed to be as defined by Nishida (1991).  It is 
further assumed that FAO Area F51 is the approximate area 
of the western stock.  

(1) CPUE (Japanese longline) 

For a preliminary attempt, Japanese longline data for 1970-
92, by 5°x5° areas within FAO Area F51, from the NRIFSF 
database were used, . Catch and effort (hooks) are primarily 
used.  

(2)  Catch-at-age (CAA)  

Catch-at-age (CAA) data (1970-95) in the western Indian 
Ocean estimated by Nishida (IOTC/TWS/98/20) are used in 
the analyses. In that paper, CAA matrices for 8 gear types 
(Table 1) are initially estimated, then the global CAA is 
evaluated by summing up all the gear-specific CAAs.  

(3)  Environmental data 

Annual Southern Oscillation Indices (SOI) are used. 
Although sea-surface temperature (SST) and other 
environmental parameters were considered for inclusion, 
their preparation was not completed before the analyses were 
initiated. 

Model 

It is reported that the dynamics of tuna populations are better 
explained by density-dependent processes, unlike small 
pelagic fish such as sardines and mackerels which are more 
affected by density-independent processes (Sugimoto, 1995). 
Therefore, this model assumes that the dynamics of the 
CPUE of adult YFT (age 2 or older) is primarily affected by 
density-dependent processes such as catch, effort and 
strength of the cohort. In addition, it is further assumed that 
YFT CPUE is also slightly affected by the density 
independent process by environmental factors such as the 
SOI, SSTs and other factors. Based on these assumptions, the 
model (input variables) are considered.  
Figure 3 depicts adult YFT CPUE in the year t and its 
relevant cohorts in previous five years (t-5 to t-1). By 
examining this diagram, catches in the previous five years (t-
5 to t-1) and CPUE in the previous four years (t-4 to t-1) are 
defined as the input variables, which are related to the CPUE 
of adult YFT in year t. In addition, the SOI indices for the 
previous 4 years (t-4 to t-1) are also included. The intention 
was to include SSTs, but there was not enough time to 
prepare the data before completing this paper. Table 2 lists 
14 input variables.   

Results  

Table 3 and Figure 4 show actual figures of the response 
variable (YFT CPUE) and 14 input variables. Figures 5 and 6 
show the results of the neural network analyses and synapse 
weights, respectively. 

Discussion 

To reduce confusion, we define ‘prediction’ as the CPUE 
trends up to year t reproduced by the learning process of the 
neural network, and ‘projection’ as the forecast CPUE value 
for year t+1. 

Reproducing the dynamics of nominal 
CPUE  

The results indicate that the neural network could reproduce 
approximate trends of the nominal CPUE. Those for the first 
half of the period reviewed (1975-84) were especially well 
reproduced. On the other hand, in the later period (1985-92), 
the nominal CPUE was not as well reproduced. This is 
probably due to the fact that catch (mainly purse-seine) and 
longline CPUE are not well correlated: as catch increased 
sharply in the period 1985-92, CPUE remained steady 
(Figure 4). Nishida (1995) pointed this out when studying the 
influence of purse-seine catch on longline CPUE. We 
probably need to include more qualified input variables 
relating to this event in the future.  

Synapse weights and evaluation of the 
input variables 

We chose three types of input variables: CPUE, catch and 
SOI. However, careful study of the  synapse weights (Figure 
6) shows that only a few input variables (C14(t-1), C03(t-2), 
C01(t-4) and SOI (t-4)) are good contributors for the 
prediction (reproduction). This is because synapse weights 
for these input variables showed a consistent sign with higher 
magnitudes. Therefore, if we re-evaluate the input variable, 
we may find better and unique variables that can explain the 
dynamics for the later period. To implement this re-
evaluation process, we need to exclude unfavourable input 
variables and include new data such as SST, economic 
factors (fish price, demand, etc.), and catchability-related 
information (longline material, composition (deep/regular), 
etc.).    

Use of other longline data  

In this first attempt of this kind of analysis we used only 
Japanese longline data. We suggest using Taiwanese and 
Korean longline data for the same period and comparing the 
results to see if they are similar. Also, fine-scale data might 
be useful for this type of neural network analyses because we 
can include more realistic information. 

Projection for t+1  

We could reproduce the dynamics of CPUE fairly well 
because the neural network could learn the mechanisms of 
the CPUE dynamics from the input variables. Because we 
can reproduce the dynamics of CPUE to the year t, we can 
project (forecast) CPUE for year t+1. However, due to time 
constraints, this was not conducted in this paper. 
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Projection for longer term (after t+1) 

Once we have the input information to year t, we can make 
the projection for year t+1. However, it is not possible to 
make projections for the longer term beyond year t because  
we have no information beyond year t. However, by setting 
various scenarios for the input values after t+1, we can make 
projections in the same way as for projections based upon the 
results of virtual population analysis (VPA). This means that 
some fixed values need to be set for the input values, e.g. 
average environmental conditions, a certain level of the catch 
and CPUE, etc.    

Standardized CPUE 

In this study nominal CPUE was used for the analyses and 
predictions, but standardized CPUE is used for tuning VPAs 
and should be used for this type of analysis, because nominal 
CPUE contains biases caused by year, season and area. In 
this way better prediction (reproduced CPUE) will probably 
be obtained. 

Application to the other fisheries 
indicators 

In this first attempt at neural network analyses of tuna data 
we analysed the longline data. Although the resulting 
prediction (reproduction) was not very accurate, we can 
improve the accuracy by selecting better input variables. In 
the future, we may attempt the analyses with other fisheries 
indicators to study their dynamics and predictions such as 
global catch, recruitment, etc.  If these analyses and 
prediction produce reasonable results, we can provide more 
accurate and concrete suggestions for YFT resource 
management. Unlike small pelagic fishes like sardines and 
mackerel, the population dynamics of tuna follow density-
dependent process (Sugimoto, 1995). Thus, tuna population 
are affected mainly by catch and fishing effort. Because 
IOTC (IPTP) has been building up a database on tuna 
fisheries (including fishing vessels), the neural network can 
be applied for other species.  
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Table 1. Eight gear types for YFT catch and corresponding countries (from Nishida and Anganuzzi, 1998) 

Gear type Artisanal  Industrial 
(1) Pole and line (PL) Madagascar, Maldives,  Sri Lanka Spain  
(2) Troll (TROLL) Comoros, Kenya, Maldives, Mauritius, 

Seychelles, Sri Lanka, Mozambique, South 
Africa 

France  

(3) Purse seine (PS) (free school) Belize, Cayman Islands, Iran, Ivory Coast, 
Libya, Malta, Seychelles, Sri Lanka  

France, Iran, Japan, Panama, 
Russia, Spain  

(4) Purse seine (PS) (log school) Belize, Cayman Island, Iran, Ivory Coast, Libya, 
Malta, Mauritius, Seychelles, Sri Lanka  

France, Japan (nil), Panama, 
Russia, Spain  

(5) Gillnet (GILL) Iran, Maldives, Pakistan, Sri Lanka Taiwan 
(6) Unclassified (UNCL) 

(a) Sri Lanka type (gillnet combined) 
(b) Yemen type (handline and gillnet) 
(c) Oman type (troll, small PS & LL) 

 
Sri Lanka 
Yemen 
Oman 

 

(7) Handline (HAND) Comoros, Maldives, Seychelles, South Africa, 
Sri Lanka 

 

(8) Longline (LL) (small boats)
Honduras, India, Kenya, Mauritius, Oman, 
Pakistan, Seychelles, Sri Lanka, Unknown  

(large boats) 
France, Japan, Russia, Spain, 
China (Taiwan), Unknown 

Table 2. List of 14 input variables used in the neural network analyses. Units: catch in millions of fish, CPUE in 
fish/1000 hooks. The response variable is CPUE of adult (age 2-5) YFT (fish/1000 hooks) of the Japanese longline 

fisheries. 
Variable Code Meaning 
Catch   C (age1- 4)(t-1) Total catch (age 1-4) in year t-1 
 C (age 0-3) (t-2) Total catch (age 0-3) in year t-2 
 C (age 0-2) (t-3) Total catch (age 0-2) in year t-3  
 C (age 0-1)(t-4) Total catch (age 0-1) in year t-4 
 C age 0 (t-5) Total catch (age 0  ) in year t-5 
CPUE  X (age1- 4)(t-1) CPUE (age 1-4) in year t-1 
 X (age 0-3)(t-2) CPUE (age 0-3) in year t-2 
 X (age 0-2)(t-3) CPUE (age 0-2) in year t-3 
 X (age 0-1)(t-4) CPUE (age 0-1) in year t-4 
SOI SOI (t-1) Southern Oscillation Index in year t-1
 SOI (t-2) Southern Oscillation Index in year t-2
 SOI (t-3) Southern Oscillation Index in year t-3 
 SOI (t-4) Southern Oscillation Index in year t-4
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Table 3. Response variable (YFT CPUE) and 14 input variables 
 YFT(t) Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 

Year CPUE C1_4(t-1) C0_3(t-2) C0_2(t-3) C0_1(t-4) C0(t-5) x1_4(t-1) x0_3(t-2) 
 fish/1000 

hooks millions of fish fish/1000 hooks 

75 8.163 2.351 4.688 3.672 2.765 1.391 8.337 11.7782
76 11.3557 1.841 5.482 4.621 2.824 1.113 12.2266 8.3212
77 16.8408 1.607 4.185 5.396 4.098 1.625 11.7524 12.1193
78 10.8648 1.962 4.376 4.13 5.004 3.197 16.8714 10.7606
79 4.7978 1.792 4.384 4.271 3.761 3.139 12.4617 14.2329
80 11.2406 1.458 3.874 3.954 3.874 2.347 4.7978 11.3863
81 7.7517 1.393 3.926 3.595 3.4 2.785 11.3612 4.6354
82 10.1849 1.957 3.829 3.668 3.182 2.502 8.6974 9.301
83 7.3279 2.044 5.079 3.674 3.414 2.115 11.6789 7.4712
84 8.7512 2.189 4.54 4.89 3.494 2.476 8.3449 11.2164
85 8.8533 3.273 8.947 4.293 4.559 2.468 8.9493 7.5029
86 8.8319 4.982 22.562 8.58 3.435 3.143 9.5112 8.2678
87 7.4367 6.428 18.931 22.072 8.072 2.525 9.6443 8.8617
88 8.7903 6.055 15.829 18.375 21.471 6.814 7.4587 9.3434
89 7.3909 9.114 15.153 15.096 17.748 19.392 8.8938 7.1561
90 10.2775 10.151 23.853 14.251 13.696 14.079 7.6132 8.4375
91 9.4031 10.581 23.468 22.582 12.594 9.474 10.5532 7.0918
92 6.675 9.432 25.689 22.873 20.731 9.166 9.5695 9.9496

 
 YFT(t) Var 8 Var 9 Var 10 Var 11 Var 12 Var 13 Var 14 

Year CPUE x0_2(t-3) x0_1(t-4) SOI(t-1) SOI(t-2) SOI(t-3) SOI(t-4) SOI(t-5) 
 fish/1000 

hooks millions of fish index 

75 8.163 13.3807 8.76998 1.01667 0.58333 -0.84167 1.0 0.25
76 11.3557 9.9443 2.42804 1.28333 1.01667 0.58333 -0.84167 1.
77 16.8408 6.754 0.44513 0.08333 1.28333 1.01667 0.58333 -0.84167
78 10.8648 10.6536 2.87573 -1.025 0.08333 1.28333 1.01667 0.58333
79 4.7978 7.0415 4.06361 -0.36667 -1.025 0.08333 1.28333 1.01667
80 11.2406 5.1318 0.40497 -0.10833 -0.36667 -1.025 0.08333 1.28333
81 7.7517 5.8016 0.05354 -0.375 -0.10833 -0.36667 -1.025 0.08333
82 10.1849 1.4213 1.65694 0.025 -0.375 -0.10833 -0.36667 -1.025
83 7.3279 2.8015 0.00406 -1.31667 0.025 -0.375 -0.10833 -0.36667
84 8.7512 2.9182 0.14654 -1.10833 -1.31667 0.025 -0.375 -0.10833
85 8.8533 9.7195 0.96005 -0.125 -1.10833 -1.31667 0.025 -0.375
86 8.8319 4.0544 1.51409 0.04167 -0.125 -1.10833 -1.31667 0.025
87 7.4367 5.1006 1.12721 -0.39167 0.04167 -0.125 -1.10833 -1.31667
88 8.7903 5.559 0.23196 -1.33333 -0.39167 0.04167 -0.125 -1.10833
89 7.3909 6.6253 0.68587 0.725 -1.33333 -0.39167 0.04167 -0.125
90 10.2775 3.9135 0.82245 0.56667 0.725 -1.33333 -0.39167 0.04167
91 9.4031 4.7524 0.02928 -0.39167 0.56667 0.725 -1.33333 -0.39167
92 6.675 3.8404 0.11108 -0.95 -0.39167 0.56667 0.725 -1.33333
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Figure 1. Schematic diagram of the neuron. Signals (data) flow in the direction of the arrows. 

 
Figure 2. Principle of a feed-forward multi-layered neural network.  

 
Age  Year(t-5) Year(t-4) Year(t-3) Year(t-2) Year (t-1) Year (t) 
0       
1      (adult YFT ↓) 

2       

3       

4       

5       

Figure 3. Adult YFT (t) and its related cohorts in (t-5) to (t-1). 
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Figure 4 Annual trends of the response variable and 14 input variables (continued on next page) 
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Figure 4 Annual trends of the response variable and 14 input variables (continued from previous page) 
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Figure 5 Results of the neural network work analyses.  

 
Figure 6 Synapse weights of the connections from each input unit to 6 intermediate units in the supervised learning. 
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APPENDIX A: 

Fuzzy logic and Expert systems in fisheries (From Nishida and Fluharty, 1999) 

Fuzzy control theory (Fuzzy logic)  

‘The binary logic of modern computers often falls short when 
describing the vagueness of the real world. Fuzzy logic offers 
more graceful alternatives’ (Kosko and Isaka, 1993). Fuzzy 
logic originated from 'Fuzzy set theory' by Professor Zedeh 
(1965), University of California. Fuzzy control theory is 
developed by applying fuzzy logic, which is presently 
applied to various fields such as robotics, water reservoir 
control, automatic operations of subway and transportation. 
The original meaning of 'fuzzy' is an unique phenomenon 
without a clear boundary like a feather. Hence, fuzzy logic 
can handle vague expression such as 'bright green',  'young', 
'very dirty', etc., as input information. The Appendix explains 
the concept of fuzzy logic in detail.  
Fuzzy control theory is likely appropriate and feasible for 
analysing fisheries data because various types of 
uncertainties and complexity are involved, e.g., uncertain 
dynamics of fish stocks, uncertain biological parameters, 
vague geographic distribution of the stock, unclear 
relationship between oceanographic conditions and 
resources, complex quality of catch data due to 
heterogeneous fishing operations and limited quantity and 
quantity of fisheries data. Therefore, the fuzzy control theory 
is potentially effective to overcome some of these uncertainty 
problems. 
Fisheries data are 'rough' and 'approximate' information, 
hence descriptive data such as 'high' catch, 'good' prediction, 
etc., might be just as adequate as the existing data to be used 
as inputs. Recently, qualitative information based fisheries 
resources analyses known as 'fuzzy control theory' , have 
been developed and applied for whale and skipjack data in 
Japan (Sakuramoto, 1991).  

Expert systems 

The Expert system is a similar technique to fuzzy logic and is 
also applied for prediction of fishing conditions for young 
sardines (Aoki et al., 1991) and for forecasting the Kuroshio 
current (Komatsu et al., 1994). Expert systems can use a 
computer to process intellectual information based on 
specialists' experiences and knowledge. It is based on 
methodology similar to the human thought process, instead 
of equations and rigid logic. Expert systemsare almost 
equivalent to fuzzy logic, which are all based on processing 
of descriptive information (signal or code). The merits of 
using expert systems in fisheries are that specialized 
descriptive knowledge from experts such as experienced 
fishermen, scientists and managers can be utilized as input 
information. 


