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SUMMARY 

The Spanish purse seine fleet operates in a wide area of the Indian Ocean since 1984. A logbooks system provides 
detailed information of catches (set by set) and effort. Together with this information, an intensive work of interview 
during 4 years (1994-1997) has provided technical equipment data. These data have been used to estimate 
standardized catch per unit effort (CPUE) indices of abundance for yellowfin from the Indian Ocean.   
Standardized catch rates have been estimated using the Generalized Linear Model (GLM) approach. The model 
proposed includes factors related with the stock abundance together with factors related with catchability changes. 
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INTRODUCTION 

Traditionally the models used to estimate standardised catch 
rate from commercial data include only factors related with 
abundance, assuming a constant catchability. In the tropical 
tuna purse seine fishery  is a fact that the boats have 
continuously increased their fishing power due to, in one 
hand the introduction of new technology that increase the 
efficiency for searching and catching fishes and in other one 
the bettering of the skipper skill. Until now few attempts 
have been done to consider these kind of factors in the 
analysis. In this paper we documents the analitycal methods 
applied to the spanish purse seine fleet data to estimate 
standardized catch per unit effort (CPUE) indices of 
abundance for yellowfin  from the Indian Ocean. 
Standardized catch rates have been estimated using the 
Generalized Linear Model (GLM) approach, considering 
factors related with the stock abundance together with 
factors related with catchability changes.  
 

MATERIAL AND METHODS 

Data 

The analysis has been done with data from the Spanish 
tropical purse seine fleet in the Indian Ocean from 1984 until 
1995. Two sources of data have been used. Fishing data 
comes from logbooks that the fleet fills regularly  with an 
approximate coverage of 95%. This data, subsequently 
corrected with landing information, contains detailed set by 
set information of catches by species and association type 
(logs and schools), and effort. Technical equipment data has 
been obtained from inquiries to skippers and ship-owners, 

interviews to equipment suppliers, etc. Because the reserved 
character of this kind of information, the elaboration of this 
data base, possibly the first that integrates this information in 
the purse seine fleet, has been a heavy task developed during 
the period 1994-1997. 

Technical equipment 

A first selection of the ships that had a better information 
during a long period was made for the elaboration of the 
fleet file. After a detailed evaluation of all the technical 
elements used during the fishing process (detection of 
schools and catch) and their evolution in the study period, 
the factors that could affect the increase of the fishing power 
were defined. They were: net size, sonar, radar, boat speed 
and skipper. Categories for all of them by equipment 
characteristics were established. The corresponding 
categories were assigned to the ships by the quarter when the 
device was installed, such that an device of X category 
installed in the first quarter was assigned the X + 0.25 code. 

The codification of the different devices were as follows: 

Net: By its surface (S), expressed in Km2, four levels were 
defined:  

1 - < 0.3 Km2  ;  2 – from 0.3 Km2  to 0.4 Km2;  3 – from 0.4 
Km2 to 0.5 Km2 ; 4 - > 0.5 Km2  

Radar: a four levels classification was preliminary 
established:  

1 = without radar; 2 = with 15 Kilowatts (Kw) radar; 3 = 
with 30 Kw radar; 4 = with 60 Kw radar. 

 Although, the analysis suggested to group the two first 
categories in one because there were no significant 
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differences in the yields from this two groups. The sequence 
of introduction of different models of radar follows the same 
order, i.e., first, 15 Kw radar appears, after 30 Kw radar, and 
next 60 Kw radar. There are few years of overlap in the last 
two categories; 30 Kw radar appears in 1987 and continues 
until 1990 when it almost disappears. And the 60 Kw radar 
appears in 1989 until the end of the period, replacing the 30 
Kw for detection purposes.  

Sonar : three levels were established:  

1 = without sonar 

2 = with 45 kilocicles (Kc) sonar or 60 Kc sonar, i.e., only 
one sonar. 

3 = with 45 Kc sonar and 60 Kc sonar, i.e., with two sonar. 

This classification was made considering that 45 Kc sonar 
and 60 Kc sonar characteristics are complementary; some 
ships first install 60 Kc sonar and other ships the 45 Kc 
sonar, but later, add the other kind of sonar to work with the 
two models.  

Boat speed: There were not established categories. During 
the period it varies between 10 to 15 knots. It was the less 
significant variable in the model. This was because there 
were some differences in the speed between ships, but most 
of the boats does not change its speed during the study 
period. Therefore, it is difficult to observe the influence of 
speed over fishing power. 

Skipper: At the beginning, we had information for 52 
skippers. We first tried to introduce this variable as a factor 
in the model, but having so many levels and obtaining an 
unbalanced analysis, it was necessary to classify the skippers 
in small groups to simp lify the model. This is a difficult 
classification to make without introducing bias in the 
analysis. Making this classification is easy to separate a 
priori the skippers with better performance from those with 
poorer yields. On the other hand, the presence of a skipper in 
the fishery is quite diverse, from some that fish only during 
one year to those present during the whole period. The 
presence of a skipper in the fishery is already an indication 
of his efficiency, but is difficult to compare the performance 
of skippers that have been in the fishery different years and a 
different number of years. Because the efficiency of a 
skipper is linked to the experience in the control of the boat’s 
equipment, we decided to limit the study for the skippers that 
were more than six years in the fishery, to be able to 
establish differences among those that have worked with the 
different technological levels that were introduced in the 
boats along the study period.Codes were established for their 
identification to preserve their identity. This information is 
very important because it allow us to analyse skipper ability 
and his knowledge of the equipment. 

Catch and effort data 

A basic catch and effort file was created using the 
information from the logbook  containing catches by set and 
species, school type, boat, temporal strata and area. The 

species detailed in the logbooks were yellowfin, skipjack and 
bigeye.  

The following school types were considered: log school, free 
school and unknown.  

Likewise, there were five areas as it shows in Figure 1.  

1 = Somalia;  2 = N-W Seychelles;  3 = Mozambique;  4 = 
S-E Seychelles;  5 = Chagos 

Four fishing seasons were considered: 

Season 1 = January and February; Season 2 = March, April, 
May y June 

Season 3 = July, August, September y October; Season 4 = 
November y December. 

To evaluate fishing effort different measures were 
considered: fishing time, searching time, total number of sets 
and positive and negatives sets. In this preliminary analysis, 
for practical reasons, we will show the results using fishing 
time only. 

Both files, catch and effort and technical equipment by boat 
were integrated in a single file.  

For this preliminary analysis, only the information related to 
yellowfin associated in free schools were considered, 
because that could give us a good indication of the adult 
yellowfin stock and the possible increments in purse seine 
fishing power would be better reflected in this type of 
fishery. The first analysis was very unbalanced. In order to 
reduce the number of zeros in the data, we group them by 
fortnight, adding the catch by type of school, boat and 
skipper. 

We used fishing time as the global fishing time because, as 
we are dealing with multispecies fishery, we do not have the 
capability yet, to identify the fishing effort directed to every 
species neither there are information that allow us to 
differentiate the fishing effort by school type (log / free). 

By choosing free school only, the Somalia Area was 
eliminated because it is an almost exclusive for log fishing. 
The Chagos Area was also not considered because the 
expansion of the fishery towards that area was observed only 
during the last three years of the study period. Table 1 shows 
catches by species, year and area, all fishing modes 
combined. 

Analysis 

Standardized catch per unit effort (CPUE) indices of 
abundance for yellowfin in the Indian Ocean was estimated 
by a delta lognormal model. This model treats separately 
positive cpue observations and the probability of an 
observation to be positive or null. This two comp onents 
(probability of cpue to be positive and the distribution of the 
values different from zero) can be modelled independently to 
obtain positive cpue probability fitted, and then the expected 
cpue conditioning to obtain a value of cpue different from 
zero. The proposed delta model, consists of two generalized 
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linear models using the Bernouilli  and lognormal 
distributions respectively. We obtain the final index as the 
product of the mean annual effect of the binomial and 
lognormal components.  

The first analysis shows a strong interaction between year 
and area, so following the recommendation from the ICCAT 
Working methods group (Anon, 2000), we calculate 
independent indices for the areas considered.: N-W 
Seychelles, S-E Seychelles, and Mozambique.  

Positive CPUE  

For each year and area considered, cpue is:  

cpueyi  = µyi pyi, i = 1,2,3.                                                 (1)  

where µyi is the annual mean of the standardised cpue of 
positive catches for each area i. and pi is the annual mean for 
the standardised proportion of positives for each area i. 

To calculate a relative index  in each area, the three indices 
were weighted by the number of observations in each area, 
i.e., 

 cpuey  = Ny1cpuey1 + Ny2cpuey2 + Ny3cpuey3 ,                                  
(2) 

where cpuey is the mean cpue for year y, Nyi  is the number 
of observations in area i for year y, and cpueyi is the annual 
mean cpue for year y of area i. 

As fixed effects year, area, season, skipper, sonar, radar, net, 
speed and the total log school catch were considered, all of 
them included in matrix X. The last continuous variable (log 
catch) was included in the model because it is considered 
that what is not fish from  free schools is caught from log 
schools, and it is assumed that it would have a negative 
effect over adult yellowfin cpue. Also, first order 
interactions between year, season and skipper with boat 
characteristics were included in matrix Z. The other first 
order interactions and higher order interactions were not 
considered to avoid overparametrization of the model.  

The model that fits cpue for positive catches is: 

Ln(cpue) = Xα + Zβ + ε,                                         (3) 

where cpue is the vector of observations, X is the fixed 
factors matrix , α is the fixed factors parameters vector, Z is 
the interactions matrix, β is the interactions parameters 
vector and ε is the vector of  errors independently equally 
distributed that follows a N(0, σ2). Once an estimation of 
cpue in each area is obtained, we calculate its annual mean, 
µyi, and substitute it in (1). 

PROPORTION OF POSITIVES 

To estimate the proportion of positives, we used all data set. 
We created a Bernouilli random variable that takes the value 
0 if cpue is null and 1 if cpue is positive. Then, we calculate 
the mean of this variable in each strata defined by the 
combination of different levels of year, area, season, skipper, 

sonar, radar, net and speed, and calculate the number of 
observations in each cell to weight the model. 

The probability of positive cpue can be modelled with a 
GLM with a logit function as link function between the 
linear component and the response variable, i.e., the 
presence of positive cpue is a Bernouilli random variable 
with probability p, given by:  

Log(p/(1-p)) = Xα + Zβ, or ,                                       (4) 

p = 1/(1 + exp{ Xα + Zβ }), 

where X is the fixed factors matrix that are year, area, 
season, skipper, sonar, radar, net and speed, α is the vector 
of the fixed factors parameters, Z is the interactions matrix, 
and β is the interactions parameters vector. Next, we 
calculate the annual mean of p in each area, pyi, and 
substituting its value in (1), we obtain the three cpueyi 
indices. 

Model selection 

The statistical package S-PLUS 4.5 was used for data 
analysis. The function “anova” gives a table with the 
individual contribution of all the terms. The variables whose 
F-statistic had a p-value less than 0.05 were considered 
significant. As the design of the data is not balanced, 
because it does not exist a temporal overlap between the 
different levels of every factor, the individual contributions 
depend on the order of introduction of the factors in the 
model. To obtain an independent result of this order, in the 
analysis of variance, we examined the type III error.  

The package S-PLUS gives an option to make contrasts, 
adding a matrix of linear combinations between the levels of 
each factor. With the “contrast treatment” option, adequate 
for not balanced designs, each coefficient represent the 
comparison between each level with the first level (omitting 
level one). This is equivalent to the constraint α1 = 0 and it 
facilitates the interpretation of coefficients. 

Another approach in variables selection was the use of the 
function “step”, that automates the selection process, and 
based in the AIC it decides between adding or excluding 
each variable, making a balance between the variability 
explained by each factor and the degrees of freedom that is 
introduced in the model. We have to take in consideration 
that this function tends to be generous in adding variables 
and more cautious in excluding them. Occasionally, the 
GLM fit does not converge after ten iterations, and for this 
situation, we can fit a robust GLM, in which smaller weights 
are assigned to observations that can be considered extreme 
points because their deviations from the mean are too large. 
Changes in the determination coefficient, R2, were also used 
as a measure of goodness of fit.  

RESULTS AND DISCUSSION 

Figure 2 shows the histograms of total observed cpue, 
positive cpue and logarithm of positive cpue. We have to 
stand out the strong asymmetry in the total cpue distribution, 
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with a big proportion of zeros, suggests the existence of two 
different populations, the positive catches and null catches.  

Positive cpue distribution is very asymmetric too, with a 
heavy right tail, that means that a great number of outliers 
exists. 

Through the logarithmic transformation of positive cpue, we 
obtain a more symmetric distribution that, in some way, 
approximates it to a normal distribution and facilitates the 
gaussian linear model approach for positive data. 

Tables 2 to 7 show the results for ANOVA gaussian GLM of 
the positive data distribution and binomial GLM of positives 
proportion, for each of the three areas. 

Figures 3 to 5 show the graphs of the residuals versus fitted 
variables, observed variables versus fitted and q-q-plots of 
gaussian models applied to the three areas studied. 

With respect to positive observations, year and season 
always appear as the most significant variables, because in 
tropical tuna species, recruitment depends very much on 
seasonal and annual oceanographic conditions. Also, we 
have to stand out that log school catch is important and 
always appears in all the analysis with a negative coefficient, 
as was expected. 

In the N-W Seychelles area, we observe a big difference in 
cpue for all different levels of sonar, and the yield increases 
with the improvement of sonar technique. Also we can see 
significant differences between skippers, specially in 
Mozambique and it is in this area where the net has a 
positive effect over the cpue. The only factor that does not 
seem to be significant in any areas is the radar. 

With respect to proportion of positive observations, the 
analysis does not allow us to observe a great effect of the 
equipment, and we only find significant factors depending 
on the abundance, i.e. year and season and their interaction. 

Figure 6 and table 8 show the cpue by area and  the weighted 
global index with data related to 1986. By areas, we observe 
a similar picture in N-W of Seychelles and S-E of 
Seychelles, without a clear trend during a ten year period. In 
year 88 there are great yields in both areas and it coincides 
with the introduction of the level 2 of sonar and radar. 
Although, the next year is one of the worst for both areas, 
recovers a increasing trend during the next three years in N-
W and in two years in S-E, and finally becomes decreasing 
in the latter years. In Mozambique, cpue behaves in a 
different way, because in this area log fishing is more 
relevant. Also, there are less observations, e.g. no 
observations in 1988, and only during season 2, from March 
to June. The overall index trend is close to that presented in 
the areas around Seychelles. 

CONCLUSION 

There is a general agreement that to obtain accurate 
standardized abundance indices from the purse seine data it 

is necessary to take into account the increase in the fishing 
power of the boats. This work is a first step in this way.  

Although results must be considered preliminar, the analysis 
made (definition of variables, criteria for coding, definition 
of models) could be very useful for future analysis.   Also 
the dificulties arose in the analysis can help us to define and 
plan the collection of new data as well as the design of new 
analysis.  

The rapid and broad introduction of  new technical 
equipment by the fleet has been one of the main problem 
detected. This fact reduce the possibility of equipment 
overlapping making the analysis very unbalanced.  

A pending issue, that might affect this type of analysis, is the 
discrimination of fishing effort by species and/or fishing 
mode. The logbook system established in the Indian Ocean 
does not allow us to separate the effort by species and/or 
fishing mode.  

Further analysis with this model should be made using 
different effort units as searching time and number of sets.  

In the frameof the EU funded programme called ESTHER3, 
it is planned to extend this type of analysis to a longer period 
and to the European and associated fleet operating in the 
Atlantic and Indian Oceans. The extension in the time period 
and the inclusion of a larger portion of the fleet might help 
us to clarify some aspects that are not very clear at this stage. 
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Figure 1.- Areas considered in the analysis. 
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Figure 2.- Distribution of the overall cpue, positive cpue and log transformed positive cpue.  
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Figure 3: residual plot for the final gaussian model selected for the positive catch rates in area 2 (residual vs. 
predicted values, dependent variable (log(cpue) vs. predicted and qq-plot). 
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Figure 4: residual plot for the final gaussian model selected for the positive catch rates in area 3 (residual vs. 
predicted values, dependent variable (log(cpue) vs. predicted and qq-plot). 
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Figure 5: residual plot for the final gaussian model selected for the positive catch rates in area 4 (residual vs. 
predicted values, dependent variable (log(cpue) vs. predicted and qq-plot). 
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Figure 6.- Standardized yellowfin cpue index by area and overall. 

 

 

 
Year 

N-Wseychelles N2 Mozambiq
ue 

N3 S-E Seychelles N4 weighed cpue relative cpue 

86 0.15 49 0.01 16 0.15 35 12.61 1.00 
87 0.13 93 0.01 32 0.09 52 17.16 1.36 
88 0.27 111 0.00 19 0.50 47 52.93 4.20 
89 0.09 179 0.04 28 0.06 89 22.29 1.77 
90 0.16 142 0.03 31 0.28 53 39.01 3.09 
91 0.17 177 0.01 42 0.46 92 73.15 5.80 
92 0.25 119 0.02 44 0.29 54 45.64 3.62 
93 0.12 88 0.02 16 0.22 33 18.68 1.48 
94 0.14 93 0.14 42 0.33 38 31.14 2.47 
95 0.09 177 0.09 34 0.03 55 19.65 1.56 

Table 7: cpue by area, number of observations in each area, N i, and whole weighed cpue.  
 

 

log(cpue) ~ year + estacion + patron + veloc + sonar 
 
                Df Sum of Sq  Mean Sq F Value      Pr(F)  

                year   9   26.1555  2.90617 3.19776 0.00105392 
            estacion   3    9.2561  3.08536 3.39493 0.01837287 
              patron  19   30.8485  1.62360 1.78651 0.02402464 
               veloc   5   10.0482  2.00964 2.21128 0.05334697 
               sonar   2   13.0107  6.50533 7.15806 0.00092817 
log(totalobj + 0.01)   1   35.6545 35.65452 39.23202 0.00000000 
           Residuals 282  256.2849  0.90881 
    Null Deviance: 493.9918 on 321 degrees of freedom 
Residual Deviance: 310.121 on 282 degrees of freedom 
Tabla 2: Final model selected and Type III tests for the gaussian glm for positive cpue in  area 2. 
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propor ~ year + estacion  
 
                Df Sum of Sq  Mean Sq  F Value  Pr(F) 
     year   9   18.5118  2.05686  1.83474 0.06046001 
 estacion   3   50.4732 16.82440 15.00751 0.00000000 
Residuals 400  448.4262  1.12107          
 
    Null Deviance: 606.1353 on 412 degrees of freedom 
Residual Deviance: 515.1864 on 400 degrees of freedom 

Table 3: Final model selected and Type III tests for the binomial glm for propotion of positive cpue in  area 
2. 

 

log(cpue) ~ year + patron + red + veloc + sonar + radar +log(totalobj+0.01) 
 
                   Df Sum of Sq  Mean Sq  F Value      Pr(F) 
                year  8  14.82114  1.85264 4.50698 0.00235552 
              patron 15  30.39168  2.02611 4.92898 0.00040288 
                 red  2   3.23022  1.61511 3.92913 0.03474889 
               veloc  3   7.80946  2.60315 6.33277 0.00292677 
log(totalobj + 0.01)  1  12.76466 12.76466 31.05296 0.00001333 
           Residuals 22   9.04334  0.41106 
  
Null Deviance: 88.02356 on 51 degrees of freedom 
Residual Deviance: 12.35569 on 22 degrees of freedom 
Table 4: Final model selected and Type III tests for the gaussian glm for positive cpue in  area 3. 
 
propor ~ year + red 
 

  Df Sum of Sq  Mean Sq  F Value Pr(F)  
     year  9  26.26223 2.918025 3.177186 0.0025151 
      red  2   3.97148 1.985742 2.162104 0.1218451 
    sonar  2   1.36613 0.683064 0.743729 0.4786362 
    radar  2   1.89024 0.945118 1.029057 0.3620833 
Residuals 79  72.55602 0.918431 
 
Null Deviance: 134.814 on 94 degrees of freedom 
Residual Deviance: 83.8209 on 79 degrees of freedom 

Table 5: Final model selected and Type III tests for the binomial glm for propotion of positive cpue in  area 
3. 

 

log(cpue) ~ year + estacion + sonar + radar + log(totalobj+0.01) + 
year:estacion  
 
                      Df  Sum of Sq   Mean Sq F Value     Pr(F) 
                year   9    67.7813  7.531253 10.16107 0.0000000 
            estacion   3    28.2472  9.415750 12.70360 0.0000001 
               sonar   2     0.8993  0.449661 0.60668  0.5462642 
               radar   2     3.1138  1.556918 2.10057  0.1253599 
log(totalobj + 0.01)   1     1.4974  1.497395 2.02027  0.1569327 
       year:estacion  15    44.7875  2.985837 4.02845  0.0000027 
           Residuals 181   134.1549  0.741187 
  
Null Deviance: 370.6122 on 213 degrees of freedom 
Residual Deviance: 168.2984 on 181 degrees of freedom 
Table 6: Final model selected and Type III tests for the gaussian glm for positive cpue in  area 4. 
 
 
propor ~ year + estacion + year:estacion 
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            Df Sum of Sq  Mean Sq  F Value  Pr(F) 
         year   9   27.0143  3.00159  3.65841 0.00026851 
     estacion   3   39.4138 13.13794 16.01284 0.00000000 
year:estacion  27   36.8019  1.36303  1.66130 0.02518658 
    Residuals 232  190.3474  0.82046           
Null Deviance: 482.8845 on 271 degrees of freedom 
Residual Deviance: 219.5806 on 232 degrees of freedom 
 

Table 7: Final model selected and Type III tests for the binomial glm for propotion of positive cpue in  area 
4. 

 
  Area     

year  Somalia N-W seychelles Mozambique S-E Seychelles Chagos 
86   Yft 423 680 125 957 0 

   Skj 305 185 996 68 0 
   Bet 197 0 0 0 0 

87   Yft 2134 1984 13 1275 0 
   Skj 1436 478 735 1467 0 
   Bet 171 150 0 77 0 

88   Yft 159 6328 4 5757 0 
   Skj 1260 694 365 1672 0 
   Bet 48 482 71 832 0 

89   Yft 862 2908 174 2373 0 
   Skj 2127 7011 710 2101 0 
   Bet 205 264 0 356 0 

90   Yft 1942 6687 313 6768 0 
   Skj 1127 458 1636 641 0 
   Bet 40 362 0 81 0 

91   Yft 3008 7752 55 13292 0 
   Skj 3703 1322 934 519 0 
   Bet 283 130 0 195 0 

92   Yft 848 9063 283 3727 0 
   Skj 1740 1461 3170 625 0 
   Bet 182 104 0 120 0 

93   Yft 1095 2789 77 2675 1398 
   Skj 708 780 1265 252 0 
   Bet 68 139 0 31 10 

94   Yft 2769 6267 1188 4695 165 
   Skj 1641 2210 4046 706 0 
   Bet 170 494 15 84 5 

95   Yft 1457 7194 514 515 1393 
   Skj 1148 3334 1280 327 122 
   Bet 297 559 0 17 10 

Table 8: Catches (tons) of yft, skj y bet in the area 1 to 5 during 1986-1987. 


