STANDARDIZED CPUE FOR BIGEYE CAUGHT BY THE JAPANESE LONGLINE FISHERY IN THE INDIAN OCEAN, 1952 - 1999

Takayuki Matsumoto

National Research Institute of Far Seas Fisheries 5 Chome 7-1, Orido, Shimizu, 424-8633, Japan

SUMMARY

The same methods as last year's report were applied to the updated Japanese longline data for the standardization of CPUE, in which the sub-areas for the analysis were determined by considering the distribution of longline effort and the level of bigeye CPUE. The effect of year, month, area and number of hooks between floats, and two-way interaction between month by area, and between area and number of hooks between floats were used in the model for the standardization (GLM procedure).

As a result of GLM, area and number of hooks between floats showed large effect. Standardized CPUE in the tropical areas were highest during 1977 to 1978 and declined gradually with fluctuations, and the values in 1999 were slightly lower than those in 1975. CPUE trend of western south area is comparatively similar to that in the tropical area, but quite different in the eastern south area. The fluctuations in the south areas, especially eastern south area, are considered to be influenced by regulation of southern bluefin tuna catch quota and fishing season and also change of the target species.

Seeing CPUE trend of tropical area from 1952 to 1999, CPUE showed moderate declining trend with fluctuation from about 13 around 1955 to about 5 in recent few years.

Based on these results, it is suggested that the standardized CPUE restricted in the tropical area is considered to be representative of more realistic abundance trend.

INTRODUCTION

The rapid increase of small bigeye catch by purse seine fishery has drawn the highest attention since it may inversely impact on the catch of longline fishery, which exploits medium to large fish. This increase of catch also indicates the increase of purse seine CPUE. However, due to the absence of reasonable measure of effective fishing effort, it is difficult to estimate abundance index from purse seine CPUE. Though the effect of catch by surface fishery can not be estimated by the standardization of longline CPUE, the CPUE trend let us know the relative change in the adult and sub-adult bigeye resource as far as there are enough longline effort in the area of interest.

In this paper, the same methods as in Okamoto and Miyabe (1999) were applied to the updated Japanese longline data for the standardization of CPUE, in which the sub-areas for the analysis were determined by considering the distribution of longline effort and the level of bigeye CPUE (Fig. 1). The effect of year, month, area and number of hooks between floats, and two-way interaction between month by area, and between area and number of hooks between floats were used in the model for the standardization.

MATERIALS AND METHODS

Data

The Japanese longline catch and effort statistics up to 1999 were used. 1999 data is preliminary. Data set from 1975 to 1999, which aggregated by month, 5-degree square and the number of hooks between floats (NHF), were used for the analyses. Similar data from 1952 to 1974 was also used, though it dose not include the information on NHF.

Model configuration

Geographical distributions of effort (the number of hooks) and CPUE for bigeye in the Indian Ocean were shown in and Fig. 3, respectively. Considering these distributions, main fishing ground was divided into seven areas for the analysis (Fig. 1), which are same as in Okamoto and Miyabe (1999).

Frequency distribution of NHF has changed historically as shown in Table 1 and differs among the areas (ig. 4). To include the effect of NHF into the model, the number of branch lines per basket was classified into three classes (class 1: 5-9, class 2: 10-15, class 3: 16-21) (Okamoto and Miyabe, 1999).

The model used for GLM analysis (log normal error structure model) is as follows,

Log(CPUEijkl

 $+const)=\mu+YR(i)+MN(j)+AREA(k)+NHFCL(l)+MN(j)*AR$ EA(k)+AREA(k)*NHFCL(l)+e(ijkl....)

Where Log: natural logarithm,

CPUE: catch in number of bigeye per 1000 hooks,

Const: 10% of overall mean of CPUE µ: overall mean,

YR (i): effect of year,

MN (j): effect of fishing season (month),

AREA (k): effect of area,

NHFCL (l): effect of gear type (class of number of hooks between floats),

MN (j)*AREA (k): interaction term between fishing season and area,

AREA (k)*NHFCL (l): interaction term between area and gear type,

E (ijkl...): error term.

In order to compare the CPUE trend among the sub-areas, GLM analyses using same main effect and interaction terms were conducted for several combined sub-area, i.e., western tropical area: areas 1&3, eastern tropical area: areas 2, 4 & 5, south area: areas 6 & 7, and all area: 1-7. For the comparison in the historical trend between nominal (number of catch per 1000 hooks) and standardized CPUEs, both CPUEs are scaled by the average of nominal CPUE in each area. Moreover, to compare with the past abundance trend, the same analysis was done using data from 1952 to 1999, in which though the NHF was fixed to 6 before 1974 because deep longline gear was not used before 1970s, as is shown in ig. 4.

RESULTS AND DISCUSSIONS

Standardized CPUEs from 1975 to 1999 for western tropical (area 1 & 3), eastern tropical (area 2, 4 & 5), western south (area 6) and eastern south (area 7) are shown in

figure.

(tropical areas) and **Fig. 6**) (south areas) with their upper and lower 95% confidence limits and nominal CPUEs, respectively. In both tropical areas (**Fig. 5**), standardized CPUE showed relatively similar trend, though there were some minor differences. In both tropical areas, after 1975, standardized CPUE were highest during 1977 to 1978 and declined gradually with fluctuations, and the values in 1999 were slightly lower than those in 1975.

The standardized CPUE in western south area (**Fig. 6**): left graph) showed relatively similar trends as those observed in tropical areas (**Fig.5**)

, i.e., gradual decreasing trend since 1977, while larger fluctuation was observed in the last decade than those in tropical areas.

On the contrary, the CPUE in eastern south area (Fig. 6: right graph) was somewhat different from those in tropical areas (Fig. 5). It decreased from about 3.7 in 1978 to 0.9 in 1986, and increased to 5.5 in 1993, and decreased again, to 1.90 in 1999. As in the western south area (Fig. 6 left graph), large fluctuation was also observed in the last decade. The fluctuation of CPUE in the south areas are considered to influenced by regulation of southern bluefin tuna catch quota and fishing season and also change of the target species, as suggested in Okamoto (1998) or Okamoto and Miyabe (1999).

The results of ANOVA for tropical area (area1-5) in the model are shown in (**Table 2**). R-square value was about 0.206. In this analysis, area and NHFCL showed large effect (**Table 3**). The distribution of overall residual in the final model (**Fig.7**) suggested that the log normal model is appropriate.

The standardized CPUE derived from GLM analyses for tropical area was shown in Error! Reference source not found. with its upper and lower 95% confidence limits, with nominal CPUE. As observed in the analyses for western and eastern tropical areas (**Fig. 5**), the standardized CPUE showed gradual declining trend from 1977 to 1999, and was relatively stable in the last three years.

The results for the global GLM analyses including all areas (area 1-7) were shown in

. Standardized CPUEs show the gradual decreasing trend from 1979 to 1999 with some partial fluctuations. These fluctuation are probably due to the change of target species in the south areas as mentioned before, and that in 1999 was the lowest in latest two decade, though nominal CPUE is stable since 1996, which was possibly caused by the change of longline gear, that is, sharp increase in deep longline gear (see **Table.1** and **ig.4**).

In the analysis including the past data (1952-1974), CPUE showed moderate declining trend from about 13 around 1955 to about 5 in recent few years (**Fig.10**).

Based on the results of this study and also results of the past studies by Okamoto (1998) and Okamoto and Miyabe (1999), it is suggested that the standardized CPUE restricted in the tropical area is considered to be representative of more realistic abundance trend.

REFERENCES

OKAMOTO, H. 1998. Updated standardized CPUE of bigeye caught by Japanese longline fishery in the Indian Ocean. IPTP TWS-98, 10pp.

OKAMOTO, H. AND N.MIYABE. 1999. Standardized CPUE of bigeye caught by Japanese longline fishery in the Indian Ocean, up to 1998. IOTC WPTT-99, 8pp.

			Table 1.	The nur	nber of I	nooks (tho	usand) us	ed in the	area analy	vzed by y	ear and l	by the nu	mber of l	hooks bei	ween flo	ats.			
Vear							N	umber of	hooks be	tween flo	oats (NH	(F)							
1 cui	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1975	692	17637	11110	1679	785	590	275	444	242	0	0	0	0	0	0	0	0	0	0
1976	419	13815	4883	575	150	335	9	144	63	0	0	0	0	0	0	0	0	0	0
1977	43	9933	3512	306	530	587	456	685	738	0	0	0	0	0	0	0	0	0	0
1978	35	8387	4999	1489	256	2960	3237	2426	2523	1681	98	42	0	0	0	0	0	0	0
1979	4	5421	5566	1515	408	1391	1902	1193	1218	296	0	0	0	0	0	0	0	0	0
1980	0	5776	6497	1604	959	2112	2336	2130	918	308	0	0	0	0	0	0	0	0	0
1981	19	6585	8767	3458	792	1945	5510	3236	739	41	0	0	0	0	0	0	0	0	0
1982	67	9772	9301	2497	224	1624	6647	7613	2261	470	0	0	0	0	0	0	0	0	0
1983	0	5531	10680	2917	458	1157	5541	11660	5068	2344	112	0	0	0	0	0	0	0	0
1984	28	5271	14077	3737	628	339	6395	9787	6047	1723	219	0	0	0	0	0	0	0	0
1985	19	1588	17618	6813	705	708	7298	12856	7789	2320	97	214	0	0	0	0	0	0	0
1986	0	2270	21516	5394	667	446	4051	9974	6608	3146	305	353	0	0	0	0	0	0	0
1987	0	1163	17358	8861	903	452	1174	6268	10552	2204	304	418	0	0	0	0	0	0	0
1988	0	897	12628	4840	998	701	1781	3703	11410	2177	44	543	0	0	0	0	0	0	0
1989	0	173	15483	2932	729	303	2468	1714	6453	1543	166	716	0	27	0	0	0	0	0
1990	0	738	8600	6333	997	136	2394	1179	4362	4301	353	531	128	188	26	0	0	0	0
1991	0	329	11890	9205	2840	697	957	1304	2964	3647	1232	402	113	63	451	0	31	0	0
1992	7	409	15949	8391	2023	932	1581	593	1993	2001	306	784	83	258	726	36	781	0	0
1993	0	211	9695	10433	3090	1449	3919	839	2228	1294	929	393	473	705	321	153	1876	346	0
1994	4	49	5918	15395	6930	4803	11952	1196	2406	1614	948	784	765	496	1845	351	2081	524	0
1995	4	32	2606	14690	8925	9286	20813	2313	2952	2672	634	1152	868	972	1647	585	2766	597	0
1996	0	0	469	6441	8216	12793	26548	1920	4746	2567	1509	3995	1521	1082	2922	786	4174	801	42
1997	0	3	197	1921	5108	13310	31009	3490	5617	2155	1930	3010	3678	2749	6970	2072	5747	1048	0
1998	0	1	2	532	1639	9496	26412	3461	4345	869	984	2371	2524	3807	8204	2221	8242	2387	7
1999	0	0	0	123	266	1547	14382	4305	2979	304	650	2342	2322	989	2049	741	5726	858	3

Source of Variation	Degree of Freedom	Some of Squares	Mean Square	F Value	Pr > F	R-Square
	VD -					1
	$\mathbf{I}\mathbf{K} + \mathbf{I}$	WIIN + AKEA +	NHFCL + MIN	$^{\circ}$ AKEA + AKE	A'NIFCL	
Model	93	1982.677	21.31911	45.98	0.0001	0.206177
Error	16464	7633.727	0.463662			
Total	16557	9616.405				

Table 2.	Result of ANOVA from the General Linear Model for bigeye in the tropical area (AREA 1, 2, 3, 4 ar	1d 5) in the
	Indian Ocean, 1975-1999.	

(YR+MN+AREA+NHFCL+MN*AREA+AREA*NHFCL).									
	Degree of	Sum of	Mean						
Source	Freedom	Square	Square	F Value	Pr > F				
YEAR	24	750.0	31.2	48.4	0.0001				
MONTH	11	79.6	7.2	11.2	0.0001				
AREA	6	1279.1	213.2	330.3	0.0001				
NHFCL	2	261.4	130.7	202.5	0.0001				
MN*AREA	66	1441.1	21.8	33.8	0.0001				
AREA*NHFCL	12	197.3	16.4	25.5	0.0001				

ig. 6. Standardized and nominal CPUE in the south area (left: area 6, right: area7). Both CPUEs are scaled by the average of nominal CPUE in each figure.

Standardized and nominal CPUE of all area included (area 1-7). Fig. 9.

