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ABSTRACT

Two implementations of age-structured stock production models (ASPM) were used to further explore the
assessment of bigeye tuna (Thunus obesus). The ASPM97 software that was used in WPTT 2001 was again
considered and the lack of convergence of some runs was explored and resolved. Limited sensitivity analyses were
also performed, particularly with regard to the deterministic versus stochastic assumption about recruitment, and
the choice of input parameters governing the recruitment deviations. A new in-house ASPM implementation in AD
Model Builder was also applied to the data combined with different assumptions and input parameters. Results
show a wide range of possible outcomes depending on the input parameters and assumptions. Estimates of
steepness suggest that there is very little information about the stock-recruit relationship in the data.

INTRODUCTION

Assessments of bigeye tuna (Thunus obesus) were done at
the 2001 1IOTC WP meeting using an age-structured
production model as implemented in software by Restrepo
(1996) (called aspm97.exe; adso see Nishida et al. (2001)).
Some of the runs, notably the ones based on a more recent
growth curve (Lehodey et al., 1999), did not converge, and it
is not clear why. In order to make progress it is usually
valuable to explore why runs are not converging, and at
meetings there is clearly only limited time for this. In
addition to exploring convergence or lack thereof, there are
also some parameters which are fixed (not estimated), and
we have explored a little further the sensitivity of results to
these parameters using the Restrepo software. In particular,
the constraints on the recruitment deviations from the
recruitment at virign biomass (R0) as defined by an auto-
correlation and variance parameter are explored. The main
part of this document presents results from an alternative
implementation of the age-structured production model. This
is in-house software developed in AD Model Builder'. One
major advantage is that the source code is readily available
and interpretable. We have included a detailed section on the
methodology so that the equations and assumptions used are
transparent.

ASSESSMENTSUSING RESTREPO SOFTWARE
(ASPM97)

The input data used at the third session of the IOTC WPTT
(Anonymous, 2001) were obtained from the |OTC
Secretariat so that we could explore reasons for non-
convergence. A few relatively minor discrepancies between
the input data (in the files) and the summary of runs in

! ¢ 2000 Otter Research Ltd., Sydney, B.C., Canada

Appendix V of the WPTT report (Anonymous, 2001) were
noted. There was a minor discrepancy in natural mortality,
in that vectors had mortality at age 1, M,=0.8 for al 4 runs,
whereas the Table suggests that M;=04. Discrepancies were
aso found in the selectivity for purse seiners (surface
fishery) which differs between runs 1 and 2 for age 0 (0.188
for run 1, 0.151 in run 2), though the Table suggests they
should be identical. Finally, selectivities for purse seiners, at
al ages, differ between runs 3 and 4, though the Table
suggests they should be identical. Vauesin thefiles are:

Run 3 1960-1999: 1.0 0.795 0.502 0.468 0.439 0.368 0.258
0.197 0.126

Run 4 1960-1999: 1.0 0.956 0.6 0.553 0.51 0.418 0.284
021 0.13

Given the differences in mortality between runs 1&2 and
between runs 3&4, one would expect differences in the
selectivities, though probably less so than for the different
sets of growth parameters. All runs done with the Restrepo
software were based on the input files provided by the |IOTC
unless stated otherwise (see e.g. run 4 below). The detailed
inputs used with the AD Model Builder implementation
differ from these in several ways, and are described in the
appropriate sections.

Convergence | ssues

To ensure that the software was performing properly, runs 1
and 2 were repeated. Results were identical to those given in
Table V.3 of last year's WPTT Report (Anonymous, 2001).
The two runs which had not converged at the meeting were
further explored. Nonconvergence appears to have different
causesin these 2 runs.

Non-conver gence of Run 3

With regard to run 3, it appears that the non-convergence
simply had to do with the starting values. For example, when
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run with a higher starting value for virgin biomass (B0), the
run appears to converge properly. The original run was done
with B0=2*106. Two alternative starting values for BO were
tried: 5106 and 7*106. These both converged to the same
solution. The unconverged run may simply have reached the
maximum number of iterations before getting to the fully
converged state and enabling it to calculate the variance-
covariance matrix. Unfortunately, the software does not
appear to allow the user to change the maximum number of
iterations. A closer look at results shows that even the
unconverged run got very close to the converged, fina
solution (Table 1). Note that values for the unconverged run
are from the LAST CENTROID of simplex before the”Run
Summary”.

Table 1 Comparison of results from converged and unconverged versions

of WPTT 2001 run 3.
unconverged run converged run

LLHD -104.19 -104.20
indices component -93.862 -93.845
s fit component -9.5286 -9.5449
virg-b0 component -0.80468 -0.80469
PARAMETERS
BO param 0.60676 0.60995
Steepness 0.9900 0.9900

To conclude, run3 appears simply to have suffered from a
starting value and possibly a maximum iteration limit
problem. The converged solution is given in Table 2 below.

Non-convergence of run 4

Run 4 was also rerun with different starting values for B0
(5*106 and 7*106), as well as a higher starting value for
steepness (0.9 instead of 0.5, note that the upper bound was
set to 0.99). In all these cases the minimum appears to have

been reached, in the sense that the minimum from the
simplex algorithm and that from the quadratic surface fitting
about the supposed minimum were pretty much identical.
The matrix of estimated second derivatives was not,
however, positive definite (so no CV's could be obtained),
indicating a problem with the minimization.

Two minor changes seemed to resolve this. A change in M,
from 0.8 to 0.4 (still using the origina selectivities of [1,
0.956, 0.6, 0.553, 0.51, 0.418, 0.284, 0.21, 0.13] for the
surface fishery) lead to a properly converged solution with
positive definite matrix of second derivatives (run 4a in
Table 2 below). Alternatively, a change in the selectivities
for the purse seine to the values used in run 3, with either of
the mortality vectors (M;= 0.8 or 0.4) provided properly
converged solutions (only results for M, 08, run 4b in Table
2 are shown, results for M= 0.8 were similar). Although it is
not quite clear why the origina run 4 did not converge
properly, there may be an incompatibility between the
mortality vector and the selectivity vector.

Stochastic and deter ministic runs

Restrepo and Legault (1998) compare stochastic and
deterministic runs for Atlantic bluefin tuna (Thunnus
thynnus). A plot of the deterministic- and stochastic-based
estimates of biomass show that they are at a similar level,
with the deterministic-based estimates a smooth curve
running through the stochastic-based estimates. In the case
of the bigeye data, very different results are obtained from
deterministic and stochastic runs, particularly when the
initial spawning biomass is allowed to be different from the
unfished spawning biomass. Note that this behaviour was
also seen when the AD Model Builder software was used
with the data.

Table 2 Results of bigeye assessments from Restrepo software (aspm97.exe) with input files as used in WPTT meeting 2001, except for runs 4a (M, =0.4) and
4b (selectivities for PSasin run3)

Run 1 Run 2 Run 3 Run 4a Run 4b
M;=0.4 M;=0.8 and
PSsd. asinrun 3

MSY (t) 89,090 89,267 71,199 73,059 70,749
Virgin Biomass 0.794 0.787 0.610 0.644 0.596
(million t) (Cv=0.48) (CVv=0.49) (CVv=0.40) (CVv=0.40) (Cv=0.43)
-loge(L) -92.63 -92.65 -104.20 -105.35 -104.19
Steepness 0.99 0.99 0.99 0.99 0.99
F(ratio) 0.85 0.83 1.32 1.25 1.32
=F1999/Fmsy =0.57/0.43 =0.52/0.42 =0.59/0.45
Bratio(SSB) 2.11 2.15 1.45 1.54 1.45
=B1999/Bmsy =0.17/0.12 =0.2/0.13 =0.16/0.11
Blratio 0.48 0.48 0.28 0.31 0.31
=B1999/B1960 =0.37/0.78 =0.37/0.77 =0.17/0.61 =0.2/0.64 =0.16/0.59
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This outcome strongly supports the notion that there is very
little information content in the abundance index, and
certainly very little information about the stock-recruitment
relationship. A summary of the main differences is given
below.

Attempts were made to fix some of the parameters (by
narrowing the bounds and/or setting stepsize to zero), but the
Restrepo  software aways seemed to estimate those
parameters too. For example, for a step size of 0 on the
steepness parameter, the output suggests that is is a " fixed”
parameter at the start of the output file, but where the
optimal solution is reported, it seems that the steepnessisin
fact estimated.

Table 3 Comparison between stochastic and deterministic runs (WPTT

2001 run 3 as an example).
Deterministic Stochastic
high virgin biomass (2MT) lower virgin biomass (0.6 MT)
low MSY (37 KT) high MSY (71 KT)
BMSY=0.45*B0 BMSY=0.17*B0O
highmean R lower mean R
low steepness (0.3) high steepness (0.99)
high B1999 lower B1999
Less depletion (0.73) more depleted (0.28)
current catch>>MSY Current catch>MSY
current B above BMSY current B close to BMSY

Table 4 Results of limited sensitivity runs based on WPTT 2001 run 1 data. Thefirst row isfor the deterministic run for comparison. The input values for
r ands¢?are given in the second and third columns. The calculated first (r1) and second (r2) order autocorrelations of the recruitment deviations are shown.
The CV of recruitment is calculated as the square root of (s% (1-r?) ). (na=not applicable)

Run r s¢? ri r2 Bvirgin | steepness BL/Bvirgin | MSY loge(L) CV(R)
1.Det 0 0 na na 1511 0.314 0.75 42.7 -44.3 na

a 0 0.05 0.93 0.74 1.168 0.99 1.02 119.3 -118.3 0.224
b 0 0.4 0.71 0.25 0.959 0.99 1.03 100 -91.3 0.632
c 0.1 0.05 0.93 0.73 1.125 0.99 1.02 122.2 -120.3 0.225
d 0.1 0.4 0.72 0.25 0.876 0.99 1.01 97.2 -91.9 0.636
e 0.4 0.05 0.92 0.71 1.137 0.99 1.03 116.9 -126.2 0.244
f 0.4 0.4 0.77 0.36 0.716 0.99 0.94 77.9 -93.1 0.690

Sensitivity toinput parametersfor stochastic
recruitment

Two input parameters which define the first order
autoregressive process (AR (1)) for the recruitment
deviations are the first order correlation coefficient (r), and
the variance of the error term in the AR (1) series (sf). The
interpretation of these two results is identical to that in
Equation 27 (Appendix A.5). We explored the sensitivity of
results to these two parameters using Run 1 as an example.
Results are summarised in Table 4. Runs with alow CV(R)
are probably rather unrealistic, but serve to show sensitivity
in a general sense. It is interesting to note that the resulting
series of recruitment deviations have much higher first order
autocorrel ations than the input value, and in some cases have
very high second order autocorrelation too. Results turn out
to be quite similar for the runs with low s? (ac,e),
irrespective of the value of r, and the runs with higher s?2
(b,d,f), irrespective of r.

METHODS

We implemented an age-aggregated surplus production
model (ASPM) similar to that of Punt et al. (1995) and
applied it to the Indian Ocean bigeye tuna resource.
Complete details of the ASPM can be found in Appendix A.
The ASPM was implemented using AD Model Builder.

Index of abundance

The index of abundance time-series used to estimate the
model parameters is the CPUE from the Japanese longline
fishery and was supplied to us by the IOTC. It is the index
that was calculated at the third session of the IOTC working

party on tropical tuna (WPTT) (Anonymous, 2001) and can
be found in Table 10.

Catch data

The catch data by gear type were obtained from the IOTC
and is available for two types of fisheries:

1 surface fishery (mainly purse seine)
2. midwater fishery (mainly longline)

The longline catch data spans the period 1960-1999 and the
purse seine catch data spans the period 1970-1999. The
catch data used is shown on Figure 5 and in Table 9.

Biological parameters

We used one maturity vector and two natural mortality
vectors (see Table 11).

Weight-at-age
The weight of afish is calculated from its age in two steps.
First, the fish’s length is calculated from its age using the

von Bertalanffy growth function (VBGF) (von Bertaanffy,
1938):

L =L, @1- ') €

where,

L, isthe predicted mean length of afish at aget (cm)
Ly isthe mean asymptotic length (cm)

kisafactor of dimension time

to is the theoretical (and generally negative) “age” the fish
would have at length zero had
they always grown as described by their VBGF
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Second, the weight of a fish is calculated from its length
using a length-weight relationship of the form:

W, =al’ ©)
where,
W, is the weight of afish of length L (kg)

a and b are the lenght-weight relationship parameters.

We evaluated two differents weight-at-age vectors. The first
one used VBGF (Equation 1) parameters from Tankevich
(1982). We followed the methods of Nishida et al. (2001)
and used the female VBGF for fish of age < 3.5 and the
male VBGF for fish age > 3.5 (see Table 12). The second
weight-at-age vector was calculated using VBGF parameters
from Lehodey et al. (1999). Parameters for the length-
weight relationship (Equation 2) were obtained from
Nakamura and Uchiyama (1966) and Poreeyanond (1994)
(see Table 13). The two resulting weight-at-age vectors can
be found in Table 14.

Fleet-specific selectivities

The fleet-specific selectivities were obtained from
Anonymous (2001) and can be found in Tables 15 and 16.

Details of the different runs

We performed a variety of runsin order to get a better grasp
on the benefits and limitations of the ASPM. Table 5
provides the details of the different runs. Only one CPUE
index was used (see Table 10) and the parameters not shown
in Table 5 were the same for all runs. Each run was done
using the deterministic and stochastic ASPM. Moreover, we
evaluated two different initial conditions for each run, one
assumes that the stock is at unfished equilibirium at the
onset of fishing (“virgin®) and the other alows the stock to
diverge from the unfished equilibrium at onset of fishing
(“non-virgin”). Refer to Section A.3 for a description of this
procedure. We therefore evaluate a total of 16 models (4
runs X stochastic/deterministic X virgin/non-virgin = 16).

Table 6 Comparison of deterministic base case

ASPM97 AD Model | AD Model
Builder Builder
virgin non-virgin
h 0.313 0.99 0.30
Ksp 1470200 892375 1286350
BL/Bvirgin 0.7448 1.0 0.71
-loge(L) -44.330 -43.521 -45.053
Table 7. Comparison of stochastic base case
ASPM97 AD Modd Builder | AD Model
virgin Builder
non-virgin
h 0.99 0.99 0.99
Ksp 797070 615295 580868
B1/Bvirgin 0.98 10 0.95
-loge(L) -92.626 -73.391 -73.416

Table 5 Details of the different runs using the AD Model Builder
implementation of the ASPM.

Run# | Growth curve/weight-at-age Mortality vector (see Table 11)
1 Tankevich (1982) vl
2 Tankevich (1982) v2
3 Lehodey et al. (1999) vl
4 Lehodey et al. (1999) v2

BASE CASE COMPARISONS OF SOFTWARE

A base case run was chosen for comparisons between the
Restrepo software (ASPM97) and the AD Model Builder
implementation. The base case evaluated here uses the same
input parameters as Run 1 in Table 5. The deterministic
cases are summarized in Table 6 and the stochastic cases in
Table 7. Note that the calculations of the log-likelihoods are
not identical in the two implementations, so the values are
not directly comparable. In ASPM97, a third component is
added to the loge L and pertains to Bvirgin. It is not clear to
us how this third component can be differentiated from the
component pertaining to the CPUE fit (see Equation 22)
since changing the initial conditions of the model has an
effect on the predicted CPUE, and hence on the fit to the
CPUE. It is not clear either if the third component added to
the loge L in ASPM97 corresponds to Equation 22 in
Restrepo and Legault (1998). The predicted values of the
index of abundance are very similar, as are the recruitment
deviations (see Figure 1 and 2). Nonetheless, the level of
recruitment is different and so are the biomass estimates.

There are differences between results from the two pieces of
software, and this is due to difference in implementation, of
which the main ones are:

1 Different minimization routines (ASPM97 uses a
simplex agorithm while AD Model Builder uses automatic
differentiation)

2. ASPM97 seems to use RO for age 0 in year 1 even
though B1960 could be much smaller than Bvirgin. The AD
Model Builder implementation either uses RO or scales its
value to reflect non-virign biomass situations at the onset of
fishing (see Equation 20 in Appendix A.3).

3. Stochastic  recruitment is handled dlightly
differently. ASPM97 considers recruit deviations around RO,
whereas our implementation considers recruit deviations
around a mean R which is estimated (see Section A.5).
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Predicted vs. Observed CPUE
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Figure 1: Predicted vs. observed CPUE for Restrepo’s ASPM97 and
the AD Model Builder implementation of the ASPM.

Figure 2: Estimated recruitment deviations from the two software
implementations.

Note that no attempts were made to get the two programs to
give identica results. This is because we only have a
compiled version of ASPM97, with relatively limited
documentation. Even with good documentation there are
often small details which are omitted, and which can make a
difference to calculations and hence estimation.

RESULTSUSING AD MODEL BUILDER
IMPLEMENTATION OF THE ASPM

The results for the AD Model Builder implementation of the
ASPM can be found in Appendix B.3. We present the value
of the estimated parameters as well as some management
indicators such as Maximum Sustainable Yield and
Replacement Yield.

DISCUSSION AND CONCLUSION

The runs using ASPM97 underline the importance of trying
different starting values for estimated parameters.
Exploratory runs on the bigeye datasets showed convergence
to the same solution when the minimization converged
properly, but this is not always the case. Some datasets can
lead to quite different results depending on starting values. It
aso appears that convergence may be sensitive to
compatibility between selectivities and the natural mortality
vector. This would not be entirely surprising, though it
highlights another area worth double-checking when not
obtaining convergence.

While we used the same parameter values for the VBGF and
length-weight relationship our resulting weight-at-age
(Table 14) is different from the one presented on page 2 of
Nishida et al. (2001). We noted discrepancies between the
catch data presented on Table 2 of Nishida et al. (2001) and
the caich data used by the accompanying ASPMS
application (Restrepo, 1997).

When the steepness parameter approaches its theoretical
maximum value of 1.0 the stock-recruitment curve can yield
recruits at very low spawning biomass. This situation leads
to MSY values that are rather high. The standard deviations
of the virgin biomass parameter imply coefficients of
variation (CV) of around 30% to 40% for the stochastic

runs. This large variability will have a knock-on effect on
MSY -estimates, and should be borne in mind in the absence
of bootstrap runs or variance estimates for MSY values.

The replacement yield values that we report have to be
interpreted carefully. Since the model is age-structured the
replacement yield will not necessarily lead to an equilibrium
situation. On the contrary, it is possible for the spawning
stock biomass to be the same in 2000 and 2001 but to further
decline in subsequent years if the level of catch is
maintained at RY0O0. It is aso possible that RY00 will lead to
a positive trend in spawning stock biomass if the steepness
parameter h is large. Such a situation arises because the
fisheries have selectivities that target a variety of age
classes. Recall that RYOO is calculated by assuming that the
catch split in 1999 will be maintained. The catch split in
1999 was 73% longline and 27% purse seine. Since the
purse seine fishery targets younger age classes it will have
virtually effect on the spawning stock biomass. Only a
couple of years later will the effects of fishing younger age
classes be felt and the spawning stock biomass will further
decline if the catch level is maintained a RY00. To
exemplify this point we present Figures 3 and 4 that show
the spawning stock biomass time trends under a variety of
constant future catch scenarios. Note that in Figure 3
constant catch level at RY00 eventually leadsto a stock crash
whereas it yields a positive biomass time trend in Figure 4.
The catch level that leads to a stable spawning biomass is
smaller than RYO0O.

Relaxing the assumption that the stock was at unfished
equilibrium at the onset of fishing has dramatic effects on
the results for the deterministic models. Estimating
parameter g(see Equation 20) changes the vaue of
parameter h from 0.99 (its theoretica maximum value) to
0.3 (its theoretical minimum value). Since the value of
parameter h was bounded to [0.3,1.0] we evauated if the
solution changed when relaxing the lower bound of the
interval to 0.201 (his undefined at 0.2).
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Table 8 Results obtained for Run 1 - deterministic - non-virgin when
constraining the productivity parameter h to [0.201,1.0]

Parameter deterministic
non-virgin

h 0.220

Ksp 7504630

g -1.99

Bsp1960/Ksp 0.14

-logeL -45.3387

Table 8 shows the results obtained for Run 1 -deterministic -
non-virgin when the interval of the h parameter was relaxed.
The minimizer did not reach the lower bound but the answer
was very close to 0.2, an unlikely low level of productivity
for the bigeye stock.

This paper does not attempt to present a definitive
assessment for bigeye, but rather a range of assessments
based on different assumptions and input parameters to show
the sensitivity of results to assumptions. One rather worrying
characteristic of all the stochastic runs is the fact that the
steepness estimate (0.99 or greater) is on or close to the
upper bound. It is also worrying that for the deterministic
case a simple switch from assuming Bsp1960/Ksp= 1.0 to
estimating that ratio leads to a change in the steepness
estimate from 0.99 to a very low value (around 0.3). This
clearly shows a lack of information about stock and
recruitment. Productivity for the bigeye stock is unlikely to
be at such extremes (very high productivity h=0.99 or very
low productivity h=0.3). It would aso be dangerous to
assume that recruitment would be unaffected until spawning
biomass reaches extremely low levels. The fact that the
estimate of steepness is on the upper bound also calls into
question some aspects of the validity of the results in
general. There are strong implications of such a high

steepness for projections, estimates of MSY and replacement
yield. Regarding the variance estimate of the steepness
parameter (h), the ASPM97 software show a variance of
0.000 when h is estimated to be at the boundary (set to 0.99
in ASPM97). Thisis amost certainly meaningless, sinceitis
highly likely that the first derivative with respect to h will
not be zero there. Covariances involving h are also likely to
be meaningless, though variance estimates of other
parameters may be unaffected. This can be checked by
bootstrapping.

The AD Model Builder implementation indicates a non-zero
but very low variance, though in this implementation the
bound was set to 1.0. The reliability of the variance estimate
is still questionable when the result is so close to the bound,
and should also be checked by bootstrapping. We currently
assume that the variance estimate of unexploited biomass
(Ksp) is unaffected, or not strongly affected, but this can also
be validated by bootstrap. Note, however, that idealy a
calibrated bootstrap should be used.

It isinteresting to note that in all cases, projections based on
current catch levels lead to rapid stock decline. Between
runs, there is however large differences in estimates of catch
levels that would maintain the stock at its current biomass,
or lead to biomass increases. Ideally, the projections for
stochastic recruitment runs should again be stochastic, but
we did not have enough time to do that. Although the
software (AD.ModelBuilder implementation) has been
tested, more work needs to be done on the behaviour of the
stochastic recruitment version. It may, for example, be
feasible to estimate one more parameter describing the
recruitment deviations (e.g. the autocorrelation or variance
parameter). This should obviously be tested with simulated
data.

Spawning stock biomass time trends under a variety of constant future catch scenarios
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Spawning stock biomass time trends under a variety of constant future catch scenarios
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Figure 3: Stock projections under a variety of future constant catch
scenario for run 1 -deterministic - non-virgin.

Figure 4: Stock projections under a variety of future constant catch
scenario for run 1 -deterministic - virgin.
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APPENDIX A. ASPM IMPLEMENTATION DETAILS

A.1 Dynamics
The dynamics of the fish population are described by three
equations:

N,.10 = R(BE,) 3

— -M,/2 -M, /2
Nyiran = (N, € - C, .)€ (4

Ny+1,m - (Ny,mer Mn/2 _ nym)er M2 o (Ny’mrle— Mpa/2 _ Cy,m,1)er Mpyy/2 (5)
where,
N, . isthe number of tuna age a at the start of year y

R(B®) is the spawners-recruits biomass relationship assumed
(see section A.2)

C,. is the total number of tuna age a taken by the fishery in
year y M, is the natural mortality rate for fish age a (see
Table 11) misthe largest age considered (the ” plus group”)

The fishery is assumed to occur as a pulse catch in the
middle of the year. The total number of tuna of age a caught
each year (C'y,a) is given by:

o
C,a= e} Cyfa (6)

where, f isfishery/fleet concerned.
The mass of the fleet-specific annual catch (C')) is given by:

m
f_ 2 f

Cy - a. Wa+1/ 2Cy,a (7)

a=0

X f f M. /2

= a. Wa+l/28a,y|:y Ny,ae * (8)
a=0

where,

Say is the fleet-specific selectivity for tuna of age a in year
y (valuesin Table 15 and16)

Fly is the fleet-specific fishing mortality for year y (see
Equation 11) wa+12 is the weight at mid-year (values in
Table 14)

The fleet-specific exploitable biomassis calcul ated as:

m
f_ 28 f -M, /2
By =a Wa+1/28a Ny,ae ©)
a=0

or in numbers

m
f — & cof -M, /2
N, =a SIN, € (10)
a=0
The proportion of the resource harvested each year (F'y ) by
fleet f is given by:

F,/ =C, /B, (1)
and
Cy.=SIF/N, "' (12)

A.2 Spawning biomass-recr uitment relationship
The spawning biomassinyear yis:

B =Q f.wN,, (13)
a=0
where:

fa is the proportion of sexually mature tuna at age a (values
in Table 11)

The number of recruits is calculated using a Beverton-Holt
relationship:
s
aB,
»
b +B,
To ease the biological interpretation of the stock-recruitment
parameters we reparameterize equation 14 in terms of the
pre-exploitation equilibrium spawning biomass (Ksp) and
the "steepness’ of the stock-recruitment relationship. The
"steegpness’ h of the stockrecruitment curve is defined as the

fraction of the pristine recruitment (RO) that results when the
spawning biomass drops to 20% of its pristine level:

hR, = R(0.2K*®) (15)
from which it follows that:

h=0.2b + K®]/[b +0.2K¥] (16)
and hence:

R(B") = (14)

a :4h_R0 (17)
5h-1
and
(1 -
b :w (18)
5h-1

We constrained the value of h to [0.3,1.0] as it is very
unlikely that the bigeye stock has a level of productivity
below 0.3.

A.3 Biomasstrajectories

Given a value for the pre-exploitation equilibrium spawning
biomass Ksp and assuming that the initial age structure is at
equilibrium, theinitial recruitment RO can be calculated as:

R =K® /5 fwe o 4 (fwe & 1 gvnyy (19
a=1

An additional parameter (g) can be estimated to allow the
stock to be at a state other than the unfished equilibrium at
the onset of fishing. Note that the population structure, as
represented by the proportion of fish in each age class, will
be similar to that of the unfished equilibrium. The extra
parameter simply scalestheinitia population:

Noo = R€’ (20)

The notation Ny, means the number of recruits at the onset
of fishing. Initia abundance of older age classes are
calculated as:
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Na,O = Na—l,Oe_ Mt

Once the numbers-at-age of the population at the oset of
fishing have been calculated the population dynamics can be
obtained through equations 3 through 14.

A.4 Objective function

To estimate the stock recruitment parameters r and Ksp, the
model is fitted to an index of abundance by maximizing an
associated likelihood function. The likelihood is calculated
assuming that the observed index of abundance is
lognormally distributed about its expected value:

I — 118 (- [ 0l
l,=1,e” or e, =In(ly)-In(l,) (21
where,
IyI is the longline fleet abundance index for year y

IA; = qI N'y is the corresponding model estimated value,

where N'y is the model value for the longline exploitable
resource abundance (equation 10) d is the constant longline
catchability coefficient € isfrom N(0,(s')?)

The simplified log-likelihood function for the indices of
abundanceis given

by:
l0g,(L,) =- & dog,s y +§e(ely.) 22 S
v 8 28,)"

Independent estimates of N(0,(s',)?) are not available so they
are assumed not to be dependent on year (s'y is simplified to
s'). s' is etimated in the likelihood maximization process
as.

2 RV
| a y (ey)
S =4 —— (23)

n

where n is the number of data points in the abundance time

series. The indices of abundance component of the log-
likelihood can be further simplified to:

l0g.(L) =~ nlog.(s )- 2 @)

Under this assumption, the maximum likelihood estimate of
q isgiven by:

Al éo | | l;'

6 = expad (log,(11) - log,(N))a @5)
ey G

A.5 Stochastic recruitment

The stochastic version of the ASPM requires the estimation
of additional parameters. We estimate recruitment as
deviations from an estimated mean recruitment and cast the
recruitment deviations into a first-order autoregressive
process (AR(1)):

R, =Re” (26)

subject to

N,=rn +f (27)

where
R, is the estimated recruitment in year y

R isthe estimated mean recruitment
n isavector of recruitment deviation (&y ny=0)

r isthe lag-1 autocorrelation (|r | <1
f isani.i.d variable with ft~N(0,s;?)

The AR(1) process is incorporated by adding the following
component to the log likelihood:

o (W)
log.(L,) =-a (Zsy)z (28)

y f

where

LR A

b 1-r?

and

t y zloge(R;)_ loge(Ry)

It is important to distinguish between recruitment that is
estimated (R'y, equation 26) and recruitment that is
calculated using the stock-recruitment relationship (Ry,
equation 14). The AR(1) parameters r and sf could be
estimated but it is unlikely that the data will contain
information about the relative contribution from recruitment
variability with respect to the variability in the index of
abundance. For this reason, the values of r and sf have to
be set by the analyst. For all runs performed we used
r =0.25 and s%=0.4.

We estimate recruitment as deviations from an estimated
mean recruitment, an approach that differs from that of
Restrepo (1996) which estimated recruitment as deviations
from recruitment at virgin level. We prefer our approach
since it alows for the sum of deviations to equal 0 (ay

ny=0).

A.6 Summary

The deterministic version of the ASPM estimates parameters
h and Ksp by maximizing loge (L1) (equation 24). The
stochastic version of the ASPM estimates parameters h, Ksp,
R, and n by maximizing

loge(L) = Ioge(l—l) + Ioge(LZ)
and 28).

In either case, parameter gis estimated if the stock is
assumed to be at a state other the unfished equilibirum at the
onset of fishing. Note that minimization on the negative log
likelihood is in fact used in the software (ie minimise: -loge

(L)

(sum of equations 24
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A.7 Other considerations

The replacement yield for 2000 is defined as the 2000 catch
necessary to maintain the spawning biomass in 2001 at the
same level asin 2000:

RY%0 = Caomo | (B = Boo (29)

The proportion of the catch taken by the longline fishery is
calculated as:
|

pl = C1999

|

C1999 + ClgSQQ

and the proportion of the catch taken by the purse seine
fishery is

ps
C1999
| ps
C1999 + C1999
The total catch is split accordingly between the two
fisheries:

C,=p'C,
cp=pmc,

p*=1-p' =

Catch of Indian Geean BigEye Tuna (Thunnus obesus)

160000 , ,

T
—— Total catch
--#-- Longline catch
140000 H —®— Purse seine catch

120000

100000

an0ono

Catch (MT)

ROD00

40000

20000

4]
1960 1965 1970 1975

1980 1985 1990 1935 2000
Year

Figure 5: Catch data used. Refer to Table 9 for the data used to generate this graph.
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APPENDIX B. TABLESAND FIGURES

B.1 Catch data and index of abundance

Table 9: Catch data used. Refer to Figure 5 for a graph of this Table 9 Continued
data.
Year || Longline (MT) | Purse seine (MT) | Total Year || Longline (MT) | Purse seine (MT) | Total
1960 9754 9754 1976 27297 142 27439
1961 9146 9146 1977 33785 160 33945
1962 14169 14169 1978 48146 124 48270
1963 0064 9064 1979 32793 133 32926
1964 14000 14000 1980 33704 125 33829
1963 13600 15600 1981 34276 241 34517
1966 17527 17527 1982 43019 220 43239
1967 73310 23310 1983 47293 780 48073
1968 3455] 34551 1984 36493 4395 40888
1969 27757 27757 1985 41685 7480 49165
1970 54830 31 24913 1986 45231 11112 56343
1971 20381 31 20432 1987 49185 13832 63017
1972 18759 33 18817 198K 54471 17290 71761
1973 15667 130 15797 1989 49521 12776 62297
1974 26163 124 26287 1990 54874 13134 68008
1975 35654 100 35754 1991 51842 16214 68056
1992 52683 11641 64324
1993 76065 16408 92473
1994 76090 19350 95440
1995 86516 28958 115474
1996 97744 25190 122934
1997 97309 34384 131693
1998 111048 27985 139033
1999 104512 38910 143422
Table 10: CPUE index used. Table 11: Value of the maturity vector (m1) and of the two mortality
Year CPUE Year CPUE vectors (v1 and v2)used.
1960 4.9856 1980 5.2869 age ml vl 2
1961 3.7597 1981 49582 = )
1962 48213 1982 45332 Jo || Mo | M,
1963 4.0728 1983 4.4082 0 0 0.8 1.2
1964 4.2588 1984 3.9103 = = =
1965 3.2196 1985 3.9628 I 0 04104
1966 3.6846 1986 47259 2 051104104
1967 2.9018 1987 5.3255 3 T1ollo404
1968 347 1988 4.4126 -
1969 2.8123 1989 4.1398 4 1.0 04104
1970 25884 1990 40172 5 1.0 1 04]04
1971 2.4941 1991 3.8177 6 T1olloal o4
1972 3.1635 1992 3.5432 - - -
1973 3.941 1993 3.8858 ! 1.0 0404
1974 4.5837 1994 3.4661 8+ | 1.0f04]04
1975 3.8284 1995 35141
1976 4.4053 1996 3.2251
1977 7.4138 1997 2.8021
1978 6.6414 1998 3.0569
1979 4.6715 1999 2.9367
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Table 12: VBGF parameters used.

B.2 Model parameters

L. k 1y Table 13: Length-weight relationship parameters used
From Tankevich (1982) o = B
Females 2008 | 0.171 | -0.86 = — = — —
Males 123 0058 | -1.773 F 01'1\' lcngl']'l < 80cm 2. 74107 2.908
I—‘ro]-n LCI]O(I@Y el (”’, ( ]()()()) I:Ol-l\- lCIlglll 2 H()Cl'l"l 3.()() l # 10_:\ 2‘")0 132
166.3 | 0.349 | -0.389
age [ weight - (Tankevich, 1982) \\'éight - (Lchoclcy etal., 1999)
wake) wa(kg)
‘ ‘.'“J?\ghl—at—age‘ using the I‘wo L’I\fferenlt VBGF pnrlarneters I I 0 0,475 0.195
1op || T Tankeich (1582) g 0.5 1597 1.687
-—x—-- Lehodey et al. {1999) 1 3526 1874
ol | L5 6.270 12317
2 12.706 19.500
e 2.5 18.111 27.303
] e 7 3 24233 35.245
Z o 35 31417 12078
g oor - 1 7 38962 50270
e 15 47116 56.985
40+ 4 5 55.808 63.058
X/“/ 35 64.973 63.475
wo | o i 6 74551 73.253
P 6.5 84.435 77431
£ . ‘ ‘ . . , , 7 94.727 81.038
1 2 3 4 5 & 7 8 7.5 105.232 84.189
Age 8 115.959 86.879
8.5 126.874 89.181
Figure 6: Resulting weight-at-age from the two growth curves used. .
’ The data L?sed t?) produge thisgraphis igr]1 Table 14. Table 14: Weight-at-age vectors used.
Selectivity of Indian Ocean BET to the longline and purse seine fisheries
I 4'71 Longline -1I1960—76‘w : I ‘ ‘ ~ -
1r ;ﬁl\ -—-%—— Longline (1977-1931) e age 54 Sf (’4 ‘S-.‘;g
J A | - Longline (1992-1899) e . . ) ) o . I
‘\‘ & Purse seine (1970-1999) T (1960-1976) | (1977-1991) | (1992-1999) | (1970-1999)
08 “ 1 0 0 0 0 0.188
| 0.004 0.003 0.001 |
2 osl | 2 0.046 0.042 0.067 0.432
F: , 3 0.137 0.181 0.276 0.272
i sl ;,«" | 4 0.329 0.414 0.514 0.206
! 5 0.618 0.703 0.816 0.248
/ 6 0.848 0018 0.97 0.113
b2 1 7 1 1 I 0.025
8+ 1 1 1 0.025

a+

Figure 7: Sdlectivity of Indian Ocean BET to the longline and purse
seine fisheries when using the growth parameters from Tankevich
(1982). The data used to produce thisgraphisin Table 15.

Table 15: Value of the different selectivity vectors evaluated when
using the growth parameters from Tankevich (1982). 9 isthe
selectivity to the longline fishery and Spsis the selectivity to the
purse seine fishery. Refer to Figure 7 for a graph of this data.
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Sel
T

lectivity of Indian Ocean BET to the longline and purse seine fis|

heries

selectivity

—+— Longline {1360-76)
---#-— Longline (1977-1991)
---3--- Longline (1992-1999)

~—B-— Purse seine (1970-1999)

B

g B

.
b \\'EI.‘.;\
— - |
I I I I I 1 1
0 1 2 3 4 5 6 7 8+
Age

age S Sy Sy Sps
(1960-1976) | (1977-1991) | (1992-1999) | (1970-1999)

0 0.001 0.001 0 1
1 0.148 0.148 0.166 0.795
2 0.536 0.65 0.679 0.502
3 0.999 | 1 0.468
4 | | | 0.439
5 1 1 1 0.368
6 1 1 | 0.258
7 1 1 1 0.197

8+ 1 1 1 0.126

Figure 8: Selectivity of Indian Ocean BET to thelongline and purse
seine fisheries when using the growth parameters from Lehodey et
al. (1999). The data used toproduce this graph isin Table 16.

Table 16: Value of the different selectivity vectors evaluated when
using the growth parameters from Lehodey et al. (1999). 9 isthe
selectivity to the longline fishery and Spsis the selectivity to the
purse seine fishery. Refer to Figure 8 for a graph of this data.

B.3 Results
Run 1 - Spawning Stock Biomass time trends
1.4e+06 ' —Deterministe virgin" Parameter || deterministic | deterministic | stochastic | stochastic
Deterministic - non-virgin —x-— virgin non-virgin virgin | non-virgin
1.2e+06 Oy h 0.999 0.300 0.999 0.999
K 892375 1286350 615295 580868
1e+06 | et B e . Cror 121710 14010 232740 | 250030
PEnt 3.
o Y 0.0 -0.345 0.0 -0.052
800000 B oo/ K7 1.0 0.71 1.0 0.95
—/thL,(L) -43.5207 -45.0533 -73.3912 | -73.4162
600000 F* ST 123862 373363 854142 | 806343
MSYy 903354 27214 62263.1 58775.8
400000 MSY 335264 101223 23151.1 21858.4
Busy 141815 975318 | 92092.9
200000 RY;oral 95576.9 52078 853516 | 82835.6
RYy 09647.2 38605.2 62196 60362.5
0 L . . L . . . RY,, 25929.8 143728 23155.7 22473.1
1960 1965 1970 1975 1980 1985 1990 1995 2000
Figure 9: Spawning stock biomass time trends for Run 1. Table 17: Run 1 result
Run 2 - Spawning Stock Biomass time trends e
1.4e+06 T T . " . : Parameter || deterministic | deterministic | stochastic | stochastic
Deterministic - virgin —— o o o o
Deterministic - non-virgin —s— virgin non-virgin virgin | non-virgin
1.26+08 | Smcﬁ;ﬁ‘;’;ﬁ'gl;x}{gm e h 0.999 0.300 0.999 0.999
) K*r 890290 1284020 613623 578742
16+06 KRR g 2 1 G 121470 113670 231970 248810
SRV X P
Tttt e v 0.0 -0.345 0.0 -0.053
800000 B oen/K? 0 071 1.0 0.05
—f()gt,(i) -43.5157 -45.0517 -73.3957 | -73.4215
600000 F*- MSY oral 123945 37304.1 854453 80390.7
MSYy 90352.5 27234.3 62280.7 58741
ey MSY,,, 335004 101298 | 231646 | 218496
Bysy 141716 569001 98015.6 92352
el RY oral 95725.8 531034 | 853917 | 828204
RYir 69 6 38696.6 62225.1 603358
0 . . . . . . . RY . 25970.1 14406.8 23166.5 22470.6
1960 1965 1970 1975 1980 1985 1990 1995 2000

Figure 10: Spawning stock biomass time trends for Run 2.

Table 18: Run 2 results.
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1.4e+06

Run 3 - Spawning Steck Biomass time trends

1.2e+06 -

1e+06 -

800000

600000

400000

200000

Deterministic - virgin ——

Deterministic - non-virgin -—-+---

Stochastic - virgin - | |
Stochastic - non-virgin -—e-—

i e AR A
Mg
e

0
1960

1965 1970 1975 1980 1985 1990 1995 2000

Parameter

deterministic

deterministic

stochastic

stochastic

virgin non-virgin virgin non-virgin
h (.999 0,300 0.999 0.999
KP a02917 1394870 REEEY 66174
Gap 228280 200590 121870 102670
¥ (.0 -0.415 0.0 -.102
Bloen/ KT 1.0 0.60 1.0 0.90
—logL) 42,273 437981 865544 | -RO.6792
MSY prar 51909 452984 653923 616439
MSYy L0792 330154 476693 449358
MSY gy 411169 12283 17723 167081
Bursy 813494 617310 34619 32596.2
RY oral 00775 57761.2 866294 | 807331
Ry 734351 42000.7 63127.1 SHEAS
RY ps 27340 13670.3 23502.3 21908.1

Figure 11: Spawning stock biomass time trends for Run 3.

Table 19: Run 3 results.

1.4e+06

Run 4 - Spawning Stock Biomass time trends

1.2e+06

1e+06

800000

600000

400000 =

200000

; T T
Deterministic - virgin ——

Parameter

deterministic

deterministic

stochastic

stochastic

0
1960

virgin non-=virgin virgin non-virgin
Deterministic - non-virgin - - - -
Stochastic - virgin - | ] h (.999 (.300 {1,999 0.999
Stochasllc - han-virgin ——&— K°P 807681 [388810 | 382492 | 359684
eI | e 227700 [00450 194230 OROIN
e T 7 0.0 0417 0.0 0109
B e/ K 1.0 0.66 1.0 0.90
—lagA L) -42.2673 -43.7952 RO5R21 [ -86.7239
MSY i 153055 45373.1 052555 H1368.9
MSYy I11623 33069.0 475685 44734 4
MSYp 41432 [2303.5 17687 166345
Bussy T7164.6 614360 324678 30403
RYiowar 101136 SRO28.0 859669 TO658.T7
RYy TI69T.9 2285.6 626443 SR047.5
. . . . -6 RYps 274379 15743 23322.6 21611.2
1965

1970 1975 1980 1985 1990 1985 2000

Figure 12: Spawning stock biomass time trends for Run 4.

Table 20: Run 4 results.
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