STOCK ASSESSMENT OF YELLOWFIN TUNA (*THUNNUS ALBACARES*) RESOURCES IN THE INDIAN OCEAN BY THE AGE STRUCTURED PRODUCTION MODEL (ASPM) ANALYSES

Tom Nishida and Hiroshi Shono

National Research Institute of Far Seas Fisheries (NRIFSF),

Shimizu, Shizuoka, Japan

ABSTRACT

In this paper, we attempted to assess yellowfin tuna (Thunnus albacares) (YFT) resources using the age-structure production model (ASPM) (1967-2000) as this approach was recommended for the tropical tuna stock assessments in the Indian Ocaen in the recent IOTC ad hoc working party meeting on methods held in IRD, Sète, France 23-27, April, 2001.

INTRODUCTION

In this paper, we attempted to assess yellowfin tuna (*Thunnus albacares*) (YFT) resources using the agestructure production model (ASPM) as this approach was recommended for the tropical tuna stock assessments in the Indian Ocean in the recent IOTC ad hoc working party meeting on methods held in IRD, Sète, France 23-27, April, 2001 (Anonymous, 2001). We assume that YFT in the Indian Ocean is a single stock.

DATA

We use YFT catch and size data by country (area), gear, year and season for 41 years from 1960-2000, which were from the IOTC's updated database (May, 2002 version).

ASPM

ASPM have been used in assessments carried out by the International Commission for the Conservation of Atlantic Tunas (ICCAT) in the past, particularly for albacore tuna (*Thunnus alalunga*) in the south Atlantic and bluefin tuna (*Thunnus thynnus*) in the western Atlantic. Conceptually, ASPMs fall somewhere between simple biomass-based production models (e.g., Schaefer 1957; Prager 1994) and the more data-demanding sequential age-structured population analyses (Megrey, 1989). Typically, simple production models estimate parameters related to carrying capacity, rate of productivity, biomass at the start of the time series, and coefficients that scale indices of abundance to the absolute magnitude of biomass. ASPMs estimate similar parameters but make use of age-structured computations internally, rather than lumped-biomass ones, and directly estimate parameters of a stock-recruitment relationship. Their main advantage over simpler production models is that they can make use of age-specific indices of relative abundance.

In this paper, we used the ASPM software developed by Victor Restrepo (1997) called as ASPMS (stochastic version of ASPM). The detail formation of the ASPM is provided in Appendix A.

INPUT FOR THE ASPM

There are three types of the age specific input data required for the ASPM, i.e., Biological parameters, Catch with selectivity and Index (CPUE). In our YFT ASPM analyses, we use six age classes from age 0-5+.

Biological parameters

For Biological parameters, three types of age-specific inputs are needed, i.e., natural mortality (M), weights (beginning and mid of the age) and fecundity. These inputs are decided (or assumed) as follows:

(1) Natural mortality vector (M)

We use two types of M vectors as shown in Table 1. M vector 2 is suggested by Fonteneau.

Table 1 Two N vectors as ASPM input									
Age	0	1	2	3	4	5+			
M vector 1	0.8	0.8	0.4	0.4	0.4	0.4			
M vector 2	1.2	0.8	0.6	0.6	0.6	0.6			

(2) Weights at the beginning and the middle of the age

To estimate these parameters, we use the following growth curve and the L-W relationship:

Growth equation (Stequert *et al*, 1995)

$$L_{t(cm)} = 272.7 \left(1 - e^{-0.176[t - (-0.266)]} \right)$$

Based on the results of the otolith increment data collected in the (western) Indian Ocean.

L-W relationship (IPTP, 1990)

For fork length < 64 cm : $W = (5.313 \text{ x } 10^{-8})l^{2.754}$

For 64cm <= fork length: $W = (1.585 \times 10^8) l^{3.045}$

As results, we obtained Age-L-W key as shown in Table 2.

Table 2 YFT age-length-weight keys in the Indina Ocaen											
Age (at end) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5									5.5		
Length (cm)	34.4	54.5	72.9	89.7	105.1	119.2	132.2	144.0	154.8	164.8	173.9
Weight (kg)	0.91	3.36	7.45	14.0	22.7	33.3	45.6	59.2	73.8	89.3	105.1

(3) Fecundity

We assume that fecundity is proportional the body weights at the middle of each age and also assume 0 fecundity (maturity) for age 0-1, 50% for age 2 and 100% for age 3-5+. Table 3 summarizes this information.

Table 3 Maturity and fecundity of YFT in the Indian Ocean									
Age	0	1	2	3	4	5+			
Maturity	0	0	0.5	1	1	1			
Fecundity (kg)	0	0	11.4	45.6	73.8	105.1			

Catch

Appendix B lists the annual catch by gear based on the IOTC database (May, 2002 version). According to Appendix B, there are <u>eight types of gears</u> including others, which exploit the YFT in the Indian Ocean. In the ASPM analyses, we need to estimate selectivity for each gear. As we don't have enough size data to estimate accurate selectivities for these eight gears, we classify them into <u>four types</u> considering similarities of the age compositions and depths of the gears, which are shown in Table 4 and Fig. 1.

Ta	Table 4 Four gear types, their codes, relevant gears, major age class & size to exploit YFT.									
Type (code)	Gear Code member gears Depth of the gear Major age classes for catch									
Surface (SUF)	BB_TL	BB, TROLL, LINE, and OTHER (*)	Surface	0						
(2) Sub-surface (SUB)	GILL	GILL and OTHER (*)	30m (?)	1						
(3) Surface to Sub-surface (SUF_SUB)	PS	PS	Surface to 30 m (?)	0-1						
(4) Mid water (MID)	LL	LL, HAND, LINE(*), and OTHER(*)	50-250 m	2-5+						

Note (*) for classification of OTHERS : see Table 5..

There are OTHER gears listed in Table 5, which are mainly the combined gears. They are also classified into four categories by considering compositions of combined gear types, which are based on the information provided by Miguel Herrera (IOTC). Using these four gear categories, trends of the YFT catch are re-summarized in Fig. 2 from 1960-2000 as we will use this period for the ASPM analyses. For a reference, Fig. 3 shows the gear compositions of the cumulative YFT catch for 41 years from 1960-2000.

Table 5	List of OTHER type of gear and LINE by country.	cumulative YFT catch and assig	med gear type code defined in Table 4

Tuble 5 List of Officer type of gear and East by country, canadative fiff calch and assigned gear type code defined in Fable 4.									
IOTC gear category	IOTC country code	Cumulative YFT catch (t) (1950-2000)	Assigned gear type code and their compositions(*)						
OTHER	AUS	80	SUF(100%)						
OTHER	СОМ	2,158	SUF(50%) MID(50%)						
OTHER	IDN	32,577	SUF(80%),SUB(10%), SUF_SUB(10%)						
OTHER	IND	12,298	SUF(33%),SUB(33%), MID(33%)						
OTHER	JPN	2	SUF(100%)						
OTHER	LKA	142,193	SUB(80%), MID(20%)						
OTHER	MDV	27	SUF(100%)						
OTHER	MOZ	218	SUF(100%)						
OTHER	SYC	2,946	SUF(20%), MID(80%)						
OTHER	TZA	1,050	SUB(100%)						
OTHER	YEM	15,026	SUB(100%)						
OTHER	ZAF	161	SUF(100%)						
LINE			SUF(50%), MID(50%)						

Note (*): Gear compositions are roughly estimated based on Nishida (1999) and personal communication with Miguel Herrera (IOTC).

Selectivity

In estimating the selectivity, we need the catch-at-age (CAA) matrix. To estimate the CAA, we need the age compositions. However, as we don't have enough size data for FOUR types of gears, we will estimate the age compositions by some period (3-5 years). Then we estimate the CAA based on these age compositions. Then, by looking at the similarity of the patterns of age compositions and catch trends among these periods, we will further pool them into a few longer periods during 1960-2000. For each longer period, we estimate one vector of selectivity (see Fig. 4). Appendix C shows the data process to determine such longer periods for the selectivity and also the resultant CAA. Based on these information we estimate the selectivity using the separable VPA by gear. The results are shown in Fig. 4. For the LL, we assume that the selectivity for age 3-5+ to be 1.

Index (LL CPUE)

We use the Japanese and the Taiwanese standardized CPUE by the GLM as the index inputs, which are described in IOTC/WPTT/02/12 (Shono, Okamoto and Nishida, 2002) and IOTC/WPTT/02/30 (Wang and Wang, 2002) respectively. Fig. 5 shows the trends of the estimated CPUE.

5. ASPM RUNS (RESULTS)

Using the input parameters, we attempted various ASPM Runs. As results, we could not get the solutions (ASPM did not converge). This is probably because both CPUE (Fig. 5) and catch trends (Fig. 6) are not properly reflected, i.e., during 1960's CPUE dramatically deceased although catch was constant, while during 1990's, CPUE were constant although catch dramatically increased.

Thus, we consider that the period of 1960-2000 is inappropriate. To solve this problem, we decided to omit some years during the sharp decreasing period of the CPUE in 1960's. Then, we re-attempted the ASPM runs with the starting year of 1967 as the Taiwanese CPUE is available from this year (Fig. 7).

As results, we could get the reasonable solutions with the 1967-2000 data set with M 2 vector. Table 6 and Figs. & 18 summarized the results.

6. DISCUSSION

High LL CPUE levels during the early fisheries developmental period (1950's and 1960's) affect the ASPM analyses as the catch level are not well reflected, i.e., in 1960's even the catch were constant, LL CPUE drastically decreased. Such phenomena have been experienced many studies in the past in all three Oceans for almost all tuna and billfish species.

Because of this problem, we started the analyses from 1960 by omitting the high CPUE seen in the 1950's. But, this problem still remains with the data in 1960's as observed in Figs. 5 & 6. Thus, we further omit years with such high CPUE levels (1960-66). As a result, we could get the reasonable ASPM results. The CPUE series from 1967-2000 are likely realistic because when total catches sharply increased from mid 1980's (Fig. 6), LL CPUE were reflected and gradually decreased (Fig. 7).

As the result of the ASPM Run, we have almost constant recruitment trend in 1990's although there were the huge catch in 1990's. This is probably caused by the possible fact that apparent (estimated) LL CPUE decreasing trends were much slower than in the actual one. Thus, the real recruitment in 1990's is considered to have much more decreasing trend than the estimated one in Fig. 9.

	Table 6 Summe	ary of the ASPM INPUT	and results							
		INPUT & Assumptions								
Years analyzed	1960-2000 1967-2000									
Stock (area)	Single stock (whole In	Single stock (whole Indian Ocean)								
Gear types for catch	LL (mid w	LL (mid water)								
(depth of the gear)	PS (surface	PS (surface to sub-surface)								
	GILL (sub-su	GILL (sub-surface)								
	BB_TROLL (surface	BB_TROLL (surface)								
Growth	Stequert et al(1995)									
L-W relation	IPTP (1990)									
M vector	M1	M2	M1	M2						
Selectivity	Three different selection	vities for three different per	riods are estimated for ea	ch gear						
penalty (weighting values) to fit to	?(serial correlation co	efficient in the error terms	of the $\overline{\text{S-R model}} = 0.00$							
the objective function	s ² (weighting for the s	tock-recruitment relationsh	ip) = 0.20							
(residual sum of squares) s^2 (weighting for the initial population size) = 0.40										
Spawner-Recruit relation	Beverton-Holt model (stochastic option)									
Index (CPUE)	Japan (Shono et al, WPTT/02/)									
(all ages combined) Taiwan (Wang and Wang, WPTT/02/)										
		Results								
Steepness				0.63						
-ln (likelihood)				- 79.9						
R-squared				0.812						
MSY				0.29 million tons						
(current catch in 2000)				(0.32 million tons)						
TB(2000)				3.38 million tons						
TB(MSY)				1.92 million tons						
B ratio(TB)=				1.77						
TB(2000)/TB(MSY)	No convergent	No convergent	No convergent							
SSB(2000)				3.22 million tons						
SSB(MSY)				1.88 million tons						
B ratio(SSB)=				1.71						
SSB(2000)/SSB(MSY)				0.62						
B1 ratio = T B2000/B1				0.63						
F(2000)				0.23						
F(MSY)				0.33						
F(ratio) = F2000/F(MSY)				0.70						

Note : TB: Total Biomass, SSB: Spawning Stock Biomass B1: Biomass at the start year

Age	0	1	2	3	4	5+
M vector 1 (M1)	0.8	0.8	0.4	0.4	0.4	0.4
M vector 2 (M2)	1.2	0.8	0.6	0.6	0.6	0.6

As a conclusion, although we likely have the underestimated ASPM results, the YFT stock status is about the optimum yield level as the MSY is the 0.29 millions and the current catch level is the 0.32 million tons.

Table 1 shows simple comparisons of YFT assessments the past three studies. Estimated adult (age 2+) population sizes in 1988 are compared.

	Table 1 Simple comparisons of YFT assessments among three studies in the past.									
	Method	Analyzed period	Estimated population of the adult YFT (age 2+) in 1988 (million fish)							
Nishida and Kishino (1991)	Immature-adult dynamic model (similar approach to the ASPM)	1971-88	15							
Nishida (1995)		1971-92	20							
Nishida and Shono (2002)	ASPM	1967-00	12							

We have rather lower estimates than those in the first two studies. This is because the current study include the huge catch in 1990's, which make the population dynamics more realistic and population estimates lower. Hence, the estimates in the current study are likely more robust one.

Considering the possible fact that the estimates in this study are much more robust than those in the past but they are considered to be under-estimated, it is likely that the current catch level (0.32 million tons) are beyond the real MSY level, which is much larger than the estimated one in this study (0.29). Hence, if we keep to continue this level of the catch, we will also expect the situation like BET (see IOTC/02/35 by Nishida *et al*, 2002). This means that to keep the current catch level can not guarantee to maintain the SSB and Total biomass (TB) producing the MSY level in the near future.

Considering the over-fishing status of BET, the optimum or possible over-fished status of YFT and the multi-species fisheries nature including BET and YFT in the Indian Ocean, it is strongly recommended for the tuna fishing nations in the region to consider some management measures to reduce catch and/or effort in order to secure the sustainable yield of both YFT and BET for the long future.

ACKNOWLEDGEMENTS

We very much appreciate Miguel Herrera and Alejandro Anganuzzi (IOTC) for providing the data and suggestions on the fishing gears and fisheries. We further thank Ziro Suzuki, Yuji Uozumi, Naozumi Miyabe, Kazuhiko Hiramatsu and Hiroaki Okamoto (NRIFSF) who provided the constructive suggestions to improve this paper. Final thanks for Ying-Chou Lee (Taiwan National University) and Jessica Wang Overseas Fisheries Development Council) who helped to provide the Taiwanese standardized CPUE even invery short notice.

REFERENCES

ANONYMOUS (2001) Report of the IOTC ad hoc working party on methods, Sète, France 23-27, April, 2001: 20pp.

BEDDINGTON, J, R., AND J. G. COOKE. 1983. The potential yield of fish stocks. FAO Fish. Tech. Pap. 242. 50pp.

BEVERTON, R. J. H., AND S. HOLT. 1957. On the dynamics of exploited fish populations. Reprinted in 1993 by Chapman and Hall, London. 553 pp.

DERISO, R. B., T. J. QUINN, AND P. R. NEAL. 1985. Catch-age analysis with auxiliary information. Can. J. Fish. Aquat. Sci. 42:815-824.

FRANCIS, R.I.C.C.1992.Use of risk analysis to assess fishery management strategies: a case study using orange roughly (Hoplostethus atlanticus) on the Chatham Rise, New Zealand. Can. J. Fish. Aquat. Sci.49: 922-930.

GOODYEAR, C. P. 1993. Spawning stock biomass per recruit in fisheries management: foundation and current use.p.67-81 in S. J. Smith, J. J. Hunt, and D. Rivard (eds.) Risk evaluation and biological reference points for fisheries management. Can. Spec. Publ. Fish. Aquat. Sci. 120

HILBORN, R.1990. Estimating the parameters of full age structured models from catch and abundance data. Bull. Int. N. Pacific Fish Comm.50: 207-213.

ICCAT. 1997. Report for biennial period 1996-97. Part I (1996), Vol.2. Int. Int. Comm. Cons. Atl. Tunas. 204pp.

NISHIDA, T. 1995 Preliminary resource assessment of yellowfin tuna (Thunnus albacares) in the western Indian Ocean by the stock-fishery dynamic model. IPTP/Collective volume 6, 167-180.

MYERS, R.A., W. BLANCHARD, AND K. R. THOMPSON. 1990. Summary of North Atlantic fish recruitment 1942-1987. Can. Tech. Rep. Fish. Aquat. Sci. 1743.108pp.

PRAGER, M. H. 1994. A suite of extensions to a no equilibrium surplus-production model. Fish. Bull. 92:374-389.

PUNT, A. E. 1994. Assessments of the stocks of Cape hakes, Merluccius spp. Off South Africa. S. Afr. J. Mar. Sci. 14: 159-186.

RESTREPO, V. 1997. A stochastic implementation of an Age-structured Produccion model (ICCAT/ SCRS/97/59), 23pp. with Appendix

SCHAEFER, M. B 1957. A study of dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocean. IATTC Bull. Vol. 2: 247-285.

SEBER, G.A.F., AND C.J. WILD. 1989. Nonlinear Regression. J. Wiley, New York.

SHEPHERD. J. G 1982. A versatile new stock-recruitment relationship for fisheries, and the construction of sustainable yield curves. J. Cons. Int. Explor. Mer 40: 67-75.

APPENDIX A FORMULATION OF THE ASPM

The deterministic formulation, for ease of presentation, precedes the formulation for the stochastic model. A Beverton and Holt (1957) type of stock recruitment relationship (SRR) is assumed here. Note, however, that other forms could be implemented following the same basic procedure outlined here.

DETERMINISTIC FORMULATION

The deterministic model is essentially like that of (Punt 1994), which was based on ideas presented by Hilborn (1990). It consists of a forward population projection,

$$N_{1,t+1} = f(S_t) \qquad \qquad \text{for age 1} \tag{1a}$$

$$N_{a+1,t+1} = N_{a,t}e^{-z_{a,t}}$$
 for other ages except the "plus" group, and (1b)

$$N_{p,t+1} = N_{p-1,t}e^{-z_{p-1,t}} + N_{p,t}e^{-z_{p,t}}$$
 for the plus group, p , (1c)

where f(S) is a stock-recruitment function (explained below), a and t index age and year, and age 1 is, for simplicity, assumed here as the age of recruitment. Z denotes the total age and year-specific mortality rate, which is the sum of natural mortality (M_a , an assumed input value) and fishing mortality, F. In the (Restrepo *in press*) implementation, F is calculated based on total yields, weights at age ($\overline{W}_{a,t}$), and age –specific selectivities that are input and assumed exact, for up to five fisheries. This is accomplished by solving for the fishery-specific multipliers ($F_{g,t}$) of the input selectivities ($s_{g,a,t}$) that result in the observed yields (Y), given the estimates of stock sizes:

$$Y_{g,t} = \sum_{a=1}^{p} F_{g,t} s_{g,a,t} \overline{w}_{a,t} N_{a,t} U_{a,t} \qquad \text{with} \\ U_{a,t} = \frac{\left[1 - e^{-\sum_{g} F_{g,t} s_{g,a,t} - M_{a}}\right]}{\sum_{g} F_{g,t} s_{g,a,t} + M_{a}}$$
(2)

Thus, the population projection is conditioned on known yields. The Beverton and Holt SRR can be described by the equation

$$\boldsymbol{R}_{t+1} = f(\boldsymbol{S}_t) = \frac{\boldsymbol{a}\boldsymbol{S}_t}{\boldsymbol{b} + \boldsymbol{S}_t},\tag{3}$$

where *R* is the number of recruits $(N_{l,t+1} \text{ in eq.1a})$ and *S* is the reproductive output, namely the product of numbers times maturity times fecundity, summed over all ages. For simplicity, we hereafter refer to *S* as "spawning biomass", which is often used as a proxy for reproductive output.

Formulation (3) is not very desirable for estimation because starting values of the parameters a and ß are not easy to guess. For this reason, the ASPM uses a different parameterization, following (Francis 1992). It consists of defining a "steepness" parameter, t, which is the fraction of the virgin recruitment (R_0) that is expected when S has been reduced to 20% of its maximum (i.e., $R = tR_0$ when S = g/5, where g is the virgin biomass). The SRR can thus be defined in terms of steepness and virgin biomass, two parameters that are somewhat easier to guess nitial values. For a Beverton-Holt relationship, virgin biomass should generally be of similar magnitude to the largest observed yields, while steepness should fall somewhere between 0.2 and 1.0, with higher values indicating higher capacity for the population to compensate for losses in spawning biomass with increases in the survival of recruit. Nothing that equilibrium recruitment at virgin biomass can be computed as the ratio of virgin spawning biomass to spawning biomass per recruit in the absence of fishing $(S/R)_{F=0}$,

$$R_0 = \frac{g}{\left(S \,/\, R\right)_{F=0}} \tag{4}$$

a and β are given by

$$\boldsymbol{a} = \frac{4\boldsymbol{t} \ \boldsymbol{R}_0}{5\boldsymbol{t} - 1} \tag{5}$$

and

$$\boldsymbol{b} = \frac{\boldsymbol{g}(1-\boldsymbol{t})}{5\boldsymbol{t}-1} \tag{6}$$

The spawning potential ratio, *SPR*, is measured by the spawning biomass per recruit obtained under a given *F*, divided by that under *F*=0 (Goodyear 1993). A useful benchmark for management is the *SPR* corresponding to the slope of the *SRR* at the origin, i.e., at the point when the stock is expected to "crash". From equations (4) to (6) it follows that this SPR_{crash} is given by

$$SPR_{crash} = \frac{(S/R)_{crash}}{(S/R)_{F=0}} = \frac{b/a}{g/R_0} = \frac{1-t}{4t}$$
(7)

Hence, in a deterministic sense, any fishing mortality that results in an SPR lower than SPR_{crash} is not sustainable.

Fitting the model requires finding the values of the **SRR** parameters that best explain the trends in indices of abundance, given the observed yields and other inputs. For a set of initial conditions ($N_{a,t}$ for all ages in t=1), equations (1) and (3) are used to project the population forward, with the fishing mortalities being calculated conditional on observed yields, by equation (2). Values of the parameters ? and t are chosen to minimize the negative log-likelihood,

$$-\ln(L_{1}) = \sum_{i} \left[\frac{n_{i}}{2} \sum \ln(\mathbf{s}_{i,t}^{2}) + \sum_{i} \frac{1}{2\mathbf{s}_{i,t}^{2}} (I_{i,t-}\hat{I}_{i,t})^{2} \right]$$
(8)

where *I* denotes each available index. The last term is for the squared differences between observed and predicted indices (these could be in logarithmic units if a lognormal error is assumed), and $\mathbf{S}_{i,t}^2$ are variances whose computation is explained below. The predicted indices are obtained as the summation of stock sizes, times an input index selectivity, *u*, over all ages:

$$\hat{I}_{i,t} = q_i \sum_{a} N_{a,t} \boldsymbol{u}_{a,i} \boldsymbol{w}_i$$
(9)

where ? indicates some input control as to whether the index is in numbers or biomass (in which case the product being summed include weight at age), and whether computations are for the start or middle of the year. The parameters q_i scale each index to absolute population numbers (or biomass) and their maximum likelihood values can be obtained analytically by setting the derivative of equation (8) with respect to q_i equal to zero, and solving for the q_i .

There are several options for handling the variances, $\boldsymbol{s}_{i,t}^2$. If all the values for all indices are given equal weight, they can be set to

$$\boldsymbol{s}_{i,t}^{2} = \sum_{i} \left[\frac{1}{n_{i}} \sum_{t} \left(I_{i,t} - \hat{I}_{i,t} \right)^{2} \right]$$
(10)

or, if all values within an index are to have equal weights but each index is weighted depending on how it is fitted by the model (maximum likelihood weighting)then:

$$\boldsymbol{s}_{i,t}^{2} = \frac{l}{n_{i}} \sum_{t} (I_{i,t} - \hat{I}_{i,t})^{2}$$
(11)

Alternatively, the variances could be input for each value, based on external information.

So far, the presentation of the method has indicated that parameters ? and t (or, equivalently, a and β) are estimated directly in the search, and the parameters q_i and $\mathbf{s}_{i,t}^2$ are obtained indirectly or externally The remaining requirement to complete the estimation procedure has to do with the initial conditions. This can be handled in various ways and perhaps the easiest is to assume that the initial age composition corresponds to an equilibrium one in virgin state. For this to be approximately valid, the time series of yield data should be extended as far back in time as possible, preferably to the onset of fishing. In this case,

$$N_{1,1} = R_0$$
(12a)

$$N_{a,1} = N_{a-1,1}e^{-M_{a-1}}$$
for ages $a = 2$ to $p-1$, and (12b)

$$N_{p,1} = \frac{N_{p-1,1}e^{-M_{p-1}}}{(1-e^{-M_p})}$$
for the plus group. (12c)

An alternative consists of estimating the equilibrium recruitment in year t = 1 as an additional parameter and solving for the initial age composition that produces a spawning biomass that results in that recruitment given t and ?. Several other options exist, but it appears that none will generally be superior unless there is adequate relative abundance information for the start of the time series. A useful option may be to "fix" the initial age composition at same scaled fraction of the virgin one, and to conduct sensitivity trials for that choice.

The computation of statistics such as maximum sustainable yield (MSY) and related benchmarks (e.g. S_{MSY} , F_{MSY}) is straightforward once the parameters for the SRR have been obtained. Shepherd (1982) describes the procedure used to compute equilibrium yield curves from a SRR, together with yield-per-recruit and spawning biomass-per-recruit calculations. Conditional on a given F (including an overall selectivity pattern), equilibrium spawning biomass, recruitment and yield are computed as (for the Beverton and Holt SRR)

$$S_F = \boldsymbol{a}(S/R)_F - \boldsymbol{b} , \qquad (13a)$$
$$R_F = \frac{S_F}{(S/R)_F} , \text{and} \qquad (13b)$$

$$Y_F = R_F (Y/R)_F$$
 13c)

where $(S/R)_F$ and $(Y/R)_F$ are the spawning biomass and yield per recruit values resulting from exploitation at F. To search for MSY-related statistics, this procedure is built into an algorithm to obtain the desired target, e.g. to find the maximum Y_F as the estimates of MSY. Note that, if the selectivity pattern changes over time, then the computed MSY-related values will also change as a result of changes in the per-recruit computations.

STOCHASTIC FORMULATION

A stochastic ASPM requires that a recruitment value be estimated for every year. If this were attempted without constrains on the possible recruitment values, while simultaneously estimating the SRR, the application would be over-parameterized in most real situations. In this work, we have chosen to estimate the recruitments as lognormal deviations from the equilibrium SRR, assuming that these deviations follow a first-order autoregressive process.

The population projection equations are as in equation (1), except that recruitment is estimated as

$$N_{1,t} = R_0 e^{v}$$
 (14)

That is, recruitment is estimated as deviations from a virgin level. Instead of estimating ? and t directly as parameters, the model estimates ? and all the \mathbf{n}_{t} . R_0 is computed from equation (4). These are essentially all parameters that would be needed to project the population forward and compute the log-likelihood in equation (8). The AR [1] process is incorporated by assuming that the recruitment estimates thus obtained vary around the expected stock recruitment relationship as

$$R_{t+1} = \frac{\boldsymbol{a}\boldsymbol{S}_t}{\boldsymbol{b} + \boldsymbol{S}_t} e^{\boldsymbol{e}_{t+1}} \qquad (15)$$

with $\mathbf{e}_{t+1} = \mathbf{r}\mathbf{e}_t + \mathbf{h}_{t+1}$, $|\mathbf{r}| < 1$, the ? have zero expectation and variance equal to \mathbf{s}_h^2 . In equations (14) and (15) we distinguish between recruitment values estimated as parameters ($N_{1,t}$) and those predicted from the estimated stock-recruitment relationship (\mathbf{R}_t). The negative log-likelihood for these residuals would be (Seber and Wild 1989):

$$-\ln(L_2) = \frac{n_t}{2}\ln(\boldsymbol{s}_h^2) - \frac{1}{2}\ln(1 - \boldsymbol{r}^2) + \frac{1}{2\boldsymbol{s}_h^2} \left[(1 - \boldsymbol{r}^2)\boldsymbol{e}_1^2 + \sum_{t=2}^{n_t} (\boldsymbol{e}_t - \boldsymbol{r}\boldsymbol{e}_{t-1})^2 \right]$$
(16)

Where the residuals would be computed as

$$\boldsymbol{e}_{t+1} = \ln(N_{1,t+1}) - \ln(R_{t+1}) = \ln(N_{1,t+1}) - \ln\left(\frac{\boldsymbol{a}S_t}{\boldsymbol{b} + S_t}\right)$$
(17)

Computation of the first residual would depend on the initial conditions. For example, in a virgin state, it would be

$$e_1 = \ln(N_{1,1}) - \ln(R_0)$$

Note that a and β in equations (15) and (17) could be computed from knowledge of virgin biomass and steepness (see equations (5) and (6)). However, only the former is being estimated directly as a parameter. To include steepness as an additional parameter to be directly estimated by the search would confound the information contained in R_0 and ? (refer to equations. (4), (5), and (6)). Our approach is to replace a and β in the *SRR* of equation (17) by a function of those parameters being estimated in the search, and steepness. From equations (5) and (6) it follows that

$$R_{t+1} = \left(\frac{4R_0 S_t \boldsymbol{t}}{\boldsymbol{t}(5S_t - \boldsymbol{g}) - S_t + \boldsymbol{g}} \right), \text{ such that}$$
(18)
$$\boldsymbol{e}_{t+1} = \ln(N_{1,t+1}) - \ln\left(\frac{4R_0 S_t \boldsymbol{t}}{\boldsymbol{t}(5S_t - \boldsymbol{g}) - S_t + \boldsymbol{g}}\right)$$
(19)

We take advantage of this relationship in order to solve for t, nothing that, for a given ? and \boldsymbol{S}_{h}^{2} , equation (16) will be at a minimum when

$$\sum_{t=2}^{n_t-1} \left[\ln(N_{1,t+1}) - \ln\left(\frac{4R_0S_tt}{t(5S_t - g) - S_t + g}\right) - r \ln(N_{1,t}) + r \ln\left(\frac{4R_0S_{t-1}t}{t(5S_{t-1} - g) - S_{t-1} + g}\right) \right]^2$$
(20)

is also at a minimum. Thus, in every iteration in the search, a subprocedure is invoked to minimize (20) with respect to t. Having thus calculated the steepness (and, consequently, a and β), the log-likelihood of equation (16) is added to the overall objective function.

It remains to be mentioned what to do about the parameters ? and S_h^2 . In theory, there is a potential for these to also be estimated. In practice, however, it is unlikely that data will contain so much information as to determine the relative contribution from recruitment variability with respect to the variability in the index values (see equations (8) and (16)). In our limited experience with this model, it appears that these values should be controlled by the analyst in much the same way as contributions to the likelihood from different data sources are weighted externally in other assessment methods (e.g., Deriso et al.1985). Lower S_h^2 values will result in lower stochasticity in recruitment, while higher S_h^2 values will allow recruitment to fluctuate more widely in order to better fit the index data. A value of ?=0 would assume no autocorrelation between successive recruitment deviations. Empirical studies such as those of Beddington and Cooke (1983) and Myers et al. (1990) may yield information about likely ranges of values for ? and S_h^2 for species groups. Reported values for these parameters (Myers et al.1990) are quite variable across species.

Estimating the initial conditions for the stochastic model can be problematic, as with the deterministic model. Estimating the age structure in year 1 would not generally be an option as the model would easily become highly over-parameterized unless there were age-specific relative abundance data for the start of the series. Thus, using a long time series of data extending to the onset of fishing, and assuming an initial equilibrium state at ?, remains a useful option. Other alternatives are also possible. In this paper we examine one in which we calculate a stable age structure (with only natural mortality) resulting from a preseries recruitment that is fixed. That is, we fix $v_{t=0}$ and set the starting population sizes as

$$N_{2,1} = R_0 e^{v_0} e^{-M_1}$$
 (21a)
 $N_{a,1} = N_{a-1,1} e^{-M_{a-1}}$ for ages $a = 3$ to P-1, and (21b)

the plus group is calculated as in equation (12c). This alternative allows the initial age structure to be either higher or lower than that corresponding to an equilibrium virgin state. The parameter $V_t = 0$ could potentially be estimated in the search procedure as well. If it is, it may be desirable to place a penalty on how much it can alter the initial biomass, say, away from ?. This could be accomplished with the term

$$-\ln(L_3) = \frac{\ln(\boldsymbol{s}_v^2)}{2} + \frac{(\ln(S_1) - \ln(\boldsymbol{g}))^2}{2\boldsymbol{s}_v^2}$$
(22)

where \boldsymbol{S}_{v}^{2} is a variance value to be fixed by the analyst.

Estimation of the stochastic model parameters for any given data set then requires several choices associated with how much recruitment can fluctuate around its deterministic predictions and about the initial conditions. In addition to choices about variances $(\mathbf{S}_{h}^{2}, \mathbf{S}_{v}^{2})$ and possibly $\mathbf{S}_{i,l}^{2}$, the log-likelihood components could be given different emphases (\mathbf{I}) to obtain model estimates by minimizing:

$$-\ln(L_T) = -\ln(L_1) - \boldsymbol{I}_2 \ln(L_2) - \boldsymbol{I}_3 \ln(L_3)$$
(23)

APPENDIX B YFT CATCH IN THE 1	INDIAN OCEAN (1950-2000)
-------------------------------	--------------------------

					Gear				
	BB	GILL	Hand	LINE	LL	OTHER	PS	TROL	total
1950	1500	351	0	0	0	100	0	79	2030
1951	1500	351	0	0	0	300	0	79	2230
1952	1500	351	0	0	3240	400	0	79	5570
1953	1500	535	0	0	5957	400	0	0	8392
1954	1500	552	0	0	11693	400	0	79	14224
1955	2000	569	0	0	24103	400	0	79	27151
1956	2000	535	0	0	30869	1600	0	79	35083
1957	2000	1372	0	0	18059	3500	0	79	25010
1958	2000	686	0	0	13777	2400	0	79	18942
1959	2000	686	0	0	14836	2600	0	79	20201
1960	1000	836	0	0	23796	3300	0	79	29011
1961	1500	1100	Ŭ	Ŭ,	21562	3700	Ŭ	(9	27594
1962	1500	1757	, v	, v	33006	5300	P P	79	41073
1963	1500	1/5/	Ň	Ň	15911	8400	5	79	27652
1000	1000	2442	Ň	Ň	20000	6700	12	73	21343
1900	1500	2040	Ň	Ň	20300	6700	12	70	12000
1967	1700	2429	Ň	Ň	24221	9200	Ň	159	40700
1968	1700	3446	ň	Ň	65154	9700	ň	237	80237
1969	1800	3112	ň	ň	51593	7600	ň	237	64342
1970	2282	2827	ň	ň	29735	0033	ň	331	41775
1971	1381	2306	ň	ň	31194	5500	ň	573	40954
1972	2511	2750	ŏ	ŏ	29220	7700	ŏ	575	42756
1973	7401	2162	ŏ	ŏ	19135	6286	ŏ	636	35620
1974	6159	2965	ŏ	ŏ	20675	7070	21	725	37615
1975	4732	3272	Ó	Ó	21729	6955	39	632	37359
1976	5218	3070	Ó	Ó	20834	7359	56	802	37339
1977	4897	2743	0	0	43543	6874	107	684	58848
1978	3822	1598	0	0	34796	6976	289	806	48287
1979	4396	2762	0	0	25348	8589	187	1044	42326
1980	4368	1275	0	0	22221	9182	211	974	38231
1981	5946	1958	0	0	23366	8876	342	912	41400
1982	5000	9183	0	0	33517	1691	1301	895	51587
1983	8120	8138	5	0	30109	1224	12777	948	61321
1984	8482	6126	1	0	24799	956	58437	891	99692
1985	6961	9902	2	0	29947	4289	68904	709	120714
1986	6206	12006	44	0	45079	3879	73566	398	141178
1987	7378	14982	44	0	45594	2357	83951	4/4	154780
1988	5944	27390	49	0	54246	3238	118728	571	210166
1989	5526	34931	2118	Ŭ,	64646		89875	1766	199573
1990	4932	26952	2251	, v	85786	(64	108811	1/28	231224
1991	7028	28260	2132	Ň	80421	889	112027	1828	226345
1992	8023	39709	1348	Ň	139002	867	120105	4164	306046
1004	12202	50700	1000		121720	321	114015	003/ AA1E	300407
1995	12303	52135	1964	Ň	97770	302	152247	4415	39339937
1996	11501	54010	2010		110255	9152	121210	4430	321500
1997	12167	48631	1920	Ň	10233	5019	133530	4479	31330
1000	12994	54747	1790	297	112470	2229	104026	4664	293197
1 1 1 0	16004	JT171	1100	r	TICTIV	L CCCJ	101020	1004	Leggial
1999	13594	68946	1779	485	101654	1397	136137	4649	328641

APPENDIX C PREPARATORY WORKS FOR THE CATCH-AT-AGE AND SELECTIVITY

Period (1) (2) (3) (4)(*) (5)(*) (6)(*) Pattern of age composition of catch (see Fig.x) Catch Sample Mean Catch Sampling size (n) weight (tons) (1000 fish) rate (%) = (1)/10*(5) (kg) =(4)/(3) 1960-82 BB_TL-(A)(assumed) 2.87(assumed) 99,427 34,644 0 0 1983-86 6,937 2.87 38,076 13,267 0.05% 4.09 1987-89 4,035 24,365 5,957 0.07% 1990-92 3,973 $BB_TL(A)$ 3.86 27,952 7,241 0.06% 1993-95 144,165 1.75 46,549 26,599 0.54% 54,921 1996-98 64,091 21,287 0.30% 2.58 1999-00 35,716 0 0 BB/TL-(A)(assumed) 2.58(assumed) 13,843

Pattern	Period	YR	AGE0	AGE1	AGE2	AGE3	AGE4	AGE5
А	p6082	1960	416.0	51.6	12.1	7.4	0.4	0.0
А	p6082	1961	588.5	73.1	17.1	10.4	0.5	0.0
А	p6082	1962	612.2	76.0	17.8	10.9	0.5	0.0
А	p6082	1963	612.2	76.0	17.8	10.9	0.5	0.0
А	p6082	1964	612.2	76.0	17.8	10.9	0.5	0.0
А	p6082	1965	487.4	60.5	14.2	8.6	0.4	0.0
А	p6082	1966	636.0	79.0	18.5	11.3	0.5	0.0
А	p6082	1967	719.0	89.3	20.9	12.8	0.6	0.0
А	p6082	1968	742.5	92.2	21.6	13.2	0.6	0.0
А	p6082	1969	796.0	98.8	23.1	14.1	0.7	0.0
А	p6082	1970	940.4	116.8	27.3	16.7	0.8	0.0
А	p6082	1971	744.8	92.5	21.6	13.2	0.6	0.0
А	p6082	1972	1176.3	146.0	34.2	20.9	1.0	0.0
А	p6082	1973	2645.0	328.4	76.8	46.9	2.2	0.0
А	p6082	1974	2249.3	279.3	65.4	39.9	1.9	0.0
А	p6082	1975	1650.0	204.9	47.9	29.3	1.4	0.0
А	p6082	1976	1877.8	233.1	54.6	33.3	1.6	0.0
А	p6082	1977	1910.9	237.2	55.5	33.9	1.6	0.0
А	p6082	1978	1732.7	215.1	50.3	30.7	1.5	0.0
А	p6082	1979	2163.9	268.6	62.9	38.4	1.8	0.0
А	p6082	1980	2055.4	255.2	59.7	36.5	1.7	0.0
А	p6082	1981	2146.2	266.5	62.4	38.1	1.8	0.0
А	p6082	1982	2051.6	254.7	59.6	36.4	1.7	0.0
А	p8386	1983	2857.0	354.7	83.0	50.7	2.4	0.0
А	p8386	1984	2861.6	355.3	83.1	50.8	2.4	0.0
А	p8386	1985	2634.7	327.1	76.5	46.7	2.2	0.0
А	p8386	1986	2587.9	321.3	75.2	45.9	2.2	0.0
А	p8789	1987	1398.5	805.8	45.0	16.9	2.8	0.0
А	p8789	1988	1169.2	673.7	37.6	14.1	2.4	0.0
А	p8789	1989	1104.2	636.3	35.5	13.3	2.2	0.0
А	p9092	1990	4658.7	1763.1	228.2	52.4	13.5	0.0
А	p9092	1991	6208.5	2349.6	304.1	69.8	18.0	0.0
А	p9092	1992	8523.8	3225.8	417.5	95.9	24.7	0.0
А	p9395	1993	6745.3	814.9	18.5	12.1	1.8	0.1
А	p9395	1994	8590.2	1037.7	23.6	15.4	2.3	0.1
А	p9395	1995	8295.6	1002.1	22.8	14.9	2.3	0.1
А	p9698	1996	5686.4	1364.3	60.4	27.4	6.4	0.0
А	p9698	1997	5591.2	1341.5	59.4	27.0	6.2	0.0
Α	p9698	1998	5664.6	1359.1	60.2	27.3	6.3	0.0
A	p9900	1999	5754.7	1380.7	61.1	27.8	6.4	0.0
А	p9900	2000	5263.0	1262.7	55.9	25.4	5.9	0.0

Annual CAA (BB/TROLL) by pattern of age composition and period (in 1000 fish)

(2) SUB-SURFACE (GILL)

Indonesia type (smaller mesh size)

Period	(1)	(2)	(3)	(4)	(5)	(6)
	Sample size (n) (un-raised)	Pattern of age composition of catch (see Fig.x)	Mean weight (kg)	Catch (tons)	Catch (1000 fish) = (4)/(3)	Sampling rate (%) = (1)/10*(5)
1960-83	0	GILL-(A) (substituted)		3,911	390	0
1984-86	2,692	GILL-(A)	10.02	1,163	116	2.3%
1987-92	0	GILL-(A)		1,625	162	0
1993-96	0	(substituted)		1,624	162	0
1997-00	0			2,239	223	0

Period	(1)	(2)	(3)	(4)(*)	(5)(*)	(6)(*)
	Sample size (n)	Pattern of age	Mean	Catch	Catch	Sampling
	(Iran & Pakistan)	composition of catch	weight	(tons)	(1000 fish)	rate (%) =
	(**)	(see Fig.x)	(kg)		=(4)/(3)	(1)/10*(5)
1960-83	0	GILL-(B)	19.71	176,987 (124,800)	8,980 (6,331)	0 (0)
1984-86	0	(substituted)		31,303 (27,569)	1,588 (1,399)	0 (0)
1987-92	3,390	GILL-(B)		176,325 (132,870)	8,945 (6,741)	0.04 (0.05)
1993-96	21,078	GILL-(C)	17.52	204,398 (112,381)	11,667 (6,414)	0.18 (0.33)
1997-00	15,719	GILL-(D)	14.01	224,709 (131,189)	16,039 (9,364)	0.10 (0.17)

Iran, Pakistan, Oman, Sri Lanka and Others (larger mesh size)

(*) no. for Iran + Pakistan (**) probably un-raised

Annual CAA (GILL) by pattern of age composition and period (in 1000 fish)

PATT	ERN	G	ILL-(A)		: Indone	esia (sn	naller 1	nesh siz	ze)
Pa	attern	G period	ILL-(B year), (C), (AGE0	D) AGE1	: Iran, I AGE2	Pakistar AGE3	n, Oma AGE4	n, Sri L AGE5	anka and Others (larger mesh size)
	A A A A A A A A A A A A A A A A A A A	6083 6083 6083 6083 6083 6083 6083 6083	1960 1961 1963 1963 1964 1965 1966 1967 1968 1970 1971 1973 1974 1973 1974 1977 1977 1977 1977 1977 1979 1980 1980 1982 1983	$\begin{array}{c} 1.6\\ 2.1\\ 2.5\\ 2.5\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ 3.3\\ 2.5\\ 2.5\\ 4.1\\ 4.0\\ 3.1\\ 0.6\\ 1.2\\ 4.0\\ 5.7\\ 8.9\\ 7.3\\ 0.6\\ 5.4\\ 4.7\end{array}$	4.6 5.8 6.9 6.9 8.1 8.1 8.1 8.1 8.1 8.1 9.2 6.9 6.9 6.9 6.9 11.6 11.4 8.7 1.7 3.4 11.2 20.4 1.6.1 25.0 20.4 1.5.3 13.2	$\begin{array}{c} 1.6\\ 1.9\\ 2.3\\ 2.3\\ 2.7\\ 2.7\\ 2.7\\ 2.7\\ 2.7\\ 2.7\\ 3.1\\ 2.3\\ 2.3\\ 3.9\\ 3.8\\ 2.9\\ 0.6\\ 1.1\\ 3.8\\ 5.4\\ 8.4\\ 6.9\\ 0.5\\ 5.1\\ 4.4 \end{array}$	0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	
	A A A	8486 8486 8486	1984 1985 1986	3.4 7.9 12.5	9.5 22.3 35.4	3.2 7.5 11.9	0.3 0.6 1.0	0.1 0.1 0.2	0.0 0.0 0.0	
	A A A A A	8792 8792 8792 8792 8792 8792 8792	1987 1988 1989 1990 1991 1992	7.6 7.2 1.9 3.9 6.4 6.4	21.3 20.4 5.3 11.1 18.0 18.0	7.2 6.9 1.8 3.7 6.0 6.0	0.6 0.6 0.1 0.3 0.5 0.5	0.1 0.0 0.1 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0	
	A A A A	9396 9396 9396 9396 9396	1993 1994 1995 1996	7.7 7.3 8.0 10.4	21.6 20.5 22.6 29.2	7.3 6.9 7.6 9.8	0.6 0.6 0.6 0.8	0.1 0.1 0.1 0.2	0.0 0.0 0.0 0.0	
	A A A	9700 9700 9700 9700	1997 1998 1999 2000	11.5 11.1 11.7 11.7	32.3 31.4 32.9 32.9	10.9 10.5 11.1 11.1	0.9 0.9 0.9 09	0.2 0.2 0.2 0.2	0.0 0.0 0.0 0.0	
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6083 6083 6083 6083 6083 6083 6083 6083	1960 1961 1963 1964 1965 1967 1968 1970 1971 1973 1974 1975 1977 1977 1977 1977 1977 1977 1977	$\begin{array}{c} 32.9\\ 34.5\\ 51.6\\ 83.3\\ 70.5\\ 77.6\\ 85.1\\ 106.6\\ 111.0\\ 89.1\\ 77.8\\ 63.2\\ 82.9\\ 82.9\\ 85.1\\ 81.5\\ 89.7\\ 76.3\\ 61.4\\ 80.2\\ 71.0\\ 84.5\\ 65.3\\ 127.5\\ 133.4\\ 161.8\\ 370.1\\ 289.6\\ 418.6\\ \end{array}$	92.7 97.3 145.4 235.0 198.7 240.1 300.5 312.8 251.3 219.4 178.2 233.6 183.4 229.8 251.5 252.7 215.0 173.2 226.1 200.3 238.0 268.4 288.2 184.1 359.5 376.1 454.6 850.8 1043.5 807.1 844.5 1180.2	$\begin{array}{c} 31.2\\ 32.7\\ 48.9\\ 79.0\\ 66.8\\ 73.5\\ 80.7\\ 101.0\\ 105.1\\ 84.5\\ 73.7\\ 59.9\\ 78.5\\ 61.6\\ 77.2\\ 84.5\\ 85.0\\ 72.3\\ 58.2\\ 76.0\\ 67.3\\ 80.0\\ 90.2\\ 80.1\\ 61.9\\ 120.8\\ 126.4\\ 152.8\\ 286.0\\ 350.7\\ 271.3\\ 283.9\\ 396.7 \end{array}$	$\begin{array}{c} 2.6\\ 2.7\\ 4.1\\ 6.6\\ 5.2\\ 6.8\\ 8.5\\ 8.8\\ 7.1\\ 6.2\\ 5.0\\ 6.6\\ 5.2\\ 6.5\\ 7.1\\ 7.1\\ 6.1\\ 4.9\\ 6.4\\ 5.7\\ 7.6\\ 6.7\\ 7.6\\ 6.7\\ 7.6\\ 6.7\\ 10.1\\ 10.6\\ 12.8\\ 24.0\\ 29.4\\ 22.8\\ 23.8\\ 33.3\end{array}$	$\begin{array}{c} 0.6\\ 0.9\\ 1.5\\ 1.3\\ 1.4\\ 1.5\\ 2.0\\ 1.6\\ 1.4\\ 1.15\\ 1.6\\ 1.4\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.5\\ 1.6\\ 1.4\\ 1.5\\ 1.5\\ 1.2\\ 2.3\\ 2.4\\ 9\\ 5.5\\ 6.7\\ 5.4\\ 7.6\\ \end{array}$	$\begin{array}{c} 0.1\\ 0.1\\ 0.2\\ 0.3\\ 0.3\\ 0.3\\ 0.4\\ 0.4\\ 0.4\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.2\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3$	
	C C C C	9396 9396 9396 9396 9396	1993 1994 1995 1996	28.1 38.4 39.7 42.7	1197.7 1637.4 1694.6 1823.9	694.7 949.7 982.9 1057.9	240.3 328.5 340.0 365.9	38.3 52.4 54.2 58.3	0.2 0.3 0.3 0.3	
	D D D D	9700 9700 9700 9700 9700	1997 1998 1999 2000	54.6 60.2 75.5 53.6	2490.1 2747.3 3447.1 2444.7	750.2 827.7 1038.5 736.5	239.3 264.0 331.2 234.9	54.6 60.2 75.5 53.6	0.0 0.0 0.0 0.0	

(3) SURFACE to SUB -SURFACE (PS)

Period	(1)(*)	(2)	(3)	(4)	(5)	(6)
	Sample size	Pattern of age	Mean	Catch	Catch	(raised) sampling
	(1000 fish)	composition of	weight	(tons)	(1000 fish)	rate (%)
	(raised number)	catch (see Fig.x)	(kg)		=(4)/(3)	$=(1)^{*}100/(5)$
1960-81	0	PS-(A)(substituted)	12.7(**)	2,999	236	0
1982-85	10,667	PS-(A)	12.7	141,818	11,167	95.5%
1986-88	15,993		16.1	276,851	17,196	93.0%
1989-91	20,860	PS-(B)	14.5	304,493	21,000	99.3%
1992-94	15,742		18.8	355,965	18.934	83.1%
1995-97	37,654	PS-(C)	9.6	457,414	47,647	79.0%
1998-00	42,402		8.2	422,070	51,472	82.4%

Note (*) Samples are primarily from Spain and France. (**) average weight during 1982-85 are substituted.

CAA	PS	(Surface	-Sub s	urface	fisherie	es) (in	1000 fish
-----	----	----------	--------	--------	----------	---------	-----------

Pattern	Period	YR	AGE0	AGE1	AGE2	AGE3	AGE4	AGE5
PS-(A)	p6081	1960	1.6	0.8	0.2	0.4	0.1	0.0
PS-(A)	p6081	1961	2.0	1.1	0.2	0.5	0.2	0.0
PS-(A)	p6081	1962	2.4	1.3	0.3	0.6	0.2	0.0
PS-(A)	p6081	1963	2.6	1.4	0.3	0.6	0.2	0.0
PS-(A)	p6081	1964	3.3	1.7	0.4	0.8	0.3	00
PS-(A)	p6081	1965	3.3	1.7	0.4	0.8	0.3	0.0
PS-(A)	p6081	1966	2.8	1.5	0.3	0.7	0.2	0.0
PS-(A)	p6081	1967	2.8	1.5	0.3	0.7	0.2	0.0
PS-(A)	p6081	1968	2.8	1.5	0.3	0.7	0.2	0.0

PS-(A)	p6081	1969	3.2	1.7	0.4	0.8	0.3	0.0
PS-(A)	p6081	1970	2.4	1.3	0.3	0.6	0.2	0.0
PS-(A)	p6081	1971	2.4	1.3	0.3	0.6	0.2	0.0
PS-(A)	p6081	1972	4.0	2.1	0.5	1.0	0.3	0.0
PS-(A)	p6081	1973	3.9	2.1	0.5	1.0	0.3	0.0
PS-(A)	p6081	1974	3.8	2.0	0.4	1.0	0.3	0.0
PS-(A)	p6081	1975	2.1	1.1	0.2	0.5	0.2	0.0
PS-(A)	p6081	1976	3.4	1.8	0.4	0.8	0.3	0.0
PS-(A)	p6081	1977	8.1	4.3	0.9	2.0	0.7	0.0
PS-(A)	p6081	1978	17.0	9.0	2.0	4.2	1.4	0.0
PS-(A)	p6081	1979	16.0	8.5	1.9	4.0	1.3	0.0
PS-(A)	p6081	1980	15.4	8.2	1.8	3.8	1.3	0.0
PS-(A)	p6081	1981	14.1	7.5	1.7	3.5	1.2	0.0
 PS-(A)	p8285	1982	55.9	29.7	6.5	14.0	4.6	0.1
PS-(A)	p8285	1983	510.7	271.0	59.6	127.6	42.5	0.7
PS-(A)	p8285	1984	2323.3	1233.1	271.3	580.4	193.3	3.2
PS-(A)	p8285	1985	2744.6	1456.7	320.5	685.6	228.3	3.8
 PS-(B)	p8688	1986	1458.8	1563.5	629.3	805.2	127.3	3.3
PS-(B)	p8688	1987	1661.6	1780.8	716.7	917.1	145.0	3.7
PS-(B)	p8688	1988	2348.0	2516.5	1012.8	1296.0	204.9	5.3
 PS-(B)	 p8991			2301.0	850.8	942.5	110.3	1.9
PS-(B)	p8991	1990	2411.9	2785.8	1030.1	1141.1	133.5	2.3
PS-(B)	p8991	1991	2344.9	2708.5	1001.5	1109.5	129.8	2.2
PS-(B)	p9294	1992	1880.9	1689.8	932.0	1203.5	295.7	5.4
PS-(B)	p9294	1993	2135.1	1918.2	1057.9	1366.1	335.7	6.1
PS-(B)	p9294	1994	1912.4	1718.1	947.6	1223.7	300.7	5.5
 PS-(C)	p9597	1005	8067.4	6298 7	1717 5	1364 5	190 5	35
$PS_{(C)}$	p9597	1996	6860 /	5356.3	1/17.5	1160.4	162.0	3.0
$PS_{(C)}$	p9597	1990	6860.4	5356.3	1460.5	1160.4	162.0	3.0
 1 J=(C)		1777			1400.5		102.0	
PS-(C)	p9800	1998	6446.2	5210.3	1201.8	726.9	93.8	5.4
PS-(C)	p9800	1999	8529.9	6894.5	1590.2	961.9	124.1	7.2
PS-(C)	p9800	2000	9270.4	7493.1	1728.3	1045.4	134.9	7.8

(4) MIDWATER (LL)

	(1)(*)	(2)	(3)	(4)	(5)	(6)	
	Sample size (1000	Pattern of age	Mean	Catch	Catch	Sampling	
Period	fish)	composition of catch	weight	(tons)	(1000 fish)	rate (%) =	
		(see Fig.x)	(kg)		=(4)/(3)	(1)*100/(5)	
1960-64	182		31.6	116,375	3,683	4.9%	
1965-69	198		25.6	210,388	8,218	2.4%	
1970-74	144	LL-(A)	27.7	136,282	4,920	2.9%	
1975-79	112		36.4	153,020	4,204	2.7%	
1980-84	113		28.8	138,764	4,818	2.3%	
1985-89	1,247		34.5	242,053	7,016	17.8%	
1990-94	55	LL-(B)	38.2	633,380	16,581	0.3%	
1995-00	92		40.5	641,735	15,845	0.6%	

Note (*) Samples are primarily from Japan (1960-2000), Taiwan (1985-88) and Korea (1998-2000).

CAA (MIDWATER: LL)

Pattern	Period	Year	AGE0	AGE1	AGE2	AGE3	AGE4	AGE5	
A	p6064	1960	19.6	203.7	163.0	330.2	54.2	0.7	
A	p6064	1961	17.9	185.5	148.5	300.7	49.4	0.6	
A	p6064	1962	27.3	283.7	227.0	459.8	75.5	0.9	
A	p6064	1963	14.1	146.0	116.8	236.6	38.9	0.5	
А	p6064	1964	14.8	153.6	122.9	249.0	40.9	0.5	
A	p6569	1965	40.2	310.8	216.0	248.2	48.0	0.1	
А	p6569	1966	59.0	456.5	317.3	364.6	70.5	0.1	
А	p6569	1967	65.3	505.2	351.1	403.5	78.0	0.1	
А	, p6569	1968	121.7	941.6	654.4	752.1	145.4	0.3	
А	p6569	1969	96.2	744.7	517.6	594.8	115.0	0.2	
Α	p7074	1970	30.1	357.6	307.5	354.0	70.5	0.4	
А	p7074	1971	31.3	371.9	319.8	368.1	73.4	0.4	
А	p7074	1972	29.7	353.3	303.8	349.7	69.7	0.4	
А	p7074	1973	19.7	233.8	201.1	231.4	46.1	0.2	
А	p7074	1974	21.4	254.2	218.7	251.7	50.2	0.3	
A	p7579	1975	8.4	120.2	164.5	243.2	98.7	1.9	

A A A A	p7579 p7579 p7579 p7579 p7579	1976 1977 1978 1979	8.1 16.2 13.0 9.7	115.7 232.4 186.7 138.7	158.3 318.0 255.5 189.7	234.0 469.9 377.6 280.4	94.9 190.7 153.2 113.8	1.8 3.6 2.9 2.2	
A A A A	p8084 p8084 p8084 p8084 p8084	1980 1981 1982 1983 1984	24.2 26.0 34.4 30.6 25.1	254.8 273.7 361.8 322.2 264.7	226.1 242.9 321.1 285.9 234.9	255.5 274.4 362.7 323.0 265.4	69.4 74.5 98.5 87.7 72.1	1.1 1.2 1.6 1.4 1.1	
B B B B	p8589 p8589 p8589 p8589 p8589 p8589	1985 1986 1987 1988 1989	5.7 8.6 8.7 10.4 12.7	84.1 126.7 128.1 152.4 187.1	331.7 499.3 505.0 600.8 737.7	404.5 609.0 615.9 732.7 899.7	40.0 60.2 60.9 72.5 89.0	4.0 6.1 6.2 7.3 9.0	
B B B B B	p9094 p9094 p9094 p9094 p9094 p9094	1990 1991 1992 1993 1994	12.9 12.1 20.6 29.2 18.2	378.0 354.4 602.5 853.1 531.2	473.8 444.3 755.4 1069.5 665.9	1131.8 1061.3 1804.4 2554.7 1590.7	305.4 286.4 486.9 689.4 429.2	2.7 2.5 4.3 6.1 3.8	
B B B B B B	p9500 p9500 p9500 p9500 p9500 p9500	1995 1996 1997 1998 1999 2000	1.8 2.2 2.0 2.0 1.8 1.6	81.3 100.0 90.4 93.6 84.5 73.4	741.1 912.0 824.4 853.5 770.8 669.3	1372.1 1688.4 1526.4 1580.1 1427.1 1239.2	258.6 318.2 287.6 297.8 268.9 233.5	6.5 8.0 7.2 7.5 6.7 5.9	