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ABSTRACT

In this paper is applied the PROCEAN (PRoduction Catch / Effort ANalysis) modeling framework (Maury, 2001) to
the yellowfin tuna fishery of the Indian Ocean. Total yield for the fishery are used as well as yields and efforts for
Japanese longliners and french and Spanish purse seiners. Results for three different values of the shape parameter

m are compared and discussed.

INTRODUCTION

In this paper we apply the PROCEAN (PRoduction Catch /
Effort ANalysis) modeling framework (Maury, 2001) to the
yellowfin tuna fishery of the Indian Ocean. PROCEAN is a
multi-fleet non equilibrium generalized production model

which includes process error for both catchability time series
and carrying capacity of the stock. Parameters estimation is
conducted in abayesian context.

Our objectiveis not to propose avery realistic representation
of the fishery. We propose a tool to extract the maximum

amount of information from the data set by structuring it
given asimple and well established theoretical model. Then,
modeling is used here as a mean to explore data sets
according to various hypotheses.

MATERIAL AND METHOD

The data set

Yield and effort data are extracted from the |OTC database
for three fleets:

Japanese longliners from 1952 to 2000; data are
agregated on the whole area excluding the zones where the
bft fishery is dominating the fishery.

spanish purse seiners from 1984 to 2000;
french purse seiners from 1981 to 2000;

Fishing efforts are nominal. Yields in weight are derived
from catches in numbers by using mean weights by spatial
strata and quarters.

Catches from the other components of the fishery are
agregated in a category « diverse».

THE PROCEAN MODEL

The PROCEAN model is based on the classic Pella and
Tomlinson (1969) generalized production model which links
the stock biomass B to the fishing mortality F by the mean
of an ordinary differential equation continuousin time;
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With By, the biomass at time t; R, the instantaneous fishing
mortality rate; K, the carrying capacity of the stock; r, the
per capitaintrinsic growth rate of the population and m, the
shape parameter (the model becomes a simple Schaefer
model when m=2).

To introduce catches and effort for multiple fleets into the

model, the fishing mortality k is expressed as the sum of
each fleet’ s instantaneous fishing mortality:
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With n-1, the total number of fleets for which fishing effort
isavailable; q; 1, the catchability coefficient for fleet i at time
t, it the mesured nominal fishing effort for fleet i at time t
and Gy, the catches for fleet i at time t. G,; represents the
catches for al the fleets non documented in term of effort.

The biomass equation (equation 2) is an ordinary differential
equation. It is integrated using a first order in time semi-
implicit numerical approximation to have a better numerical
stability than with a fully explicit scheme. This provides a
time serie of predicted catches given a set of parameters
(including biomass at time 0) :
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To take into account potential fluctuations of the carrying
capacity due to environmental fluctuations or to
modifications of the fishery configuration such as stock
surface (process errors), the parameter K is assumed to be
dependent of time. We assume that the parameters log(K:)
has the structure of a random walk which allows to model
slow variations over time (Fournier, 1996) :

With C, the observed catches and C, the predicted catches.
Carrying capacity process error component

This component corresponds to the log-normal structured
random walks for carrying capacity over time:
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The local catchability by fleet is also sipposed to vary

slowly each year to take into account potential fluctuations
of fishing power for each fleet (process errors). We assume a
random walk structure to the catchability time series for

each fleet (Fournier et al., 1998):
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Catchability process error component

This component combines the log-normal structured random
walks for fishing power trends for each fleets and the
effort/fishing mortality process error which has a robustified
normal structure. This robustified normal distribution
assumes a probability p for unlikely events (events which
are more than e times the variance from the mean) and I-p
for the standard normal distribution (Fournier et al., 1996)
(Fig.1):

To address high-frequency variability of the catchability
coefficient, a lognormal process-error structure is assumed
for the fishing mortality. Then, the fishing mortality of fleet
k at timet is written Concerning the catchability coefficient,
the fishing mortality error structure is assumed to be

lognormal. Then, the fishing mortality of fleet i in year t is
written
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where the h; are robustified normally distributed random
variables with mean 0.

To estimate the parameters in a bayesian context, we use the
method of the maximum of posterior distribution (Bard,
1974) by maximizing the sum of the log-likelihood of the
data plus the log of the prior density function. Then, given
the data, the bayesian posterior distribution function for the
model parameters has 4 components (one for the likelihood
of the catch by fleet estimates L¢, one for the process errors
for the carrying capacity Lk, one for the process errors
concerning the effort-fishing mortality relationship Lg, and
one for prior assumptions on the parametersr, m, and By).
Then, the posterior distribution isequal to L:

L=L. L, L L
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Priorsand penalties

Informative priors can be added to the likelihood to take into
account potential external informations concerning the
parameters r, m and Bg. In the present version of the
software, these three parameters are assumed to follow
either a normal distribution, either a lognormal distribution
either a beta distribution.

Alternatively, priors can be added to the likelihood for MSY
and fMSY, the fishing effort at MSY. Here, uniform priors
where used for al the parameters and normal priors where
used for both MSY and fMSY. Those priors indirectly
provide information concerning the parametersr, K and m.
Estimating at the same time the variances for observation
and process errors often lead to very unstable behaviors of
the estimation process. In PROCEAN, only the standard
errors sc for the catches by fleet observation errors and the
standard errors for the carrying capacity process errors sg
can be estimated simultaneously. The standard errors for the
catchability process errors, sqand sy are considered to be
proportional to sc with fixed proportionality coefficientsp :

Catch component

We assume that the log of the predicted catches are the

expected values of a random variable with a normal
distribution:
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Thus, important additional information is provided through
the use of the coefficients p which fix the strength of the
constraints on the catchabilities variability.

The parameters of the model are estimated by finding the
values of the parameters which minimize the opposite of
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log(L). This minimization is performed with a quas-Newton
numerical function minimizer using exact derivatives with
respect to the model parameters with the AD model builder
software (ADMB & 1993-1996 by Otter Research Ltd).
ADMB calculates the exact derivatives with a technique
named automatic differentiation (Griewank and Corliss,
1991) and provides the variance of the parameter estimates
by computing the Hessian matrix, H, the elements of which
are:
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Where g; and g; are any two model parameters. Covariance
matrix of the model parameters are estimated by computing
theinverse of the hessian at the minimum.

RESULTS

In a one way trip situation, the shape parameter m is very
poorly determined. In this paper, we keeped m fixed and
tested 3 different valuesfor it : m=1.1, m=1.5 and m=2.

In the three cases considered, data are well fitted by the
model. The fishery seems to be just below the fMSY,

catches being in a desequilibrium situation just over the
MSY value.

The estimated fishing mortality is increasing slowly during
thefirst historical period of the fishery before the purse seine
fishery appearance in the early eighties, then it increases
dramatically until the present days with a slight slow down
or even aplateau in the late nineties.

Estimated catchability time series for both longliners and
purse seiners exhibit a very typical shape which is robust to
the value of m. A strong decrease at the beginning of the
time serie folowed by a very stable plateau characterizes
longliners catchability and a continuous increase
characterizes the purse-seiners.

The robust catchability process error can be interpreted as
residuals. According to the assumptions of the model, it does
not exhibit any trend and enables to take into account
extreme data values such as the extremely low first year

CPUE for the french purse seiners without biasing the
estimation.
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Table 1. main population dynamics parameter estimates

r m K Sip_ll Ses ps Str_ps
15,008 1.1 (fixed) 609625 0.111 0.060 0.084
MSY 320505
f2000/ TMSY 0.66
m=1.5
Table 1: main population dynamics parameter estimates
r m K Sjp_i Ses ps Str_ps
151 1.5 (fixed) 1315890 0.129 0.070 0.097
MSY 292423
fa000/ IMSY 0.87
m=2
Table 1: main population dynamics parameter estimates for m=2
r m K Sjp_Il Ses ps Str_ps
0.82 2 (fixed) 1774990 0.112 0.057 0.082
MSY 282885
f2000/ TIMSY 0.87
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Fig. 5: Left : the prior distribution used for MSY (mean=350000tons, sigm=50000tons). Right : the prior distribution used for the ratio of
fishing mortality at MSY over the current fishing mortality (mean=1, sigm=0.2).
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Fig. 5: PROCEAN resultsfor m=1.1: a) observed and predicted total yield, estimated biomass and fishing mortality time series ; b) observed,
predicted and equilibrium yield versus fishing mortality ; c) estimated catchability time trends for the three fleets ; d) robust catchability process
error.
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Fig.8: Schematic population size structure for a typical longline fishery (top) and for a typical purse seine fishery (bottom). When the fishing
pressure increases (right), the ratio stock/population decreases for the longliner fishery and it increases for the purse seiner fishery.
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Fig.9: Smulated population catchability calculated as the ratio stock/population. Left : longline fishery. Right : purse seine fishery. from
Maury and Chassot, 2001.
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