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A NEW APPROACH TO STANDARDIZE CATCH RATES FOR YELLOWFIN (THUNNUS 
ALBACARES) FOR THE SPANISH PURSE SEINE FLEET (1984-1995). 

by 

Soto M1., J. Morón2 and P. Pallarés1 

ABSTRACT 

Standardized catch rates of yellowfin Indian stock using Delta-Lognormal method are presented. Models include 
information on factors affecting catchability (sonar, bird radar, net surface, speed and skipper experience) as well 
as abundance (year, area, season); floating school catch was also included as explanatory variable. Catch rate of 
free school yellowfin was used as response variable. Year and floating object catch were the most significant 
variables in all the approaches.  GLM models seem not be appropriated to reflect the effect of the different 
equipment because the dynamic of the fishery in particular the lack of overlapping in the different characteristics 
range what makes the analysis unbalanced.  
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INTRODUCTION 

This paper is a review of the document “Standardized catch 
rates for yellowfin (Thunnus albacares) for the Spanish 
purse seine fleet (1984-1995)” presented last year. 

We use the same catch and effort data set to obtain an 
abundance index for yellowfin in the Indian Ocean for the 
period 1984-1995. We use a Delta-Lognormal method 
including information about boat’s technical equipment and 
skipper during this period. 

In this document we include some modifications in the 
variables used, in order to improve the previous analysis, 
trying to exploit the available information at maximum 
through the Delta-Lognormal approach. 

MATERIAL Y METHODS 

The data used in this new analysis are limited to the 
yellowfin catch in the areas where the school fishing is 
targeted, i.e. N-W Seychelles and S-E Seychelles. We do not 
consider the areas of Mozambique and Somali because the 
main target fishery is on log schools, neither Chagos because 
is an area for school fishing only developed during the last 
two years of the data series. 

We use the data for the Spanish purse seine fleet operating 
in the Indian Ocean for the period 1984-1995. The 
information related to fishing power has been coded 
considering the date of introduction of the different 
equipment that increases detection and catching power of the 
boat. 

The more relevant factors for the analysis of the fishing 
power increase are net , sonar, radar and boat speed. The 
following categories have been included: 

Net was coded considering of the total size (T): 
 

Net Category Range 
1 T< 0.3 km2 

2 0.3 km2 = T <  0.4 km2 

3 0.4 km2 = T < 0.5 km2 

4 T =0.5 km2 

For level 4 there were very few observations and was 
excluded from the analysis . 

Radar was coded following the date of installation of every 
type of radar. 

 
Radar Category Radar Type 
1 sin radar o radar 15 
2 con radar 30 
3 con radar 60. 

The sonar classification was also coded by date of 
installation of the different sonar types. 

 
Sonar Category Sonar Type 
1 without  sonar 
2 only one sonar, irrespective of the type 
3 with two sonars (type 45 and 60) 

The increase of boat speed was also taken in consideration 
as a factor for every boat individually. The average boat 
speed ranges from 10 to 15 knots. 

A new variable to estimate skipper experience was created. 
Skippers were classified for the time they remain in the 
fishery since the beginning (1984) with the following scale: 

Skipper Code Time in the Fishery (months) 
1 0-12  
2 13-24  
3 25-36  
4 37-48  
5 >48  
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The zones selected for the analysis were coded as: 
Area Code Area 
2 N-W Seychelles 
4 E-S Seychelles 

Every year was also divided in four fishing seasons with the 
following codes: 

Season Code Months 
1 January-February 
2 March-April-May-June 
3 July-August-September-October 
4 November-December 

Catch information is available by set, position of the set and 
type of set (floating object or free school) by species: 
yellowfin, skipjack and bigeye. The effort information is 
available in number of sets (positive, nil and total), days at 
sea and fishing days but only by area and time strata, due to 
the characteristics of the fishey it is not possible split effort 
by type of set or species.  

As response variable we considered the yellowfin catch rate 
on free school: 

CPUE = YFT free school catch/total effort (fishing days) 

The total floating objects (log) catch was introduced as 
explanatory variable defined as a proportion of the log catch 
over the total catch: 

Log Catch= total floating object catch(yft+skj+bet+others) / 
total catch 

In order to avoid the excess of zero catch, all the 
observations without information on some of the variables 
were eliminated. 

Model 1 

We would like to present a review of the Delta-Lognormal 
method used in the previous analysis to estimate relative 
abundance of yellowfin in the N-W Seychelles, 
Mozambique and E-S Seychelles. The method was applied 
to obtain three independent abundance indices for every 
zone. We will call this Model 1. 

This model was divided in two components: the probability 
that cpue was bigger than zero, P{cpue>0}, and the 
distribution of the positive values of cpue. Both could be 
modelled independently to obtain, on one side, an 
adjustment of the positive cpue probability, and on the other 
hand, the expected cpue conditioned to obtain a cpue value 
bigger than zero. Then the Delta-Lognormal method 
comprises two lineal generalized models using the Bernoulli 
and Lognormal distributions respectively. 

The relative cpue for every year in every of the three zones: 

CPUEi  = µi pi , i = 1,2,3. 

where µi is a unit of standardized cpue for the positive 
catches in every zone, and p is a unit for the standardized 
proportion of positives. 

To calculate a relative index for the whole zone, the three 
indices obtained were weighted by the number of 
observations in every zone, i.e.: 

CPUEy  = Ny1CPUEy1   + Ny2CPUEy2   + Ny3CPUEy3  

where CPUEy is the yearly average cpue, and , Nyi is the 
number of observations in zone I for every year, and CPUEyi 
is the yearly average cpue in the year and zone i. 

The following were considered the main factors: year, 
season, skipper, sonar, radar, net, speed and total log catch. 
The las factor is introduced in the analysis as  

Log (totallog + K). 

First order interactions between year, season and skipper 
with boat characteristics where also introduced. 

The model to adjust cpue for positives is: 

Ln(CPUE) = Xα + Zβ + ε, 

 where cpue is the observations vector, X is the main factors 
matrix, α main factors parameter vector, Z is the interactions 
matrix, β is the interactions parameter vector and ε is the 
independent error vector identically distributed that follow a 
N(0, σ2). 

On the other side, to estimate the proportion of positives, all 
the data set was used. A random variable Bernoulli type was 
created with value 0 or 1, depending if the cpue was nil or 
positive respectively. Then the average of this variable is 
calculated in every defined strata for every year, season, 
radar, sonar, net and speed combination, and the number of 
observations existing in every one is calculated. 

The probability that the cpue could be positive, could be 
modelised through a Binomial GLM with the logit function 
as a connection between the explicative variables and the 
response variable, i.e., the appearanceof positive cpue is a 
Bernoulli random variable with a probability p given by: 

Log(p/(1-p)) = Zα + Zβ, o bien, 

p = 1/ ( 1 + exp{ Xα + Zβ } ), 

where X is the main factors matrix, α is the main factors 
parameters vector, Z is the interaction matrix, and β is the 
interactions parameters vector. 

The following modifications were implemented in Model 1. 

The analysis  of the Indian Ocean data with the new variable 
“exskipper” instead of “skipper” is redone, that allow to 
include all the skippers in the analysis . In the previous case, 
it was necessary to select only those that remained in the 
fishery for more than six years, because otherwise there 
were levels with very few observations whose coefficients 
were difficult to estimate. 

The variable “log” substitutes the one previously used 
“log(totalobj +0.01)”, that defined in this way is much more 
significant than before in all the other analysis. 

The analytical approach of the variances of the Delta method 
estimated indices, that allows to include the upper and lower 
level in the cpue charts given by the standard annual error of 
the estimates. 
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In all the analysis only the interactions that have more sense 
were considered, i.e. those in which the skipper experience 
interact with the presence or absence of a particular 
equipment.  

Starting from the initial model, a selection of the more 
significant variables is done, considering several criteria: the 
value of the statistics AIC, the proportion of the variability 
explained by the model, defined as (Null Deviance – 
Residual Deviance)/ Null Deviance and the F signification 
test and Chi-square.  

Two kind of analysis were performed: 

keeping the variable area and eliminating the variable season 
and calculating only an abundance index for zone 2 and 4 
together,  

- eliminating the variable area keeping the season, to 
eliminate the strong interaction existing among them, in a 
way that an index is estimated for every of the two zones 
and a global index is calculated for both areas is calculated, 
weighting every one by the square root of the observation 
numbers in every zone, to avoid weighting differently the 
area with more observations. 

The Delta Lognormal method is applied in both analysis  in 
the same way presented in Model 1. 

Model 2 

We will call Model 2 to that resulting of the application of 
the Delta-Lognormal method for every zone considered 
independently. The variable season is not considered in both 
zones, because by separating the analysis by areas, each of 
every one is associated to a season in which most of the 
catches are done. We take a look now to the analysis done 
for every zone. 

AREA 2: N-W Seychelles 

Area 2, N-W Seychelles is considered in this  section. For the 
cpue>0 we started from the gaussian GLM. 

log(cpuep) ~ year + expatron + net + speed + sonar + radar+ 
log + year:season + expatron:sonar + expatron:radar + 
expatron:net 

the selection of variables was done based on the criteria 
previously pointed out , which results are shown in Table 1. 

The last model was finally selected, which results of the ANOVA 
table for the error type III are shown in table 2. 

The initial model for the proportion of positives was a 
binomial GLM with the logit function as link, and a 
selection of variables in the usual way was done, which 
results were shown in Table 3. 

propor ~ year + expatron + net + speed+ sonar + radar + 
expatron:net+ expatron:sonar + expatron:radar 

The last model was finally selected, which results of the 
ANOVA table for the error type III are shown in table 4. 

Finally, to estimate the cpue of area N_W Seychelles by the 
Delta Lognormal Method, the adjusted annual average cpue 
in the gaussian GLM, previously reverting the logarithmical 
transformation, are multiplied by the annual average of 

P{CPUE>0} adjusted in the Binomial GLM. The Delta 
method is used to calculate the expected cpue variance, and 
it performs the Taylor development of the product to obtain 
an analytical expression of the variance. 

Let us define x as positive cpue and y as proportion of 
positives . In principle we presume that both populations are 
independent and therefore the covariance is 0. For every 
year we define m=E(x) and p=E(y) . The estimator of the 
expected cpue for every year is  

g(x,y)= xy  

and by the Taylor approximation, the variance estimator will 
be: 

V[g(x,y)]= m2*V(y)+ p2*V(x) 

We can see in figure 1 the expected cpue for area 2 with the 
upper and lower limits given by the annual standard error. 

AREA 4: S-E SEYCHELLES. 

Area 2, N-W Seychelles is considered in this section. For the 
cpue>0 we started from the gaussian GLM: 

log(cpuep) ~ year + estacion + expatron + red + veloc + 
sonar + radar + objeto + year:estacion + expatron:sonar + 
expatron:radar + expatron:red 

The model variables selection is done based on table 5. 

The last model was finally selected, which results of the error type 
III ANOVA is shown in Table 6. 

For the proportion of positives we start from the same model 
that in area 2. The selections of variables is done in the 
habitual way, which results are summarized in Table 7. 

The last model was finally selected, which error type III 
ANOVA table results  are given in Table 8. 

We calculate the expected cpue in area 4 in the same way 
that in area 2, which graphical representation with the upper 
and lower levels given by the standard error every year is 
shown in Figure 2.  

Once the index for every zone has been calculated, we 
weighted both indexes from zone 2 and 4 by the square root 
of the observations number in every zone and we calculate 
its variance by the Delta method. 

Let us define x1 as area 2 positive cpue, x2 as area 4 positive 
cpue, y1 area 2 proportion of positives, y2 area 4 proportion 
of positives and CPUE2= E(x1), CPUE 4= E(x2), p2= E(y1), 
p4= E(y2) for every year, and N2 the number of observations 
in area 2 and N4 the number of observations in area 4 for 
every year. 

In principle we assume that all the four populations are 
independent and therefore its covariance is 0. The expected 
cpue estimator for every year is  

g(x1,y1,x2,y2)= (N2)1/2*x1y1 + (N4)1/2*x2y2 

and by the Taylor approximation, the variance of this estimator will 
be: 

V[g(x1 ,y1,x2,y2)] = N2*(V[x1]*y1
2 + V[y1]*x1

2) + 
N4*(V[x2 ]*y2

2 + V[y2]* x2
2) 
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Model 3 

We will call Model 3 to that resulting of applying the Delta-
Lognormal Method to the data corresponding to the union of 
both zones, in a way that the area variable is eliminated from 
the analysis, but keeping the season variable. 

As before, we introduce the variables Log and Expatron. In 
the same way, the Delta Lognormal method is applied, in 
which the cpue>0 is modelled through a gaussian model, 
while the proportion of observations with cpue>0 is 
modellized through the Binomial GLM. 

For cpue>0 we start from the gaussian model. 

log(cpuep) ~ year + season + expatron + net + speed + 
sonar + radar + log + year:season + expatron:sonar + 
expatron:radar + expatron:net 

The selection of variables is done following the habitual 
criteria given in Table 9. 

We finally select the last model, which variability proportion 
explained is (1423.86-761.7049)/1423.86 = 0.4650423, and 
the ANOVA table for the type III analysis is Table 10. 

For the proportion of positives, the initial model was a 
Binomia l GLM with the logit function as link, and a variable 
selection was performed on the habitual way, as we can see 
in Table 11: 

propor ~ year + season + expatron + net + speed + sonar 
+ radar +  expatron:net + expatron:sonar + expatron:radar 

The last model was selected, which exp lained variability 
proportion is  (1008.268-689.0685)/1008.268=0.316582. 

We calculate the expected cpue relative to 1986, and its 
variance by the Delta method. 

RESULTS AND DISCUSSION 

Model 2 

AREA 2: N-W Seychelles. 

Area 2, N-W Seychelles is considered in this section for the 
cpue>0 it started from the gaussian GLM. 

Comparing with Model 1, in this Model, for the distribution 
of positives we can see that the F Statistic value 
corresponding to the log variable, is much bigger in this case 
215.2428 >> 39.23202 . Therefore, although in both cases 
the log catch will be significant, defining the variable log as 
a proportion of log catch over the total catch, the sample 
shows a reject degree much bigger of the nil hypothesis  that 
the variable will not be significant. 

Besides, the variable year is also more significant that in 
Model 1, by eliminating from the analysis  the variable 
season, the skipper experience (Expatron), is less significant 
than the variable skipper. Although, now the variable net is 
more significant replacing the variable sonar, as significant 
variable, as wel as the interaction among Expatron  with net. 
Speed is slightly more significant in the last case. 

The proportion of variability explained by the model 
(840.2034-498.3111)/840.2034 = 0.4069161 , is bigger in 

this case that in Model 1, (493.9918-
310.121)/493.9918=0.3722143.  

In respect with the proportion of positives, removing season 
from the analysis, it gets worst because the only variable 
appearing as significant is year. Variable log is not included 
because is continuous and we will have to categorize it, to be 
able to calculate the proportion of observations of cpue>0 
that will exist for every category. Maybe in a following 
analysis, we could test if the model improves with that 
option, but for the time being, this variable was not included. 

The proportion of variability explained by the model for the 
proportion of positives is (431.7917-
88.1492)/431.7917=0.101073, while in Model 1 we were  
getting (606.1353-515.1864)/606.1353=0.1500472 . 

AREA 4: S-E SEYCHELLES. 

In the same way that in Area 2, the variable log is much 
more significant defined in this way as the log catch 
proportion, because the F statistic value is bigger that in the 
original document model 108.52 > 2.02027. Equally, year is 
slightly more significant than before, but sonar and radar 
disappear as important variables, in exchange the net and 
speed have a bigger signification. The variability proportion 
explained by the model in this case is (382-365)/382 = 
0.04450262 , much lower that in the previous case mucho 
(370.6122-168.2984)/370.6122 = 0.5458908, because by 
removing the variable season, a lot of information is lost. 

For the proportion of positives, the analysis  does not 
improve by eliminating season. Although the variable speed 
is not very significant, it was finally included in the model to 
isolate, in a way, the year effect. The proportion of 
variability explained by the model (374.3623-
289.0467)/374.3623 = 0.2278958, is less than in model 1 
(482.8845-219.5806)/482.8845 = 0.545273, because the 
variable season  was very significant. 

Model 3 

We can see in Table 10, that when the number of 
observations is bigger, the model works better, the variable 
log continue to be most significant by far, while year and 
season, and the interaction among them are also significant. 
The skipper experience does not appear as significant, 
neither the radar, while net and speed are significant and to 
a lesser extent sonar. 

For the proportion of positives, the analysis can not be 
improved much either, because the only variables appearing 
as significant are year and season and its interaction. 

In Table 12, expected cpue results related to 1986 are shown 
form the three models. 

In figures 3.a, 3.b and 3.c, we can see the expected cpue 
results related to 1986 in model 1,2 and 3, respectively. The 
upper and lower limits given by the standard error from the 
models 2 and 3, are shown in figures 3.b and 3.c. 

Comparing the expected cpue in the three analysis, we can 
graphically see that there is a very similar trend in the three 
cases. However, the relative values, and the confidence 
intervals vary among models 2 and 3. 
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In Model 2, when variable season is not considered and the 
index for area 2 and 4 is weighted by the square root of the 
number of observations in every area, a relative expected 
cpue bigger than in Model 3 is obtained for all the years. 
However, the standard errors of the expected cpue for every 
year are much lower in Model 3, specially for the years 
where cpue is maximum. 

The obtained results in Model 2, are very similar to the 
initial Model 1, although for almost all the years, the 
expected cpue estimated by Model 1 is bigger. 

Therefore, there are differences between the two models, 
while there is not a clear criteria to determine which is more 
adequate. On one side, the two zones have been separated 
disregarding the variable season, and the results are very 
similar to the initial model in which three areas where 
considered and the variable season was included. Therefore 
the variable season in this context is not important to 
determine the index. 

Eliminating area3 (Mozambique), the estimated cpue trend, 
was not affected because it is correlated to a very small data 
group And the general trend is dominated by the effects of 
areas 2 and 4 (NW and SE Seychelles). 

In model 2 for areas 2 and 4, and Model 3, the variables 
finally selected in the gaussian GLM applied to the 
distribution of observations with positive cpue, are not the 
same. The significant variables, common to the three models 
are year, net, speed and log. Let observe how the obtained 
coefficients in every of the three GLM for each of the 
variables are. 

In Table 13, the coefficients corresponding to the variable 
year were obtained in the gaussian GLM for cpue>0 in 
model 3, (posit2year) , and in model 2 for zone 2 
(a2posit2year)  and zone 4, (a4posit2year) . 

Its graphic representation is given in Figure 4. 

Table 14 shows the corresponding coefficients to the 
variable net obtained in the gaussian GLM models for 
cpue>0 in model 3 (posit2net), and in the model 2 for zone 2 
(a2posit2red), and zone 4 (a4posit2red) . 

Its graphic representation is given in Figure 5. 

In Table 15 coefficients corresponding to the variable speed 
obtained in the gaussian GLM for cpue>0 in model 3 
(posit2speed), and in model 2 for zone 2 (a2posit2speed), 
and the zone 4 (a4posit2speed). 

Its graphic representation is given in Figure6. 

All the coefficients have a first level value 0, because by 
applying the gaussian GLM model, the contrast treatment 
option of the S-Plus package was used, that corresponds to 
assign value zero to the first coefficient, in a way that the 
others appear related to this level. 

The continuous variable log has the following coefficients: 

Model 3: -1.748431 

Model 2, area 2: -1.854503734  

Model 2, area 4: -1.78194746 

In all the cases it has negative values, as could be expected, 
because the dependent variable is related to the free school 
catch, that it is complete with the log catch. The coefficient 
values are very similar in all the three cases, and in all the 
models, this is the more significant variable. 

The coefficients of variable year have a similar trend for 
Model 2 in area 4 and Model 3. However, Model 2 for area 
4 has all coefficients bigger that in Model 2. Results from 
this two models do not vary much from those of Model 1. 

Model 2 for area 2 has different trend from the others, and 
variable year presents coefficients with less variability. 

Intuitively, so much for the net as for the speed, the expected 
coefficients should increase according to every factor level, 
since expected yields should be bigger when the boat has a 
bigger net and her speed increases. However the coefficients 
do not show that clearly. 

In Model 2 for area 4, if increasing coefficients for net are 
obtained, for the other two models the results are not 
intuitive. 

In Model 2 for area 2 speed has increasing coefficients from 
12 knots and for Model 3 from 11 knots. In Model 2 for area 
4, coefficients vary with a clear trend. The value for speed 
coefficients in the three models for levels above 15 knots is 
very similar. 

However, at the time of estimating the different abundance 
index the importance of the different equipment, is not 
clearly reflected in GLM models , since the significance of a 
certain boat characteristic, vary much from one model to the 
other, depending on the number of observations and the zone 
considered, being in certain occasions the results contrary to 
logical intuition. 

The lack of overlapping in the different characteristics range 
makes the analysis difficult, since most of the boats 
introduce the new equipment at the same time, it is difficult 
to compare along the period, the yields when the equipment 
has been improved. 

On the other side, the considered period is very limited to be 
able to perform a good analysis, due to the difficulty in 
compiling this kind of information. 
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Table 1.- Results from the ANOVA and Akaike statistic value from the nested gaussian models for area 2. Y=Year, Ex=Expatron, Re=Net, 
S=Sonar, Ra=radar, V=Speed, O=Log. 

Model Variation source d.f. Null Dev. Res. Dev. AIC 
Y+Ex+Re+S+Ra+V+O Model 

Error 
Total 

25 
537 
562 

840.2034 510.3538 559.7735 

Y+Ex+Re+S+Ra+V+O+Ex:Re+Ex:So
+Ex:Ra 
 

Model 
Error 
Total 

47 
515 
562 

840.2034 476.5370 565.3673 

Y+Ex+Re+V+O+Ex:Re 
 

Model 
Error 
Total 

30 
532 
562 

840.2034 498.3111 556.3849 

 

Table 2: ANOVA type III results from the gaussian model selected for area 2. 
 Df Sum of Sq Mean Sq F Value Pr(F) 
        year 9 54.5770 6.0641 7.6277 0.0000000 
    expatron 4 5.9738 1.4934 1.8785 0.1127946 
         red 2 6.9041 3.4520 4.3421 0.0134732 
       veloc 5 8.8744 1.7749 2.2325 0.0498536 
       radar 2 5.7325 2.8662 3.6053 0.0278468 
      objeto 1 171.1210 171.1210 215.2428 0.0000000 
expatron:red 7 12.6280 1.8040 2.2691 0.0277531 
   Residuals 532 422.9474 0.7950   

 

Table 3: ANOVA results and Akaike statistic value of the binomial model nested in area 2.  

Model Variation source d.f. Null Dev. Res. Dev. AIC 
Y+Ex+Re+S+Ra+V Model 

Error 
Total 

24 
219 
243 

431.7917 375.3453 461.0406 

Y+Ex+Re+S+Ra+V+Ex:Re+Ex:S+E x:
Ra 

Model 
Error 
Total 

46 
197 
243 

431.7917 337.4472 498.4626 

Y Model 
Error 
Total 

9 
234 
243 

431.7917 388.1492 421.3243 

 

Table 4: ANOVA type III results from the gaussian model selected for area 2. 

 Df Sum of Sq Mean Sq F Value Pr(F) 
     year  9   34.6142   3.846026   2.898477  0.002865467 
Residuals 234   310.4976   1.326913            
       

 

Table 5: ANOVA results and Akaike statistic values from the gaussian models nested for area 4. Y=Year, Ex=Expatron, Re=net, S=Sonar, 
Ra=radar, V=speed, O=log. 

Model Source of variation d.f. Null Dev. Res. Dev. AIC 
Y+Ex+Re+S+Ra+V+O Model 

Error 
Total 

25 
357 
382 

576.5284 323.5141 370.6366 

Y+Ex+Re+S+Ra+V+O+Ex:Re+
Ex:S+Ex:Ra 

Model 
Error 
Total 

47 
335 
382 

576.5284 309.4133370 398.0810 

Y+Re+V+O Model 
Error 
Total 

17 
365 
382 

576.528434 327.3611 359.6488 
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Table 6: Error type III ANOVA results from the gaussian model selected for area 4. 
 Df Sum of Sq Mean Sq F Value Pr(F) 
     year    9    87.9634    9.77371   12.8214    .00000000 
      net     2     3.9947    1.99737    2.6202   0.07415734 
    speed    5     8.9139    1.78277    2.3387   0.04138702 
      log    1    82.7293   82.72929  108.5261   0.00000000 
Residuals  365   278.2388   0.76230            

Table 7: ANOVA results and Akiake statistic results from the binomial model nested in area 4.  

Model Source of 
variation 

d.f. Null Dev. Res. Dev. AIC 

Y+Ex+Re+S+Ra+V Model 
Error 
Total 

24 
190 
214 

374.3623 276.5183 
 

349.2863 
 

Y+Ex+Re+S+Ra+V+Ex:Re+Ex:S+Ex:
Ra 
 

Model 
Error 
Total 

46 
168 
214 

374.3623 248.4579 387.4760 

Y+V 
 

Model 
Error 
Total 

14 
200 
214 

374.3623 289.0467 332.4037 

Table 8: Error type III ANOVA results from the binomial model selected for area 4. 
1 Df Sum of Sq Mean Sq F Value  Pr(F) 
     year 9    58.6864  6.520708  5.802929 0.00000036 
    speed 5    10.9796  2.195930  .954209 0.08704089 
Residuals 200   224.7385  1.123692            

Table 9: ANOVA results and Akaike statistic value from the gaussian models nested by the union of area 2 and 4. Y=Year, E=Season, 
Ex=Expatron, Re=Net, S=Sonar, Ra=radar, V=Speed, O=Log. 

Model Variation Source d.f. Null Dev. Res. Dev. AIC 
Y+E+Ex+Re+S+Ra+V+O Model 

Error 
Total 

28 
917 
945 

1423.860 867.6645 922.5440 

Y+E+Ex+Re+S+Ra+V+O+Y:E+Ex:Re
+Ex:S+Ex:Ra 
 

Model 
Error 
Total 

77 
868 
945 

1423.860 732.1296 863.7105 

Y+E+Ex+Re+S+V+O+ 
Y:E 
 

Model 
Error 
Total 

49 
896 
945 

1423.860 761.7049 846.7166 

Table 10: Type III ANOVA results from the gaussian model selected for the union of area 2 and 4. 

 Df Sum of Sq Mean Sq F Value Pr(F) 
         year 9   106.3560  11.8173  16.3334 0.00000000 
     estacion 3    38.6935  12.8978  17.8268  .00000000 
          red 2     7.9720   3.9860   5.5093  .00418749 
        veloc 5    13.0201   2.6040   3.5991  .00314417 
        sonar 2     3.8035   1.9018   2.6285  .07274086 
       objeto 1   253.3119 253.3119 350.1160 0.00000000 
year:estacion 27   107.8265   3.9936   5.5197 0.00000000 
    Residuals 896   648.2635   0.7235            
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Table 11: ANOVA results and Akaike statistic value from the binomial models nested for the union of area 2 and 4. 
Model  d.f. Null Dev. Res. Dev. AIC 
Y+E+Ex+Re+S+Ra+V Model 

Error 
Total 

27 
594 
621 

1008.268 781.3035 854.9618 

Y+E+Ex+Re+S+Ra+V+ 
Y:E+Ex:Re+Ex:S+Ex:Ra 
 

Model 
Error 
Total 

76 
545 
621 

1008.268 635.1413 814.6124 

Y+E+S+Y:E 
 

Model 
Error 
Total 

41 
580 
621 

1008.268 684.8161 783.9964 

Y+E+Y:E 
 

Model 
Error 
Total 

39 
582 
621 

1008.268 689.0685 783.7858 

Table 12: Expected cpue related to 1986 for the model 1,2 and 3. 
Year Model 1 cpue Model 2 cpue Model 3 cpue 
1986 1.00 1.00 1.00 
1987 1.36 1.07 0.83 
1988 4.20 4.01 2.39 
1989 1.77 1.19 0.55 
1990 3.09 3.03 1.73 
1991 5.80 4.87 2.18 
1992 3.62 3.12 1.66 
1993 1.48 1.86 1.25 
1994 2.47 2.82 1.95 
1995 1.56 1.29 0.68 

Table 13:  Year coefficients form the different models. 
Year Model 3 Model 2 zone 2 Model 2 zone 4 

86 0.00 0.00 0.00 

87 -0.38 0.00 -0.43 

88 -0.32 -0.18 0.23 

89 -0.64 -1.03 -0.33 

90 -0.62 -0.39 0.34 

91 0.42 -0.29 0.84 

92 -0.39 -0.29 -0.09 

93 -0.81 -0.39 0.06 

94 0.22 -0.58 0.43 

95 -1.15 -0.45 -0.30 

Table 14: Net coefficients form the different models. 
net  Model 3 Model 2 zone 2 Model 2 zone 4 

red1 0.00 0.00 0.00 

red2 -1.54 0.04 -0.12 

red3 -0.78 0.22 0.11 

Table 15: Speed coefficients form the different models. 

speed Model 3 Model 2 zone 2 Model 2 zone 4 

10 0.00 0.00 0.00 
11 0.43 0.56 -0.12 
12 -0.17 0.22 0.11 
13 0.01 0.31 0.19 
14 0.40 0.13 0.15 
15 0.45 0.50 0.55 

 



 

 407 

86 87 88 89 90 91 92 93 94 95
year

0.3

0.5

0.7

0.9

cp
ue

p

 
a4cpuep$year

y

86 88 90 92 94

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cpuep esperada area4

 
Figure 1: Expected cpue for area 2 with the upper and lower limits 

given by the annual standard error. 
Figure 2: Expected cpue for area 4 with upper and lower limits given 

by the annual standard error.  
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Figure 3.a: Expected cpue related to 1986 from model 1 Figure 3.b: Expected cpue related to 1986 from model 2. 
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Figure 3.c: Expected cpue related to 1986 from model 3. Figure 4: Year coefficients 
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Figure 5: Net coefficients. Figure 6: Speed coefficients. 

 


