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ABSTRACT 

We attempted to compare results of two methods to standardize yellowfin tuna CPUE of Japanese tuna longline 
fisheries, i.e., General Linear Model (GL M) and Habitat-based Model (HBM)/GLM combined approach. In the 
CPUE standardization for the Indian Ocean tropical tuna (yellowfin and bigeye) in the past, the GLM has been 
primarily used. Although the HBM approach has been developed and applied mainly for billfishes, in recent years 
the HBM has also been applied for the tropical tuna in the Pacific Ocean. As the HBM approach takes into account 
actual depths of habitat and gear deployed into the model, it may provide a more realistic and reliable CPUE 
standardization. Thus, as a first attempt using the HBM/GLM for the Indian Ocean tropical tuna, we shall evaluate 
results produced by the two approaches, then we shall discuss the feasibility whether the HBM/GLM approach can 
be recommended for future CPUE standardizations. As a first step, we use minimum information (depth distribution 
of longline gear and vertical distribution of yellowfin tuna) to carry out a fundamental HBM/GLM without 
considering specific oceanographic data such as shear current, depth specific temperature and oxygen. As the 
HBM/GLM combined approach was resulted to be more effective than the GLM approach, we further discussed the 
research needs to conduct more practical and accurate HBS/GLM analyses in the future. 
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1. INTRODUCTION 

In this paper, we attempt to compare results of two methods to standardize yellowfin tuna (Thunnus albacares) (YFT) 
Catch-Per-Unit-Effort (CPUE) of Japanese tuna longline fisheries, i.e., General Linear Model (GLM) and Habitat-based 
Model (HBM)/GLM combined approach. In the CPUE standardization for the Indian Ocean tropical tuna (YFT and bigeye 
tuna: BET, Thunnus obesus) in the past, the GLM has been primarily used (Shono et al, 2002 and Nishida, 2000 for YFT, 
Okamoto et al, 2001 for BET and many others). Although the HBM approach has been developed and applied mainly for 
billfishes (Hinton and Nakano, 1996, Yokawa and Takeuchi, 2002 and many others), in recent years the HBM has also been 
applied for the tropical tuna in the Pacific Ocean (Bigelow et al., 2002 for BET and Bigelow et al., 2003 for YFT). As the 
HBM approach takes into account actual depths of habitat and gear deployed into the model, it may provide a more realistic 
and reliable CPUE standardization. Thus, as a first attempt using the HBM/GLM for the Indian Ocean tropical tuna, we shall 
evaluate results produced by the two approaches, then we shall discuss the feasibility whether the HBM/GLM approach can be 
recommended for future CPUE standardizations. As a first step, we use minimum information (depth distribution of longline 
gear and vertical distribution of yellowfin tuna) to carry out a fundamental HBM/GLM without considering specific 
oceanographic data such as shear current, depth specific temperature and oxygen that were used by Yokawa and Takeuchi 
(2002), Bigelow et al (2002 and 2003) and others in their papers. If the HBM/GLM combined approach is recognized to be 
more effective than the GLM approach, we shall further discuss the research needs to conduct more practical and accurate 
HBS/GLM analyses in the future. 

2. DATA 

Table 1 summarizes the data used in this paper and the sources of the data. 

Table 1 List of the data used in this paper 

Type Parameters and resolutions Source Objectives 
Japanese tuna longline 

commercial fisheries data 
(1958-2001) 

Catch, effort and number of hooks 
between floats (HBF) by month and 

5ox5o area 

National Research Institute of Far Seas 
Fisheries (NRIFSF), Japan 

Surface Sea Temperature (SST) by 
month and 2ox2o area 

(1958-2001) 

Sub-arctic Gyre Experiment (SAGE) complied 
by Japan 

Meteorological Agency, Japan 
Southern Osculation Index (SOI) by 

month (1958-2001) 
National Oceanic and Atmospheric 

Administration (NOAA), USA 
Marine 

environmental 
data 

 Thermocline depth 
(at 20oC) (*) 

by month and 5ox5o area 
(1958-2001) 

JEDAC data set (Scripps Institution of 
Oceanography) and GAO data set 

(Gestionnaire d'Applications 
Océanographiques) compiled by Institut de 
Recherche pour le Développement (IRD), 

France 

To conduct 
GLM & HBM 

Experimental tuna longline 
fishing data in the Indian 

Ocean  (1982-86) 

Species of catch 
by each hook 

and 
hook depth (m) 

Japan Marine Resources and Research 
center 

(JAMARC), Japan 

To compute 
effective effort 

in the 
HBM 

(*) See Appendix A for estimation procedures. 

3. METHODS AND RESULTS 

3.1 GLM ANALYSES 

(1) Model 

A method similar to that used by Shono et al (2002) is applied for the GLM based CPUE standardization. The sampling unit for 
this case is ‘month and 5x5 areas’. For the GLM procedure, the SAS/STAT package (Version 8.2) was utilized. Initially, the full 
model including two-way interactions, as shown in equation (1), was applied for the whole Indian Ocean (Fig. 1). However other 
interaction terms were not included because of missing data which created non-convergent problems in the parameters 
estimation of the GLM process. 
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Loge(N_CPUEijkl+constant) = INTERCEPT + Yi + Mj + Ak + Gl + SST + SOI +TD  

               + (Y*M)ij + (Y*A)ik + (M*A)jk + (M*G)jl+ (A*G)kl + (SST*M)j + (SST*A)k + (SOI*M)j + (SOI*A)k  

+ (TD*Q)j + (TD*A)k + (ERROR)ijkl, 

with (ERROR)ijkl,～N(0, 2σ )         (1) 

 
, where constant  :10% of the overall average nominal CPUE(see Campbell et al, 1996) (0.87193 for this case) 

log  : national logarithm, 
N_CPUE  : nominal CPUE (number of yellowfin catch per 1000 hooks), 
INTERCEPT : intercept (mean N_CPUE), 
Yi  : effect of year (1958-2001), 
Mj  : effect of month (Jan., Feb., - Dec.), 
Ak  : effect of sub-area (A1-A5) adopted by the WPTT in 2002 (see Fig. 1), 
Gl  : effect of gear: HBF (6 classes corresponding to those used in the HBM) 

(class 1: 5- 6, class 2: 7-9, class 3: 10-11, class 4: 12-15, class 5: 16-20, class 6:21-25) 
Note: Data with NHB: 3-4 were not included as such LL was for catching swordfish at night.   

SST  : effect of sea surface temperature (continuous variable by month & 5x5 area), 
SOI  : effect of southern oscillation index (continuous variable by month), 

INTERACTIONS : two-way interactions. 
 

Although the Japanese longline data are available for 1952-2001, only the period 1958-2001 is considered because: 

no solutions were obtained in the initial GLM attempt for 1952-57 for the equation (1): as the Japanese tuna longline fisheries 
in the earlier years were not fully developed (covered) in the Indian Ocean, we face problems dealing with an un-balanced 
(missing) data structure of the GLM analyses and unstable (unexpected large) CPUE values; 
we need to keep catchability homogenous for reliable and consistent quality analyses by excluding the data in the earlier years. 
 
Loge(N_CPUEijkl+ constant) =  INTERCEPT + Yi + Mj + Ak + Gl + SST +TD + (Y*M)ij + (Y*A)ik + (M*A)jk  

+ (M*G)jl+ (A*G)kl + (SST*M)j + (SST*A)k  + (TD*M)j + (TD*A)k + (ERROR)ijkl,  
with (ERROR)ijkl,～N(0, 2σ )      (2) 
 

In order to address the problem of zero catch, 10% of the overall average nominal CPUE (see Campbell et al, 1996 for details), 
is added to each nominal CPUE value. The area stratification is shown in Fig. 1, which was agreed upon by the 2001 
IOTC/WPTT meeting. The number of hooks between two floats (HBF) is divided into 6 classes corresponding to Bigelow et al 
(2002).The HBF information are available for 1966 and 1975-2001, but those for 1958-65 and 1967-74 are missing. The HBF for 
the period 1958-65 is estimated using the spatial pattern of HBF of 1966, and the HBF for the period 1967-74 from the average 
pattern of 1966 and 1975. We also add the effect of surface sea temperature (SST), southern oscillation index (SOI) and 
thermocline depth (TD) to the model as environmental factors that may have also affected yellowfin abundance. In the GLM 
analyses, Y, Q, A, G, SST, SOI and TD are treated as the main effect. The estimation procedure for TD is described in Appendix 
A. 
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Fig. 1 Five sub-areas for yellowfin tuna LL CPUE standardization adopted by the 2002 WPTT. 

 

We ran the full model (1) for the whole area, but, GLM runs were not converging. After investigation, we found that the full 
model could converge if SOI-related terms are excluded. Thus we modified the GLM as in equation (2) below: 

Then, the GLM were re-ran and finally converged. Results of the SAS outputs are listed in Appendix B.  

(2) Abundance Index 

The Abundance index in year i is estimated by exp {Least Squared Means of YEAR effect in SAS-GLM procedure} - constant. 
Shono et al (2002) described details on the computation procedures for the abundance index. 

 

atd
d

atdatat phEf ∑=        (3) 

, where  
f : effective fishing effort, 
a : a particular area stratum,  
t : a particular month stratum, 
E : number of hooks, 
d : a particular depth zones of the longline hooks deployed, 
hatd  : proportion of hooks fishing in depth zone d in area a during time period t, 

patd  : proportion of yellowfin tuna in area a d uring time period t occurring in depth zone d. 

3.2 HABITAT-BASED MODEL (HBM) ANALYSES 

In the HBM approach, we need to estimate the effective fishing effort reflecting the actual swimming depth of fish and the actual 
depth of the longline gear deployed. Hence, in order to carry out a reliable HBM, we need to incorporate two fundamental 
elements i.e., ‘longline gear configuration’ and ‘depth specific distribution of yellowfin tuna’. Then, to evaluate accurate 
effective fishing effort, we need to use relevant oceanographic and ecological information affecting these two elements, for 
example, depth specific ocean temperature and oxygen at given depth levels, that influence yellowfin tuna vertical distribution, 
and shear current that affects gear configuration, etc. These information can be obtained, for example, from the oceanographic 
observation, archival and pop-up tagging experiments. However, in the Indian Ocean, information based on tagging is extremely 
limited unlike in other two Oceans. Hence, we carry out our analyses using the substituted information from the Pacific Ocean 
and some available (but limited) information in the Indian Ocean, which will be explained in the this section. 
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(1) Effective fishing effort 

We define effective fishing effort (f) in a particular area (indexed by a) and quarter (indexed by t) stratum as the weighted sum of 
longline hooks (E) fishing in different depth zones (indexed by d) throughout the vertical habitat: 

The key elements in the estimation of effective longline effort are the specification of the depth distribution of the gear (hatd) and 
the depth distribution of yellowfin tuna (patd). These aspects of the analysis are discussed in the following two sections. 

(2) Depth distribution of longline gear 

For hatd, we apply the distribution proposed by Bigelow et al (2002) in the Pacific (refer to Appendix C for details). For the 
purpose of determining approximate hook depth distributions, these authors aggregated the HBF information into six categories 
used by Japanese longliners: 5-6 HBF (regular LL gear), 7-9 HBF (intermediate LL gear), 10-11 & l2-15 HBF (deep LL gear) 
and l6-20 & 2l-22 HBF (ultra deep LL gear). Yellowfin or bigeye tuna longline sets were usually conducted by day fishing at 
moderate (100-250 m) to deep depths (100-400m) with gear of five HBF or greater. There were the data corresponding to 3-4 
HBF, however, they were deleted prior to analysis because these shallow gear types were used mainly to target swordfish at 
night. Then, by randomly generating between- and within-set variability into the theoretical gear configuration (defined by 
catenary geometry), they estimated the hook depth distributions for 15 depth bins of 40 m (range, 0-600 m) through 50,000 trials 
for six gear categories. In our analyses, we used the percent frequency distribution of these estimated hook depth distributions 
(Fig. 2). 

(3) Yellowfin habitat preferences as determinants of depth distribution 

Vertical distribution within habitat-based approaches is typically defined by acoustic tracking, archival tags and physiological 
information (Bigelow et al, 2002). In the Indian Ocean, there has been ultrasonic tagging experiments (Cayré, 1991; Cayré and 
Marsac, 1993; Marsac et al, 1998), but they have been conducted in restricted areas of the western basin (Seychelles, La 
Réunion, Comoros) and concerned mainly FAD-associated fish (which exhibit a particular swimming behaviour compared to 
that observed away from aggregating devices). 

The available information which is relevant on a large scale for the Indian Ocean comes from experimental tuna longline fishing 
conducted by the Japan Marine Resources and Research Center (JAMARC) in 1982-86. The surveyed areas in each year are 
shown in Fig. 3. The surveys were conducted during the entire year in these five years. In the experiments from 1982-83, depth 
recorders were attached above the hooks, while those for 1984-86, depth recorders were not used but hook specific catch by 
species were recorded. Therefore, the depth of fish caught in 1984-86 was estimated by Mohri et al (1997) with the same 
equation, C1 (page 24). In this paper, depth specific yellowfin catch and effort for five years were processed by quarter and 
sub-area. Average frequency distribution of YFT CPUE by 40m intervals corresponding to Fig. 2 were computed by quarter and 
sub-area by assigning the highest frequency scaled to be 1 (Fig. 4). Missing frequency in a particular quarter and sub-area were 
substituted by neighboring time and sub-area strata. 
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Fig. 2 Percent frequency distribution of hook depth in six gear configurations within the Japanese tuna longline fishery (after Bigelow et al, 

2003). HBF: hooks between floats. 
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1982 1983 

  

1984 1985 

  

1986 

 

Fig. 3 Survey areas (shaded areas) of the JAMARC’s experimental 

tuna longline fishing in the Indian Ocean (1982-86). 
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Sub-area 1 Sub-area 2 

  

Sub-area 3 Sub-area 4 

  

Sub-area 5 

 

Fig. 4 Depth specific frequency distribution of yellowfin tuna habitat 

by quarter and sub-area based on the information from the 

JAMARC’s experimental tuna longline fishing in 1983-86. Highest 

frequency is scaled to 1. 

(4) Effective-fishing effort (HBM) based CPUE 

By applying equation (3), we estimated effective fishing effort by incorporating information on hook depth (Fig. 2) and 
yellowfin vertical distribution (Fig. 4) for each year, month and 5ox5o area. Then, effective fishing effort (HBM) based CPUE 
was computed by (number of yellowfin tuna x 1000)/ (effective effort) by year, month and 5ox5o area and month. Then, annual 
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effective fishing effort  (HBM-based) CPUE are computed by averaging those by month and 5x5 area. 

3.3 HBM/GLM COMBINED ANALYSES 

In the same way as the GLM analyses except excluding G (gear) effects related terms, we conducted the HBM/GLM combined 
analyses using the effective fishing effort or the HBM based CPUE for the whole area by the equation (4) below and Appendix D 
shows the results of the SAS GLM outputs. The reason to exclude G (gear) effects related terms is to avoid representing a double 
standardization of the gear effect (ICCAT, 2003). 

 
Loge(E_CPUEijkl+constant ) = INTERCEPT + Yi + Mj + Ak + SST +TD + (Y*M)ij + (Y*A)ik + (M*A)jk 

+ (SST*M)j + (SST*A)k  + (TD*Q)j + (TD*A)k + (ERROR)ijkl, 
with (ERROR)ijkl,～N(0, 2σ )        (4) 

 
, where E_CPUE  : the effective effort based CPUE (number of yellowfin catch per 1000 effective hooks)  

constant  : 1.78559 for the whole area. 
 

3.4 COMPARISONS 

(1) Nominal effort vs. effective (HBM) effort  

The HBM procedure reduces the magnitude of changes of the effective effort compared to the nominal effort (Fig. 5). 
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Fig. 5 Annual trend of nominal fishing effort and the effective fishing effort by the HBM. 
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(2) Four types of CPUE (NOMINAL vs HBM vs GLM vs HBM/GLM) 

Fig. 6 shows the annual trends of four types of CPUE (NOMINAL vs HBM vs GLM vs HBM/GLM) 
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Fig. 6 comparison of annual trends of four types of CPUE (NOMINAL vs. HBM vs. GLM vs. HBM/GLM) 

(3) Four types of scaled CPUE (NOMINAL vs. HBM vs. GLM vs. HBM/GLM) 

Fig. 7 shows the comparison of annual trends of four types of scaled CPUE (NOMINAL vs. HBM vs. GLM vs. HBM/GLM). 
Actual average values of four indices are set to 1 for objective comparisons. 
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Fig. 7 Comparison of annual trends of four types of scaled CPUE (NOMINAL vs. HBM vs. GLM vs. HBM/GLM). 
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Table 2 shows comparisons of the fitness and variances between GLM and HBM/GLM and also factors affecting the CPUE 
standardization. 

Table 2 comparisons of fitness and variances between GLM and GLM/HBM and factors affecting the CPUE standardization. 

 GLM analyses GLM/HBM combined analyses 
R2 58.5% 60.2% 
CV 43.9 % 30.9% 

F values 
(ANOVA) 53.2 63.1 

AIC 75,999 75,152 

Factors 

affecting  

CPUE 

Standard- 

ization 

 

ERRO RS
41%

SST
19%

A
16%

SST*A
7%

O THERS
6%

YR*A
2%

M O *A
2%

YR
3%

TD *A
4%

 

ERRO R
39%

SST
21%

A
17%

YR
5%

SST*A
5%

TD*A
4%

M O *A
4%

YR*A
2%

O THERS
2%

TD
1%

 
(Note)  AIC: Akaike’s Information Criteria  

A: sub-area (see Fig. 3), SST: Surface Sea Temperature ( oC) , TD: Thermocline Depth (m) at 20oC 

4. DISCUSSIONS 

(1) Why do the standardized CPUE between GLM and GLM/HBM appear very similar ? 

Standardized annual CPUE trends between GLM & GLM/HBM are unexpectedly quite similar (Fig. 7) unlike those for YFT in 
the Pacific analyzed by Bigelow et al (2003), which showed large discrepancies between the two series. 

Possible two reasons of the similar trends in the Indian Ocean are as follows: 

(a) Constant vertical distribution of yellowfin tuna 

We used a constant vertical distribution of yellowfin tuna in our analysis based on the JAMARC’s experimental tuna longline 
fishing data (Fig. 4), which indicates the catch rates are relatively low in the upper layers of the water column (0-80 m) possibly 
due to a lack of sampling in these shallow strata. Furthermore, as this factor is largely influenced by oceanographic conditions 
seasonally and annually, we need to incorporate additional information such as depth specific temperature, dissolved oxygen, 
thermocline depth, etc. as Bigelow et al (2002 and 2003) and others did using the acoustic and pop-up satellite tagging data. If 
vertical distribution of YFT based on the acoustic data were used, then a larger difference between the GLM and HBM/GLM 
were expected, i.e., effective effort would be much less, typically 10-20% of total effort in the Pacific. For this initial application, 
we used a rather static approach that doesn't consider oceanographic information, thus we may be able to expect potential 
improvements in the HBM/GLM approach if we incorporate more oceanographic information as discussed.   

(b) Constant gear efficiency to catch YFT   

According to Fig. 8 showing the annual trends of six gear compositions, three stages can be considered over time in the gear 
configuration : 1958-1975 when (g1) regular LL was the sole gear used, 1976-1993 when (g2)-(g4) deep LL became dominant 
and 1994-2001 when the occurrence of the (g5)-(g6) ultra deep LL configurations increased sharply. Based on Figs. 2 and 4, gear 
type (g1) cover about 70% of YFT swimming depth (2nd best efficient gear for YFT), (g2)-(g4) for 70-90% (the most efficient 
gear configuration for YFT), while (g5)-(g6) covers about 50% (the least efficient configuration). Hence, effective efforts do 
reflect the efficiencies in each of the three stages as shown in Fig. 9. Indeed, the ratio of effective effort over the nominal effort 
exhibit stable levels during the stages 1 and 2, with a slightly higher level during the second stage where the configuration 
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considered as the most efficient for YFT was deployed. During stage 3, the higher proportion of deep and ultra deep LL led to a 
concomitant decrease of the effective effort on YFT.  

We can notice a slight positive trend of the HBM-based CPUE starting in 1993, that could be explained by a lesser number of 
hooks set in the YFT habitat range (Fig. 10). For the two first stages, the levels of effective effort are very similar and cannot 
affect significantly the GLM analyses. A very different situation occurred in the Pacific where the effective effort exhibited large 
fluctuations and was likely to produce effects on the GLMs, as shown by Bigelow et al. (2003).  
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Fig. 8 Annual trends of compositions of six gear types.  

RATE(effective hooks/total hooks)

0

10

20

30

40

50

60

70

19
58
19
60
19
62
19
64
19
66
19
68
19
70
19
72
19
74
19
76
19
78
19
80
19
82
19
84
19
86
19
88
19
90
19
92
19
94
19
96
19
98
20
00

P
E
R
 C
E
N
T

 

Fig. 9 Annual trend of the rates of effective effort (HMB based hooks) over the nominal fishing efforts (hooks)  
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Fig. 10 Scaled annual trends of four indices (Fig. 7 is re-drawn) 
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(2) Should we use the GLM/HBM standardization? 

Based on the results in our study, there are likely no significant different on the CPUE standardization between GLM and 
HBM/GLM. However, according to Table 2, it is understood that the GLM/HBM is slightly superior to the GLM in terms of 
correlation coefficients, CV, F values in the ANOVA tables and AIC. This implies that CPUE standardization by GLM/HBM 
have slightly better fitness and less variability to the model than in the GLM. In addition, we expect better fitness of HBM/GLM 
if we shall include more oceanographic-related information as discussed previously. Thus, as a conclusion at this stage, it is 
suggested to use the GLM/HBM for the longline tropical tuna CPUE standardization in the Indian Ocean if necessary 
information were available for the GLM/HBM. 

(3) Trends of the YFT abundance 

Based on Fig. 6 and 7, standardized YFT CPUE by both GLM and HBM/GLM show the continuous decreasing trend from 1958 
to 2001 in general, although there are some extended fluctuations along the decreasing trends. The level of CPUE in the recent 
years is roughly 1/3 of the levels in the beginning period (late 1950’s). Standardized CPUEs in 2000-2001 were slightly higher 
than those in the previous decade (1990’s). 

(4) Factors affecting the CPUE standardization 

Based in Table 2, it was resulted that primary factors affecting CPUE standardization were SST, A (sub-area), SST*A (sub-area) 
and thermocline depth (TD)*sub-area (A) which account more than 75% besides errors between data and the models. This 
implies that SST and A (sub-area) are important elements in the standardization. 

(5) Research needs to conduct the GLM/HBM  

Several recommendations can be made to improve the number of relevant information and data to incorporate in future studies 
on habitat based models in the Indian Ocean. They are summarized thereafter: 

- to conduct archival & pop-up tagging experiments that provide direct and simultaneous information of the location 
and depth of the fish along with their ambient environment; 

- to update oceanographic information and compute factors such as shear currents in depth and dissolved oxygen 
concentration. As the dissolved-oxygen observation are still sparse, further statistical analysis is required to use the 
temperature to infer the oxygen concentration in a given range of depth (see Marsac 2002, for some results in this 
respect); 

- to emphasize the need of ocean circulation models in the Indian Ocean : such operational models are already 
available in the Pacific and Atlantic Oceans, but we are now verging on getting similar models in the Indian Ocean, 
notably through the Mercator program. These models provide information on temperature, salinity and currents at 
different depths. We can notice that the depths where the longline is operating is very precisely described by the 
models. 

- To develop a method to incorporate the thermocline depth that we applied (Appendix A) and also available ultrasonic 
tagging data to the HBM/GLM.  

- In addition to the data component itself, we should acknowledge that a 5° x 5° block size is not a satisfactory scaling 
as long as we want to introduce environmental factors that can vary greatly in space and time in the GLMs. This is 
particularly the case for thermocline depth (TD) at the edge of currents with opposite directions, like between the 
latitudes 5°S to 10°S, in the subtropical convergence and along major upwelling that occur seasonally in the west and 
northwest of the Indian Ocean. In order to match with the resolution of the fishery data, the TD values are strongly 
smoothed and do not reflect accurately the gradients in time and space. We should recommend that the longline catch 
and effort database be redistributed by 5° longitude x 2° longitude blocks for a reanalysis of the different types of 
GLMs, and the HBM/GLM in particular. 
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Appendix A Procedure to estimate thermocline depth 

The current data set used in this paper merges two data sets. The first one is the 2° latitude-by-5° longitude reanalysis computed 
from all quality-controlled vertical profiles in the existing archive (White, 1995) and updated to 2001 at the Environmental Data 
Analysis Center (JEDAC) located at the Scripps Institution of Oceanography. This data set comprises temperature at depth, and 
we interpolated between levels to obtain TD, the depth of the 20°C which is commonly used to depict the core of the 
thermocline. TD observations are then obtained by month and 2°x5° area. However, the data coverage showed important spatial 
gaps, notably in the southern Indian ocean (south of 30°S), in the Mozambique Channel and in the Bay of Bengal. Therefore, we 
used the GAO (Gestionnaire d’Applications Océanographiques) database (Marsac, 1998) that covers the whole Indian Ocean 
north of 60°S, to fill the spatial gaps within the range of the YFT distribution. Individual quality-controlled temperature profiles 
were averaged in 2°x5° areas and month, where data from the JEDAC were lacking.The final data coverage is shown in the 
following figure (Fig. A1). 
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Fig. A1 Coverage in time and space of the merged TD data used in the present analysis 

 

Following the first step of compiling information, we needed to fill the temporal gaps. As shown on the figure, the areas that 
were filled using GAO are not continuous time series. We used the available information at each time step and an interpolating 
method (inverse squared distance) to estimate TD values at the grid nodes of the non-sampled areas, according to the equation: 
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where : 
ijh  

is the effective separation distance between grid node ‘j’ and the neighboring point ‘i’ 

 
jZ
)

 
is the interpolated value for grid node ‘j’  

 iZ  are the neighboring points 

 
ijd  

is the distance between grid node ‘j’ and the neighboring point ‘i’ 

 β  is the weighting power (set at 2 in the present study) 

 δ  is the smoothing parameter (set at 0 in the present study) 
 



WPTT-03-05                                  IOTC Proceedings no. 6 (2003)   pages 048-069 

 65

The inverse squared distance is known to be an exact interpolator when we do not specify any smoothing factor, which was the 
case in the present analysis. It was calculated using a specific script written in the Surfer 7.05 environment. Actually, we also had 
to reshape the initial grid of 2°x5° to a 5°x5° grid to match with the LL data set. This procedure gave continuous TD fields in 
space and time over the whole period at each 5° x 5° node. 

Finally, in order to have a TD value corresponding to the whole 5° x 5° area where fishing is carried out, we estimated average 
values at each time step in the middle of each 5° x 5° block, using the 4 surrounding grid nodes. The result is a slightly smoothed 
TD field compared to that of the preceding step. 
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Appendix B SAS outputs of the GLM runs for the nominal CPUE standardization.  
 
                                         General Linear Models Procedure 

                                             Class Level Information 

 

Class    Levels    Values 

 

YR           44    1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 

                   1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 

                   1994 1995 1996 1997 1998 1999 2000 2001 

 

MO           12    1 2 3 4 5 6 7 8 9 10 11 12 

 

A             5    1 2 3 4 5 

 

G             6    1 2 3 4 5 6 

 

                                   Number of observations in data set = 33457 

 

      NOTE: Due to missing values, only 33330 observations can be used in this analysis. 

 

                                         General Linear Models Procedure 

 

Dependent Variable: N_HR 
 
Source                  DF             Sum of Squares               Mean Square         F Value           Pr > F 
 
Model                  859             24637.69085947               28.68182871           53.24           0.0001 

 

Error                32470             17492.86711801                0.53873936 
 
Corrected Total      33329             42130.55797747 
 
                  R-Square                       C.V.                  Root MSE                        N_HR Mean 

 

                  0.584794                   43.88138                0.73398867                       1.67266550 

 

Source                  DF                Type III SS               Mean Square         F Value           Pr > F 

 

YR                      43               822.36034338               19.12465915           35.50           0.0001 

MO                      11                58.93970639                5.35815513            9.95           0.0001 

A                        4               358.24160989               89.56040247          166.24           0.0001 

G                        5                30.73329414                6.14665883           11.41           0.0001 

SST                      1               114.84803675              114.84803675          213.18           0.0001 

TD                       1                 4.40659096                4.40659096            8.18           0.0042 

YR*MO                  473               857.67182577                1.81325967            3.37           0.0001 

YR*A                   172              1489.24559353                8.65840461           16.07           0.0001 

MO*A                    44               598.98948371               13.61339736           25.27           0.0001 

MO*G                    55                74.48404171                1.35425530            2.51           0.0001 

A*G                     20               121.51844566                6.07592228           11.28           0.0001 

SST*MO                  11                52.57161060                4.77923733            8.87           0.0001 

SST*A                    4               154.48039618               38.62009905           71.69           0.0001 

TD*MO                   11                22.15261794                2.01387436            3.74           0.0001 

TD*A                     4                81.80372174               20.45093043           37.96           0.0001 
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Appendix C Procedure to estimate depth distribution of longline gear (Bigelow et al, 2002) 

(1) Predicting hook depth distribution from gear configuration 

The actual depth at which longline gear fishes is known to be influenced by the set configuration, such as the number of hooks 
between floats, floatline and branchline lengths, distance between branchlines, sagging rate of the mainline (Fig. C1) and a 
variety of environmental factors, particularly wind and currents (Suzuki et al., 1977; Boggs, 1992; Mizuno et al., 1998, 1999). 
The depth of the longline is typically altered by varying the length of mainline between floats and the sagging rate of the 
mainline [ratio of horizontal distance between two floats and the stretched length of mainline between two floats (Suzuki et al., 
1977)]. While actual fishing depth has been measured in several studies with time-depth-recorders (TDRs) (Boggs, 1992; 
Uozumi and Okamoto, 1997; Mizuno et al., 1998, 1999), fishing depth measurements are rarely available from commercial 
longline sets. However, the number of hooks between adjacent mainline floats (HBF), which is routinely recorded on Japanese 
longline logbooks, can be used along with other information on set configuration to estimate the approximate depth distribution 
of longline hooks using catenary geometry (Suzuki et al., l977): 
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,where Dj is the depth of the j-th hook, ha is the length of the branch line, hb is the length of the float line, L is half of the length of 
the mainline between two floats, N is HBF + l, j is the j-th branch line from the float line, and φ  is the angle between the 
horizontal and tangential line of the mainline. The parameter is solved by iteration of the sagging rate (HL/2 L, Fig. C1). 

 

 

Fig. C1 Configuration of a pelagic longline. ha is length of branch line, hb is length of float line, HL is the horizontal length between two floats, 

L is half of the length of the mainline between two floats and φ the angle between the horizontal and tangential line of the mainline. 

The catenary parameters {ha = 26.3 m, hb = 19.4 m, L = [(50m)*(HBF + l)/2], φ = 60o, sagging rate = 0.72} were estimated from 
data collected by at-sea observers deployed on Japanese vessels (212 longline sets) in the l990s (unpublished observer data, SPC, 
BPD5 98848, Noumea Cedex, New Caledonia). Thus, using equation 1 it is possible to estimate the depth of longline hooks for 
various HBF categories. 

From l966 to l996, gear configuration in the Japanese longline fishery ranged from 3 to 22 HBF.  Yellowfin or bigeye tuna 
longline sets were usually conducted by day fishing at moderate (100-250 m) to deep depths (100-400 m) with gear of five HBF 
or greater. Data corresponding to 3-4 HBF were deleted prior to analysis because these shallow gear types were used mainly to 
target swordfish at night. For the purpose of determining approximate hook depth distributions, the remaining HBF information 
were aggregated into six categories: 5-6 HBF (regular gear), 7-9 HBF (intermediate gear), and 10-11, 12-15, 16-20 and 21-22 



WPTT-03-05                                  IOTC Proceedings no. 6 (2003)   pages 048-069 

 68

HBF (deep gear). 

(1) Between-set and within-set variability 

The catenary estimation results in a single depth estimate for each longline hook; however, actual hook depths vary both between 
and within longline sets. We characterized between-set hook-depth variability for each HBF value by randomly generating l000 
values of φ from a normal distribution (µ = 60o, σ = 11.3o unpublished data, SPC) and computing Dj for each. Within-set 
variability in longline fishing depth has been estimated using TDR data (Boggs, l992; Yano and Abe, l998). Boggs (l992) 
observed that the deepest hook on a longline set has the greatest movement and calculated a 30% variation (- l00 m) in settled 
depth of the deepest hook on a set deployed to > 300 m. Similarly, Yano and Abe (l998) found a linear increase in depth 
fluctuation as hooks were deployed deeper. Based on data from Yano and Abe (l998), the relationship between the standard 
deviation of hook depth Dj and hook number j (the hooks closest to the floats are numbered 1) was: 

 

jDj 4.473.8)( +=σ  )64.0( 2 =r      (C2) 

 

Within-set variability in Dj was characterized by generating 500 random samples of hook depths from normal distributions of 
mean Dj and standard deviation σ(Dj) for each of the l000 estimates of Dj obtained previously; thereby producing 500 000 
estimates of Dj for each HBF value of five through 22. Aggregate hook-depth distributions (40-m depth bins) corresponding to 
the six HBF categories were produced by aggregating the individual hook distributions within those categories (See Fig. 2 in the 
text). 
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Appendix D: SAS outputs of the GLM/HBM combined runs for the effective fishing effort based CPUE 

standardization 

                                         General Linear Models Procedure 

                                             Class Level Information 

 

Class    Levels    Values 

 

YR           44    1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 

                   1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 

                   1994 1995 1996 1997 1998 1999 2000 2001 

 

MO           12    1 2 3 4 5 6 7 8 9 10 11 12 

 

A             5    1 2 3 4 5 

 

                                   Number of observations in data set = 33457 

 

      NOTE: Due to missing values, only 33330 observations can be used in this analysis. 

                                         General Linear Models Procedure 

 

Dependent Variable: E_HR 

 

Source                  DF             Sum of Squares               Mean Square         F Value           Pr > F 

 

Model                  779             25997.55096024               33.37297941           63.13           0.0001 

 

Error                32550             17207.40341087                0.52864527 

 

Corrected Total      33329             43204.95437111 

 

                  R-Square                       C.V.                  Root MSE                        E_HR Mean 

 

                  0.601726                   30.89175                0.72707996                       2.35363820 

 

Source                  DF                Type III SS               Mean Square         F Value           Pr > F 

 

YR                      43              1203.85075068               27.99652909           52.96           0.0001 

MO                      11                45.70881886                4.15534717            7.86           0.0001 

A                        4               374.00667654               93.50166914          176.87           0.0001 

SST                      1               118.86279661              118.86279661          224.84           0.0001 

TD                       1                 5.80873181                5.80873181           10.99           0.0009 

YR*MO                  473               879.68860271                1.85980677            3.52           0.0001 

YR*A                   172              1924.87187482               11.19111555           21.17           0.0001 

MO*A                    44               930.57305409               21.14938759           40.01           0.0001 

SST*MO                  11                45.41701475                4.12881952            7.81           0.0001 

SST*A                    4               111.60338827               27.90084707           52.78           0.0001 

TD*MO                   11                15.68748580                1.42613507            2.70           0.0018 

TD*A                     4                89.56608871               22.39152218           42.36           0.0001 

 


