SEVENTH SESSION OF THE SCIENTIFIC COMMITTEE

MAHÉ, SEYCHELLES, 8-12 NOVEMBER 2004

Information Paper on Import of Atlantic Bigeye Caught By

Large-Scale Tuna Longline Vessels

I Import of Atlantic Bigeye Caught by Chinese Taipei's LSTLVs

1. Introduction

At the 2003 Commission meeting, Japan reported questionable phenomena found in its tuna import data pertaining to catches by large-scale tuna longline vessels (LSTLVs) in the Convention Area, i.e. an excessively large amount of Atlantic bigeye tuna imported from Chinese Taipei and China. The Fisheries Agency of Japan (FAJ) continued compilation and review of import data of frozen tuna products. This review resulted in an unrealistically large amount of bigeye tuna of Indian Ocean origin caught by Chinese Taipei's LSTLVs.

On July 6, 2004, the Japan Coast Guard arrested a freezer cargo vessel named "Lung Yuin" (2,000 GRT, Panama flag, operated by a Chinese Taipei's company) for violation of the reporting requirements to the Japanese authority when the vessel stayed in Shimizu, landing frozen tunas caught and transshipped by 25 Chinese Taipei's LSTLVs and 3 Vanuatu LSTLVs owned by Chinese Taipei's residents. As a result of the investigation on this cargo vessel, it turned out that all the 28 LSTLVs involved submitted to the Japanese authority false information on fishing areas (e.g. eastern Pacific = western central Pacific), vessels names (e.g. IUU LSTLVs = Chinese Taipei's licensed LSTLVs, or LSTLV not authorized to fish for bigeye tuna = those authorized) and/or transshipment positions and dates (e.g. at-sea = in-ports). Two logbooks (true and false) and other evidences collected onboard the cargo vessel disclosed an organized operation that produced all the false information under the instruction from owners of the involved LSTLVs and cargo vessel. More problematically, the concerned parties informed FAJ on this case that this sort of organized laundering activity is not limited to this case but widely conducted not only in the Pacific but also in the Atlantic and Indian Oceans. This well agrees with the results of the following study.

On September 30, 2004, FAJ conducted full inspection on-board another freezer cargo vessel named "Suruga No.1" (2,596 GRT, Panama flag, operated by a Japanese company). The inspection also disclosed similar organized laundering activities. But two new types of laundering were found in this inspection. One is use of, PRC's vessel names; the other is use of Pacific Ocean catch to hide excessive Atlantic bigeye catch by Chinese Taipei's LSTLVs.

2. Unrealistically large bigeye catches by Chinese Taipei's LSTLVs in the Indian Ocean

FAJ studied import records of frozen tunas. In the recent three years, Chinese Taipei's bigeye catch almost doubled from 27,618 MT in 2001 to 52,220MT in 2003 in the Indian Ocean, whereas the number of its LSTLVs did not increase much (from 301 to 332 vessels, Table 1). The bigeve CPUE of the Japanese LSTLV shows a clear downward trend in the Indian Oceans (Fig.1). Moreover, while in Japanese LSTLV catches, the ratio of bigeye tuna in the total tuna catch (BE+YF) decreased in the recent years as the bigeye CPUE dropped, the bigeye ratio increased in the same period in the Chinese Taipei's catch (Fig. 2). The Japanese catch trend meets that of Chinese LSTLVs. Only Chinese Taipei's fleet showed a reverse catch trend and produced unrealistically high bigeye catch ratios. In the Indian Ocean, it is very rare or almost impossible that bigeye catch ratio exceeds 70% of the total tuna catch. When we look at only the import record by freezer cargo vessels operated by Chinese Taipei's companies, the reverse catch trend becomes more

conspicuous (Fig. 2).

-

Table 1 Import of frozen bigeye from Chinese Taipei

Table 1 Import of frozen bigeye from Chinese TaipeiUnit: MT										
	2001	2002	2003	2004 (Jan-Jun)						
Atlantic bigeye										
Quantity	14,290	16,419	16,352	9,083						
Number of LSTLVs	180	167	147	119						
BE/Total tuna catch (BE+YF	81.3%	87.3%	84.5%	83.1%						
Indian Ocean Bigeye										
Quantity	27,618	37,727	52,220	26,747						
Number of LSTLVs	301	303	332	288						
BE/Total tuna catch BE+YF)	63.0%	61.4%	69.9%	54.0%						

Fig.1 Standardized bigeye CPUE of Japan for All Indian Ocean expressed in relative scale in which the average from 1960 to 2002 is 1.0

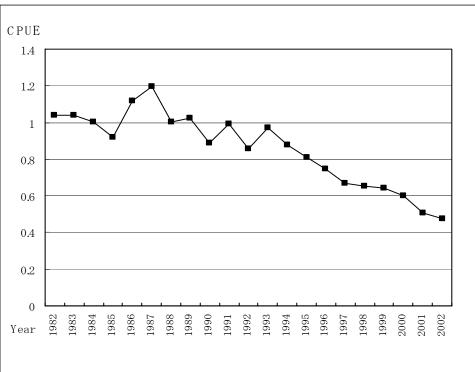
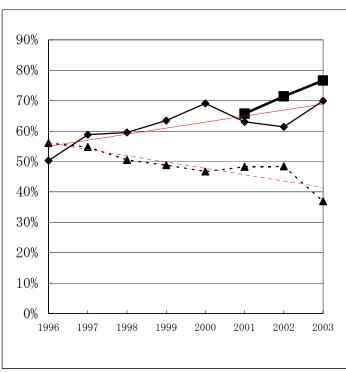
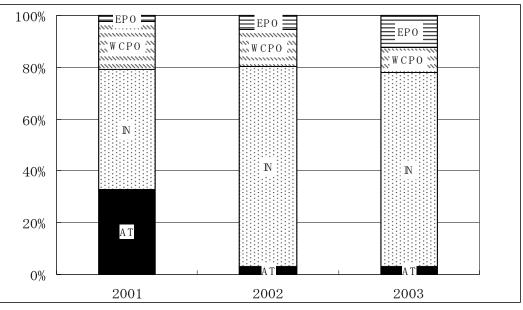
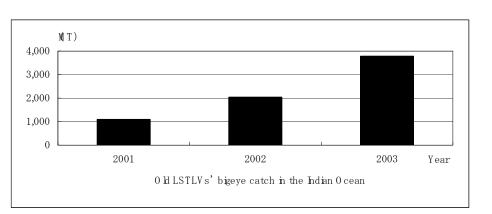




Fig.2 Ratio of bigeye in the Indian Ocean tuna catch

companies is Atlantic bigeye tuna having virtually disappeared in the recent three years (Fig. 3).

Fig. 3 Import of bigeye tuna by Chinese's Taipei's cargo vessels



Another peculiar thing FAJ found is an increasing bigeye catch of old Chinese Taipei's LSTLVs built before 1980 (Fig. 4). Those old vessels have low freezing capacity and are not suitable for the production of sashimi-quality tunas. They usually catch albacore for canning purpose and land catches at such other ports than Japanese as Cape Town. Since their albacore catches never appear in the Japanese import record, old LSTLVs are an easy target of tuna laundering activities, i.e. Atlantic bigeye catch can be imported easily under the disguise of old LSTLVs catch in the Indian Ocean.

Fig. 4 Old LSTLVs' bigeye catch in the Indian Ocean

← Chinese Taipei (All)
Chinese Taipei (transshiped Chinese Taipei's cargo vessel)
📥 Japan
Data Source
1996-2000: FAO
2001-2003: Japanese Import
Data
1 1

A more peculiar phenomenon shown in the import record of those cargo vessels operated by the Chinese Taipei's

In short, the import records of the Chinese Taipei's LSTLVs strongly suggests a high level of laundering activities under the disguise of Indian Ocean catch to hide excessive Atlantic bigeye catch.

3. Estimated amount of Atlantic bigeye catch involved in the laundering activities

In the estimation, the catch of Atlantic bigeye involved in the laundering activities was considered to consist of two parts: the total bigeye catch of old LSTLVs (built in and before 1980) and the excessive amount of bigeye catch (bigeye import amount over three times of yellowfin amount from the same vessel : $BE - YF \ge 3$) of young LSTLVs (built after 1980) in the Indian Ocean. Although there is a possibility that other LSTLVs' catch in the Indian Ocean was laundered to be old LSTLVs', that possibility is negligible since no catch limit is set for Indian Ocean catch; no reason exists for laundering. Then it is a safe and reasonable assumption that all the old LSTLVs import of Indian Ocean bigeye was disguised Atlantic bigeye catch of other LSTLVs. Also since it is inconceivable based upon the Japanese catch record that bigeye / yellowfin catch ratio exceeds three to one (3 : 1) in the Indian Ocean, it is a safe and reasonable assumption that the bigeye amount over three times of the yellowfin amount is disguised Atlantic bigeye catch. When one considers that there is a strong possibility that the whole bigeye catch (not just a portion over 3 times of YF) of some LSTLVs declared at the Japanese custom as of Indian Ocean origin was in actuality of Atlantic origin, one can clearly see the conservative nature of this estimate. The result of estimation is shown in Table2; around 18,000 MT of Atlantic bigeye tuna was estimated to be imported in 2003 under the disguise of Indian Ocean origin.

Table 2 Estimated amount of Atlantic bigeye tuna import under the disguise of Indian Ocean bigeye

				(Unit:MT)
	2001	2002	2003	2004(Jan-Jun)
Bigeye Import from old LSTLVs	1,089	2,037	3,776	1,554
Bigeye import amount over three				
times of yellowfin amount from the				
same vessel	4,692	5,974	15,168	5,750
Total	5,781	8,011	18,944	7,304

4. Conclusion

The above estimate dealt only with the case of laundering by use of Indian Ocean catch as the disguise. There are other cases using PRC vessel names and/or Pacific Ocean catch. Significance of the laundering activities for the ICCAT management regime is quite high. The Commission fortunately contained fishing activities by IUU LSTLVs in the Convention area but is now facing the laundering activities with the same level of significance to the ICCAT conservation effects. The bias to the data is also a problem.

In view of the seriousness of these problems, Chinese Taipei and FAJ started consultations to further investigate the laundering activities and to work out effective measures to eliminate such activities. Those measures will mainly cover three areas; strict monitoring and control of transshipment, strict control of issuance of statistical documents (SD) and

timely exchange of information on SD and landing, and adjustment of excessive fishing effort corresponding to catch limits. The result of consultations will be reported to the Commission meeting

II. Import of Atlantic Bigeye Caught by PRC's LSTLVs

The Table 3 shows estimated Atlantic bigeye catch by PRC's LSTLVs. Almost all bigeye imported to Japan is gutted and gilled (G/G) and its round weight can be obtained by multiply 1.13 to the imported amount. Usually it takes three months on average to deliver the frozen tunas from Atlantic fishing ground to Japan. In estimation, three assumptions were used: no time lag, three month time lag and six month time lag. The three month time lag assumption is most plausible. As a result, the overage from 2003 was 3,903 mt and the adjusted catch limit is 1,097 mt, which was already exceeded by import amount of this year. China and Japan are engaged in the consultations on this matter and will present the outcomes to the Commission meeting.

Table 3 Estimate of Chinese Bigeye Catch

Bigeye Catch of China calculated from Japanese Import data

			2002	2003	2004
	Initial Catch Limit		4,000	5,000	5,000
	Quota Transfer from Japan		1,100	1,250	-
	Total		5,100	6,250	5,000
Catch Data from	Adjusted Catch Limit		5,100	5,510.5	-
Compliance Table	Catches		5,839.5	-	-
	Balance		739.5	_	_
Trial Calculation (1) *1	Adjusted Catch Limit		5,100	3,766	712
	Estimated Catches (Landing Amount*1.13)		7,584	8,054	3,621
	Balance		2,484	4,288	2,909
	Data Period		2002.1-2003.12	2003.1-2004.12	2004.1-2004.6
Trial Calculation (2) *2	Adjusted Catch Limit		5,100	4,033	1,097
	Estimated Catches (Landing Amount*1.13)	1,867	7,317	7,936	2,138
	Balance		2,217	3,903	1,041
	Data Period	2001.1-2001.3	2002.4-2003.3	2003.4-2004.3	2004.4-2004.6
Trial Calculation(3) *3	Adjusted Catch Limit		5,100	3,998	1,386
	Estimated Catches (Landing Amount*1.13)	4,294	7,352	7,612	-
	Balance		2,252	3,614	-
	Data Period	2001.1-2001.6	2002.7-2003.6	2003.7-2004.6	

*1: Based on the assumption of no time lag between catches and landings
*2: Based on the assumption of 3months of time lag between catches and landings
*3: Based on the assumption of 6months of time lag between catches and landings

				2001		2002		2003				2004			
No.	Name	GRT	Blt year	BE	YF	BE%	BE	YF	BE%	BE	YF	BE%	BE	YF	BE%
1	CHIAN FU	278	1969				86, 537	5,613	94%	229, 162	35,608	87%	67,453	7, 557	90%
2	CHIN GEM FOOD 102	458	1978							190, 101	18, 105	91%	172,637	54,926	76%
3	CHIN RUEI HSIANG 1	491	1979	27, 201	9,670	74%	76, 740	34, 104	69%	121, 185	16, 193	88%	126, 700	22, 049	85%
4	HAI TSUN 1	264	1971	13, 985	11, 462	55%	51, 331	14, 270	78%						
5	HAI TSUN 2	264	1971	12,664	12,706	50%	8,990	20,660	30%	50, 936	1,854	96%			
6	HO KIN MEI	203	1979	16, 541	13,935	54%	4,803	2,808	63%	2,262	2,339	49%			
7	HORNG SHUENN YIH 32	452	1979	12, 374	2,688	82%	30, 133	163, 506	16%	40, 304	174, 175	19%	27, 998	170, 313	14%
8	HSIN CHEN FA	284	1974				5, 355	11, 370	32%	152,069	14, 879	91%			
9	HSIN CHENG FA 3	300	1974	17,051	30,676	36%				53, 205	25, 895	67%			
10	HUNG YAO 2	491	1980	77,627	3,804	95%	50, 573	11, 968	81%	186, 544	9, 996	95%	204, 646	12,090	94%
11	JUI DER 66	220	1974				140, 440	20, 811	87%	137,710	63, 535	68%			
	LI SHENG	344	1979							28, 232	13, 229	68%	56,470	3, 698	94%
	MAN YU 11	442	1975				25, 822	397, 270	6%	174, 803	207, 486	46%	102, 571	2, 149	98%
14	MENG FA 236	498	1979	169, 905	47,229	78%	48, 915	20, 052	71%	125, 291	28, 296	82%			
15	NONG JYI LIH	281	1969	54, 902	4,808	92%	109, 453	8,177	93%	264, 835	7,215	97%	133, 387	16, 273	89%
16	NONG JYI YOW	218	1973	101,451	8,489	92%	146, 535	3, 325	98%	284, 324	10, 456	96%	99, 058	5,452	95%
17	SHANG FU 1	267	1968				24, 950	7,944	76%	264, 495	29, 266	90%	114, 129	41,072	74%
-	SHANG FU 7	283	1974				62,099	4, 931	93%	193, 379	40,841	83%	145, 283	30, 673	83%
	SHENG FU	478	1980							36, 679	771	98%			
20	SUNG SING 1	201	1975				10, 761	13, 123	45%						
-	TAI YUAN 1	265	1971				56, 155	34, 152	62%	126, 913	28,086	82%			
-	TUNG HONG 2	377	1969	407	134	75%	39, 254	10, 750	79%	250, 698	55,040	82%			
23	WIN FAR 326	492	1980	75, 335	91, 308	45%	195, 751	37, 396	84%	261,171	61,264	81%	125, 737	60, 434	68%
24	WIN FAR 336	492	1980	155, 998	43, 583	78%	224,650	44, 482	83%	198, 499	50, 318	80%	34, 660	25,063	58%
-	YA SHUEN 201	459	1975	32, 399	11,610	74%	193, 765	27, 301	88%	149,677	50, 324	75%	21,677	37, 599	37%
-	YA SHUENN 202	437	1979	157, 866	79, 443	67%	246, 501	135, 236	65%	149, 563	102, 199	59%	38, 039	36, 436	51%
-	YU TSAN	371	1980	46,022	20,033	70%	12, 564	4, 351	74%						
28	YUAN BAO 168	473	1979	117, 312	27,459	81%	184, 682	42,871	81%	103, 506	23,473	82%	83, 157	38, 433	68%
	-	-	-	1,089,040	419,037	72%	2,036,759	1,076,471	65%	3, 775, 543	1,070,843	78%	1, 553, 602	564, 217	73%

Attachment 1. Old LSTLVs and their catch in the Indian Ocean