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ABSTRACT 
 
Taiwanese longline fisheries (LL) in the Indian Ocean usually catch albacore tuna (ALB), swordfish 
(SWO) and yellowfin tuna (YFT) by the regular LL, on the contrary, bigeye tuna (BET) by deep 
LL. Thus these two types of LL are considered to be different gears as they catch different tuna 
species. Regular or deep type LL is defined by number hooks per basket (NHB), i.e., regular LL if 
6≤  NHB≤  10 and deep LL if 11≤  NHB≤  20. However, the NHB information was available 
only in some of the recent LL data (1995-99). This situation has been causing problems of biased 
results in the stock analyses in the past. Under such backgrounds, the objective of our study is to 
explore an effective method to separate two types of LL considering species compositions. After 
various attempts, we found that some intervals of BET catch ratios were resulted to be most 
effective in separating regular and deep type LL, i.e., 0.8 ≤ BET/(BET+ALB) ≤ 1 and 
0≤BET/(BET+ALB+SWO)≤0.40 respectively. Using these two separators, we classified the LL 
type known data set (1995-99) (learning data set). Then we found that 67.7% data were correctly 
classified, while 23.1% were un-classified (11.9 % for zero catches and 11.2% classified into both 
LL types) and 9.2% for mis-classification. Then, using the developed methods, we classified the 
unknown LL type in the historical data (1979-99) and computed nominal CPUE of four species. As 
a result, their CPUE trends are reasonably depicted.  
 
KEY WORDS: bigeye tuna catch ratios, classification error, Indian Ocean, regular and deep tuna 
longline, learning data set, separators.  
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INTRODUCTION 

 
The industrial tuna longline fisheries (LL) in the Indian Ocean started in 1952 (Japan), 1954 
(Taiwan), 1966 (Korea), and 1980's (Indonesia, Sri Lanka and other developing countries).1  The 
total catches of all LL fisheries gradually increased from 20,000 t in 1952 to 170,000 t in 1967, then 
decreased and stabilized at the 100,000 t - 150,000 t level in 1968-1991.  After 1992, the total 
catches suddenly shifted to the higher level and stabilized at the 200,000 t - 300,000 t level in 2000 
(IOTC database) (Fig. 1). 
 
The LL is composed of a mainline and many branch lines with hooks at the terminal end. The 
fishing depth of LL depends on the number of branch lines between two floating balls and the 
length of the branch lines (Fig. 2).  The fishers call the number of branch lines between two 
floating balls as ‘basket’. If LL formed the theoretical catenary curve, location of hooks can 
represent the depth of the hooks deployed, which implies the depth of fish caught or the swimming 
depth of fish. There are two types of LL, i.e., regular LL and deep LL, which is defined by number 
of hooks between two floats (NHB). The regular LL has less number of NHB, while the deep LL 
has more number of NHB. The boundary number of NHB between regular LL and deep LL is 
slightly different by country. 
 
Since around 1986, the Taiwanese longliners in the Indian Ocean equipping the super-cold storage, 
started to catch bigeye tuna (Thunnus obesus) (BET) by the deep LL. Their target species is 
different from the Taiwanese traditional longliners (regular LL or shallow LL), which primarily 
catches albacore (Thunnus alalunga) (ALB), swordfish (Xiphias gladius) (SWO) and yellowfin 
tuna (Thunnus albacares) (YFT) in the Indian Ocean. 
 
There were no NHB information in the past, which have been caused biases on standardizing the 
nominal catch-per-unit-effort (CPUE) and CPUE based stock assessments for tuna and billfish 
resources because all catch and effort data from both regular LL and deep LL had been pooled when 
analyzed.2  In order to conduct more realistic or unbiased tuna fisheries resources analyses, it is 
necessary to separate these two types of LL, i.e., regular LL and deep LL, because they target 
different species, hence they need to be treated as different gears. 
 
Under such circumstances, Taiwanese government decided to collect the NHB information through 
the logbook of fishing vessels since 1995 in all three Oceans.  Then, Taiwanese fishery biologists 
had started to put efforts to develop the methods to separate the regular LL and deep LL in the 
Indian Ocean.3-5  They used the NHB information and species compositions of the LL data to 
separate regular LL and deep LL, and then to estimate ALB CPUE.  The results showed the robust 
and smooth trends in both LL, although the trends without separation showed the sharp decrease in 
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the combined LL, which were unlikely realistic and accurate.3, 4  In those studies, catch ratios of 
BET over ALB was used to separate regular LL and deep LL.   
 
However, we need to put focus on BET, YFT, ALB and SWO when we consider the method for 
separation as they are the primary catch species of Taiwanese LL in the Indian Ocean. Therefore, 
the objective of this paper is to develop more general and accurate separators considering these four 
species. As an initial trail, we used the exploratory data analyses to separate these two types LL 
data. 
 
MATERIALS AND METHODS  
 
Two data sets were used in this study, i.e., (1) regular and deep known LL data set (learning data set) 
and (2) regular and deep type unknown LL data set. The source of these data is from the Overseas 
Fisheries Development Council of the Republic of China (Taiwan).  Table 1 shows the types of the 
LL data. About 40% of the Taiwanese LL set-by-set data in 1995-1999 have the NHB information 
in the Indian Ocean, which were treated as the regular and deep type known LL data set (learning 
data set) (Table 2). The regular and deep unknown data set (all data in 1979-1994 and also 60% of 
the data in 1995-1999) didn’t contain the NHB information. Using these regular and deep known 
LL data sets, we will develop the most effective separators to classify into two groups. As explained 
previously, we attempt to use BET, YFT, ALB and SWO by looking at the unique species 
compositions in regular and deep LL. Then, we attempt to separate the LL type unknown data to 
regular or deep LL and evaluate classification powers of these separators. 
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RESULTS  
 
Using the learning data set, we initially investigated the definition of regular LL and deep LL by 
analyzing the NHB information. As a result, it was found that the range of NHB in this data set was 
6 – 20, which had two clear modes (Fig. 3). The lower number of NHB implied the regular or 
shallow LL, while the higher for the deep LL. Based on the patterns of Fig. 3 and also the fishing 
custom of Taiwanese LL fishers, this study defines the regular LL with 6 ≤  NHB ≤  10, while 
the deep LL with 11 ≤ NHB ≤  20. 
 
In order to investigate the most effective separators, we further investigated the species 
compositions by regular and deep LL using the learning data set (Fig. 4).  In the regular LL, ALB 
is the major species (61.8%), while those for BET, YFT, and SWO are 8.8%, 11.6% and 7.3% 
respectively. On the contrary, in the deep LL, the major species is BET (46.8%), while species 
compositions of ALB, YFT, and SWO are 13.9%, 22.1% and 8.5% respectively.  Therefore, we 
can understand that ALB might be the most effective indicator to separate regular and deep LL as its 
compositions between these two gears are largely fluctuated (13.9% vs. 61.8%). However, ALB is 
exploited only southern part of the Indian Ocean6, hence ALB is not considered to be the useful 
indicator. Although BET compositions are less fluctuated (46.8% vs. 8.8%), BET is exploited in 
much wider areas in the Indian Ocean. In addition, BET distributes in deeper waters (150-400m) 
and it is the target species of the Taiwanese deep LL in the Indian Ocean. Hence, BET catch ratios 
are considered to be the most effective in separating regular and deep LL. Therefore, this study 
adopted the BET catch ratios as the effective separators by combining catches of other three species. 
Then, we attempt following four BET ratios defined as follows: 
 

BET )1(ratio  
YFTBET

BET
+

=                                     (1) 

BET )2(ratio  
SWOYFTBET

BET
++

=                              (2) 

BET )3(ratio  
ALBBET

BET
+

=                                     (3) 

BET )4(ratio  
SWOALBBET

BET
++

=                              (4) 

 
 
 
From these four ratios, the best separator will be selected if the BET ratio has the highest value in 
the deep LL data, while the BET ratio has the lowest value in the regular LL data set.  
 



 6

In evaluating these four BET ratios, we need to exclude zero catches because we can not compute 
values of BET ratios, i.e., BET=YFT=0 for BET ratio(1), BET=YFT=SWO=0 for BET ratio(2), 
BET=ALB=0 for BET ratio(3) and BET=ALB=SWO=0 for BET ratio(4). Hence, these zero data 
were excluded when we evaluated four BET ratios.  
 
Table 3 shows the results of the evaluation of four BET ratios. According four BET ratios, it was 
resulted that the annual average BET ratio(3) = 0.922 was the highest and its SE = 0.235 was the 
lowest in the deep LL data set, while the average BET ratio(4) = 0.225 was lowest and its SE = 
0.311 was lowest in the regular LL data set. Therefore, BET ratio(3) was adopted as the best 
separator for the deep LL and BET ratio(4) as the best separator for the regular LL.  
 
Then, using the learning data set, we further investigated these separators by breaking into class 
interval by 0.1 to learn which intervals produce the highest classification powers.  Table 4 shows 
the results, which show correct and incorrect classification of deep and regular LL separated by 
BET ratio(3) and (4).  Table 4 also shows the differences between correct and incorrect sets, which 
suggests that 0.8 ≤  BET )3(ratio  ≤  1 and 0 ≤  BET )4(ratio  ≤  0.40 are the most 
effective range intervals to separate deep and regular LL separation respectively as these intervals 
produce positive correct classifications.   
 
Using these interval ranges of two separators, we further investigated which combinations of these 
intervals produce the highest correct classification. Table 5 shows the results, i.e., the best range 
was resulted to be 0.8 ≤  BET )3(ratio  ≤  1 and 0 ≤  BET )4(ratio  ≤  0.40. Fig. 5 
summarizes the results, which suggested that 67.7% data were correctly classified, while 23.1% 
were un-classification (including 11.9 % for zero catches and 11.2% classified into both LL types) 
and 9.2% for errors misclassification.  This implies that we can expect that 67.7% of the unknown 
data can be correctly classified into regular or deep LL if the unknown data patterns were similar to 
those of the learning data set. For the unclassified data, it is possible to substitute the stably 
classified (regular or deep) LL data neighboring to unclassified data. This is because the LL 
operation patters are almost homogenous within the small time-area scale unit.  

 
Using the BET ratio(3) and BET ratio(4) separators, we classified the unknown LL type data sets 
(the whole 1979-94 data and 60% of the 1995-99 data).  Then, we computed the nominal CPUE of 
ALB, BET, YFT, and SWO from 1979-99 by regular and deep LL and depicted their trends (Fig. 6).  
According to Fig. 6 nominal CPUE of ALB by the deep LL was very low because ALB was not the 
target species for the deep LL.  The nominal CPUE of YFT by the deep LL showed the stable trend, 
but that of BET showed the decreasing trend.  The values of ALB by the regular LL are high and it 
showed the robust but fluctuated trend.  BET and YFT were not the target species for regular, but 
still some catches.  In addition, the regular to target SWO began in 1992.  The Taiwanese LL 
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usually catches YFT using the regular or shallow lines.  However, the values of nominal YFT 
CPUE of deep LL were higher than those of regular LL in Fig. 6.  This is because the deep LL 
usually operates in the equatorial area, while the regular LL in high Latitude area in the Indian 
Ocean.  The former area has higher YFT density than that of the latter area.1 
 
DISCUSSION 
 
The CPUE trend of Indian BET shows the decreasing trend in 1979-99, which result is similar to 
that of Japanese LL in the Indian Ocean.7  That is both country’s LL exploited the same stock 
shows the same trend.  On the other hand, the whole catches of Indian ALB were stable between 
8,300 t and 38,500 t as well as the average catch was about 19,200 t in 1979-99.  Among the whole 
ALB catches, the Taiwanese catches were between 5,800 t and 22,500 t as well as the average catch 
was about 13,600 t in the same time (IOTC database).  That is half Indian ALB catch at least came 
from the Taiwanese LL during the period.  The assessment of the stock status was robust and the 
estimated maximum sustainable yield (MSY) was about 25,000t by many studies formerly.3-6  That 
is the stock status of Indian ALB should be robust but fluctuated although there had sharply 
decreasing trend in the late 1990s owing to the high catch caught by the Taiwanese gill net fishery.8  
In other word, the applied method can separate the Taiwanese LL data into the deep and regular LL 
data effectively in this study. 
 
It is expected that the developed criteria of BET )3(ratio  and BET )4(ratio  can classify 
unknown LL type in 67.7% of accuracy if the LL data patterns were similar to those of the learning 
data sets, while the rest of the data (23.3%) will be un- or mis- classified.  
  
Three reasons why there are 23.3% of incorrect classification are that (a) 10-20% of BET is also 
caught by the regular LL which weaken the separation power, (b) the LL shape is assumed to be the 
theoretical cartenary curve in this paper, hence if this assumption were violated, the separation 
ability especially for BET ratio(3) will be weaken (means more misclassification errors) as deep LL 
catch less BET and (c) there are considerable amount of zero catch situations which make the 
separation impossible. 
 
There is a possible solution to find mis- or un- classified LL data. After we separate daily base LL 
data into either regular or deep type, we map resultant distributions of two LL types. Then, if we 
find isolated heterogeneous LL types among the homogenous LL type, they are considered to be the 
misclassified data. However, this approach will take a huge workload and time to check all the 
historical data. But by conducting this error check, we can minimize the mis- and un- classified data. 
This checking works need to be conducted by wide range of professionals including tuna scientists, 
tuna fishers, industry and managers to get common understandings and agreements.   
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From Table 3, it was clearly resulted that BET ratios including YFT were not effective i.e., BET 
ratio (1) and BET ratio(2). This is probably because YFT occasionally moved to the deeper waters 
(deeper than 150m) although it usually distributed in the depth range of the regular LL (from 
50-150m) 9-10, which probably weaken the separation ability. 
 
For the 50x50 area and monthly LL type unknown data in 1967-78, we will extend the same criteria 
by the same way considering that 50x50 area and month is one sampling unit in the future. 
 
In this paper, we did not consider BET ratios by season and area. In the future, the seasonal and 
regional variations need to be incorporated into the criteria in order to establish more practical 
separators. In addition, the exploratory data analyses were used in this paper, as the first step, to 
search the effective separators.  However, in the future, the statistical method such as the logistic 
generalized linear model (GLM) or the neural network analysis is planned to apply as the next 
step.11 

 
In applying the developed methods to other LL data in different Oceans and countries, we need to 
search best effective separators by examining species compositions and target species carefully, 
instead of just simply applying the developed BET separators in this paper. 

 
Finally, if we could separate regular and deep LL accurately, it is expected that results of the tuna 
LL CPUE standardization and CPUE based stock assessments using VPA, ASPM, and ASPIC 
models etc. will become more reliable and robust.11 
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List of figures’ legends 
Fig. 1  Trend of tuna production by the longline fisheries in the Indian Ocean (1952-2000). 
Fig. 2.  Schematic diagram of regular and deep longline (LL). 
Fig. 3.  Frequency distribution of NHB in the learning data set (1995-99) (n=46,590). 
Fig. 4  Species compositions of deep and regular LL in the learning data set (n=46,590). 
Fig. 5  Results of the classification BET ratio(3) and BET ratio(4) applied to the learning data set 
(1995-99) (n=46,590). 
Fig. 6  Trend of nominal CPUE (ALB, BET, YFT and SWO) of unknown LL data classified into 
regular and deep LL types by 0.8 ≤  BET )3(ratio  ≤  1 and 0 ≤  BET )4(ratio  ≤  0.40. 
(note: the un-classified data with zero catches are excluded.) 
 

Table 1 Type of the Taiwanese LL data in the Indian Ocean (1967-99). 
Year Area unit Time unit NHB* Information 

1967-1978 50 x 50 Monthly Not available 
1979-1994 50 x 50 Daily Not available 
1995-1999 50 x 50 Daily available in the 40% of the data 

*Number of Hooks per Basket. 
Data source: Overseas Fisheries Development Council of the Republic of China 
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Table 2  Number of operations of Taiwanese tuna longline fisheries in the Indian Ocean 
by regular LL, deep LL  and other type LL (1955-99). [ (A) and (B) are used as the 

learning data sets in this paper.] 

Year Data type* Available data  

 Regular LL Deep LL   Others (%) 

  (A) (B) (A)+(B) (C) [(A)+(B)]/[(A)+(B)+(C)] 

1995 4330 2786 7116 12238 36.77 

1996 5929 4955 10884 13608 44.44 

1997 3948 5547 9495 16008 37.23 

1998 4977 5007 9984 14057 41.53 

1999 2955 6156 9111 12278 42.60 

Total 22139 24451 46590 68189 40.59 
* The regular LL is defined as 6 ≤NHB ≤ 10 and deep LL as 11 ≤ NHB ≤20, while others 
include the data with NHB≤5, 21≤NHB or without NHB information. 

 
Table 3 Results of four BET ratios in the learning data sets. 

BET *
ratio  

Year Number of 
regular LL 
data sets 

Average 
value 

SE Number of 
deep LL 
data sets 

Average 
value 

SE 

(1) 1995-99 18908 0.594 0.399 24065 0.712 0.280 
(2) 1995-99 19682 0.427 0.371 24357 0.620 0.286 
(3) 1995-99 18322 0.357 0.400 23183 0.922 0.235 
(4) 1995-99 19916 0.225 0.311 23637 0.772 0.293 

 
Note (1) 

* BET )1(ratio  
YFTBET

BET
+

= ; BET )2(ratio
SWOYFTBET

BET
++

= ; 

BET )3(ratio  
ALBBET

BET
+

= ; BET )4(ratio  
SWOALBBET

BET
++

=  

 
Note (2): Following 0(zero) catch cases are excluded in the computations, i.e., data with 
BET=YFT=0 for BET (1), BET=YFT=SWO=0 for BET (2), BET=ALB=0 for BET (3) and 
BET=ALB=SWO=0 for BET (4).  
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Table 4 Results of classification by BET )3(ratio  (deep LL separator) and BET )4(ratio  
(regular LL separator) by class interval.   
 

Note: Two separators were applied to the regular & deep LL type known learning data set (1995-99) to classify into two group 

excluding 0 catch data BET=ALB=0 for BET (3) and BET=ALB=SWO=0 for BET (4).   

(*) total correct n=20,839 and (**) total correct n=15,911 

 

BET )3(ratio  

(deep LL separator) 

BET )4(ratio  

(regular LL separator) 

Interval 

(A) 

 No. of mis- 

classification 

(B)  

No. of correct  

classification  

(B)-(A) 

Difference 

(C) 

 No. of correct

classification 

(D)  

No. of mis-  

classification  

(C)-(D) 

Difference 

0.0 ≤  ratio ≤  0.1 8605 1080 -7525  11043(**) 1704 9339 

0.1 <  ratio ≤  0.2 1552 187 -1365  2449(**) 532 1917 

0.2 <  ratio ≤  0.3 868 135 -733  1387(**) 451 936 

0.3 <  ratio ≤  0.4 738 147 -591  1032(**) 534 498 

0.4 <  ratio ≤  0.5 707 145 -562  755 829 -74 

0.5 <  ratio ≤  0.6 503 133 -370  367 789 -422 

0.6 <  ratio ≤  0.7 514 195 -319  350 1379 -1029 

0.7 <  ratio ≤  0.8 455 322 -133  354 2559 -2205 

0.8 <  ratio ≤  0.9 306 625(*) 319  470 3793 -3323 

0.9 <  ratio ≤  1.0 4074 20214(*) 16140  1709 11067 -9358 

Total 18322 23183   19916 23637  
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Table 5 Result of the classification by different ranges of BET (3) and BET (4) producing positive correct classification (refer to Table 4). 

Range of BET(3)  0.8≤BET(3)≤1.0 0.9≤BET(3)≤1.0 

Range of BET(4)  0≤BET(4)≤0.1 0≤BET(4)≤0.2 0≤BET(4)≤0.3 0≤BET(4)≤0.4 0≤BET(4)≤0.1 0≤BET(4)≤0.2 0≤BET(4)≤0.3 0≤BET(4)≤0.4 

Resultant 

Classification 

type Number 

 (%) 

Number 

 (%) 

Number 

 (%) 

Number 

 (%) 

Number 

 (%) 

Number 

 (%) 

Number 

 (%) 

Number 

 (%) 

Number of 0 catch: 

BET=ALB=0 

(inc. BET=ALB=SWO=0) 

5,529 

(11.9%) 

 

 

Un-classified  

 Number of the data classified 

into both LL types by BET(3) 

& BET (4)  

3,263 

(7.0) 

3,890 

(8.4) 

4,518 

(9.7) 

   5,225 

(11.2) 

3,256 

(7.0) 

3,868 

(8.3) 

4,456 

(9.6) 

5,105 

(10.9) 

(A) Number of correctly 

classified data into REGULAR 

LL by BET ratio (4) excluding 

those classified into both type  

8,477 

(18.2) 

10,543 

(22.6) 

11,569 

(24.8) 

12,283 

(26.4) 

 

8,482 

(18.2) 

10,557 

(22.7) 

11,619 

(24.9) 

12,385 

(26.6) 

 

 

 

 

Correct  

classification 

  

(B) Number of correctly 

classified data into DEEP LL 

by BET ratio (4)  excluding 

those classified into both type 

20,142 

(43.2) 

19,898 

(42.7) 

19,631 

(42.1) 

19,242 

(41.3) 

19,519 

(41.9) 

19,281 

(41.4) 

19,018 

(40.8) 

18,635 

(40.0) 

Mis- 

Classification  

Number of misclassified data 9,179 

(19.7) 

6,730 

(14.4) 

5,343 

(11.5) 

4,311 

(9.2) 

9,804 

(21.0) 

7,355 

(15.8) 

5,968 

(12.8) 

4,936 

(10.6) 

Total Number of the learning data set 

(1995-99)  

46,590 

(100%) 

Expected prob. 

of correct 

classification 

(A)+(B) 28,619 

(61.4) 

30,441 

(65.3) 

31,200 

(66.9) 

31,525 

(67.7) 

highest 

28,001 

(60.1) 

29,838 

(64.0) 

30,637 

(65.7) 

31,020 

(66.6) 
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Fig. 1 Trend of tuna production by the longline fisheries in the Indian Ocean 
(1952-2000) 
 

 
 
Fig. 2 Schematic diagram of regular and deep longline (LL) 
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set (1955-99) (n=46,590)  
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Fig. 6  Trend of nominal CPUE (ALB, BET, YFT and SWO) of unknown LL data 
classified into regular and deep LL types by 0.8 ≤  BET )3(ratio  ≤  1 and 0 ≤  
BET )4(ratio  ≤  0.40. (note: the unclassified data with zero catches are excluded 
 


