
Fisheries Research 70 (2004) 265–274

Incorporating spatial autocorrelation into the general
linear model with an application to the yellowfin tuna

(Thunnus albacares) longline CPUE data

Tom Nishidaa,∗, Ding-Geng Chenb

a National Research Institute of Far Seas Fisheries, 5-7-1 Shimizu-Orido, Shizuoka-City, Shizuoka 424-8633, Japan
b Department of Mathematics and Statistics, Portland State University, P.O. Box 751, Portland, OR 97207, USA

Abstract

Catch-per-unit-effort (CPUE) data have often been used to obtain a relative index of the abundance of a fish stock by
standardizing nominal CPUE using various statistical methods. The theory underlying most of these methods assumes the
independence of the observed CPUEs. This assumption is invalid for a fish population because of their spatial autocorrelation.
To overcome this problem, we incorporated spatial autocorrelation into the standard general linear model (GLM). We also
incorporated into it a habitat-based model (HBM), to reflect, more effectively, the vertical distributions of tuna. As a case study, we
fitted both the standard-GLM and spatial-GLM (with or without HBM) to the yellowfin tuna CPUE data of the Japanese longline
fisheries in the Indian Ocean. Four distance models (Gaussian, exponential, linear and spherical) were examined for spatial
autocorrelation. We found that the spatial-GLMs always produced the best goodness-of-fit to the data and gave more realistic
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stimates of the variances of the parameters, and that HBM-based GLMs always produced better goodness-of-fit to th
hose without. Of the four distance models, the Gaussian model performed the best. The point estimates of the relative
he abundance of yellowfin tuna differed slightly between standard and spatial GLMs, while their 95% confidence inter
he spatial-GLMs were larger than those from the standard-GLM. Therefore, spatial-GLMs yield more robust estima
elative indices of the abundance of yellowfin tuna, especially when the nominal CPUEs are strongly spatially autoco
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. Introduction

Catch-per-unit-effort (CPUE) data have often been
tilized to obtain a relative index of the abundance of a
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fish stock. The nominal (observed) CPUEs are affe
by changes of year, season, area of fishing and va
environmental factors. Many statistical methods h
been used to ‘standardize’ them to account for s
variations. These include the general or genera
linear models (hereafter referred to as the stand
GLM), general additive models (GAM), neural n
works (NN), regression trees (RT), and others (ICCAT,
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Table 1
A brief summary of the data (for details, seeNishida et al. (2003))

Type of data Variables and resolutions Source

Japanese (yellowfin) tuna
longline commercial
fisheries data in the Indian
Ocean (1958–2001)

Catch, effort and number of hooks between
floats (HBF) by month and 5◦ × 5◦ area

National Research Institute of Far Seas Fisheries
(NRIFSF), Japan

Marine environmental data Sea surface temperature (SST) by month and
5◦ × 5◦ area (1958–2001)

Sub-arctic Gyre Experiment (SAGE) compiled by
Japan Meteorological Agency, Japan

Thermocline depth (at 20◦C) by month and
5◦ × 5◦ area (1958–2001)

JEDAC data set (Scripps Institution of
Oceanography) and GAO data set (Gestionnaire
d’Applications Oćeanographiques) compiled by
Institut de Recherche pour le Développement (IRD),
France

2003). Of these, the standard-GLM is the most com-
monly used. The statistical theory underlying these
methods assumes that the observed CPUE data are in-
dependent. This assumption is invalid for a fish pop-
ulation, because many species of fish live and move
together: the more closely in space and/or time1 the ob-
servations of fish abundance are made, the more similar
they are. Thus, spatial autocorrelation brings a poten-
tially major problem in standardizing the CPUEs by
use of the standard-GLM, GAM, NN or RT.

Habitat-based models (HBM) have been incorpo-
rated into the standard-GLM in recent CPUE standard-
izations (known below as the standard-GLM/HBM).
Specifically, GLM/HBMs have been used to analyze
data on the CPUEs of some species of billfish and
tropical tuna (Hinton and Nakano, 1996; Bigelow
et al., 2002; Yokawa and Takeuchi, 2002; Bigelow et
al., 2003). The HBM uses the effective and nominal
tuna longline fishing effort by accounting for both the
swimming depths of the fish and the gear depths in the
CPUE standardization. The standard-GLM/HBM pro-
duced more accurate standardized CPUEs and relative
indices of the abundance of the fish.

In this paper, we incorporate spatial autocorrelation
into the standard-GLM (hereafter called the spatial-
GLM) and also into the spatial-GLM/HBM. As a case
study, we use these models to analyze data on the CPUE
of yellowfin tuna (Thunnus albacares) of the Japanese
longline fisheries in the Indian Ocean, including two
environmental factors – thermocline depths (TD) and
s e the
r the

results of CPUE analyses, and outline our future ap-
proach to analyzing spatially structured CPUE data.

2. Methods

Two methods (standard-GLM and spatial-GLM)
were used to analyze the Japanese yellowfin tuna long-
line CPUE data in the Indian Ocean. Each method
was employed with and without HBM. The data were
detailed inNishida et al. (2003)and summarized in
Table 1. The theory behind these methods is explained
below. The Statistical Analyses System (SAS) package
was utilized in all calculations: PROC MIXED (Littell
et al., 1996) for the spatial-GLMs, and PROC GLM for
the standard-GLMs. Both SAS procedures are available
in the SAS/STAT module (SAS Institute, 1999).

2.1. Standard-GLM

The standard-GLM without HBM is of the form:

ln(N CPUEijkl + constant)

= INTERCEPT+ YRi + Mj + Ak + Gl

+ SSTijk + TDijk + (YR × M)ij

+ (YR × A)ik + (M × A)jk + (M × G)jl

+ (A × G)kl + (SST× M)j + (SST× A)k

+ (TD × M) + (TD × A) + ε (1)

w ber
o nt”
i

ea surface temperature (SST). Finally, we evaluat
esults of the spatial-GLMs, discuss the biases in

1 Autocorrelation by time was not examined in this paper.
j k ijkl

hereN CPUE is the nominal CPUE (i.e. the num
f yellowfin tuna caught per 1000 hooks); “consta

s 10% of the global mean of the nominalN CPUE
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Fig. 1. Five sub-areas adopted by the IOTC (2002) for standardizing yellowfin tuna longline CPUE data in the Indian Ocean.

(0.87193 in this case) in order to mitigate the problem
of zero catch (Campbell et al., 1996); INTERCEPT the
intercept (meanN CPUE); YRi (i = 1 to I) is the effect
of year from 1958 to 2001;Mj (j = 1 toJ) the effect of
month (January to December);Ak (k= 1 toK) the effect
of sub-area (1–5) adopted at the IOTC Working Party of
Tropical Tuna (WPTT) meeting in 2002 (IOTC, 2002)
(Fig. 1); SST the effect of sea surface temperature (◦C)
(a continuous variable); TD the thermocline depth (m)
(a continuous variable);εijkl the error term, assumed
to be independently, identically distributed (i.i.d.) with
N(0,σ2) for all i, j, kandl; andGl the effect of the num-
ber of hooks between floats (HBF). FollowingBigelow
et al. (2002)and Nishida et al. (2003), the number
of hooks between two floats (HBF) was divided into
six classes: class 1, 5–6; class 2, 7–9; class 3, 10–11;
class 4, 12–15; class 5, 16–20; class 6, 21–25. As the
Japanese tuna longline fisheries with 3–4 hooks be-
tween floats targeted swordfish at night, the data from
this type of gear were excluded in subsequent analyses.

Data on the number of hooks between two floats are
available from 1966 to 1975–2001; those from 1958
to 1965 and from 1967 to 1974 are missing. To ensure
the continuity of the data for a comprehensive analy-
sis, the HBF for the period 1958–1965 was estimated
using its spatial pattern in 1966 and that for the pe-
riod 1967–1974 was estimated from its mean patterns
in 1966 and 1975. We also added the effects of sea sur-
face temperature (SST) and thermocline depth (TD)
to the model, as both environmental factors may have

affected the distribution and abundance of yellowfin
tuna.

The standard-GLM model, Eq.(1), is a sub-model of
the full model that includes other single and interaction
terms (Nishida et al., 2003). Because some single terms
in the full model were statistically insignificant and
some interaction terms caused it not to converge, as a
result of a lack of data, these terms were excluded in
the reduced standard-GLM.

2.2. Standard-GLM/HBM

Because gear typeG was used in calculating
the effective CPUE (ICCAT, 2003), the standard-
GLM/HBM excluded any terms related to it to avoid
double standardization, and is of the form:

ln(E CPUEijkl + constant)

= INTERCEPT+ Yi + Mj + Ak + SSTijk

+ TDijk + (YR × M)ij + (YR × A)ik

+ (M × A)jk + (SST× M)j + (SST× A)k

+ (TD × M)j + (TD × A)k + εijkl (2)

where all notations are the same as in Eq.(1), except
thatE CPUE is the effective CPUE (i.e. the number of
yellowfin tuna caught per 1000 effective hooks), “con-
stant” is 1.78559, INTERCEPT the intercept (mean
E CPUE), andεijk is assumed to be i.i.d., withεijk ∼
N 2
(0, σ ) for all i, j, k andl.
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2.3. Spatial-GLM

Eq.(1) can be written as:

Y = X� + ε (3)

whereY = (ln(CPUE1111 + const),. . . , ln(CPUEijkl
+ const)) is the vectorized CPUE from the standard-
GLM, X the corresponding design matrix, andε =
(ε1, . . . , εijkl) is the correspondingn × 1 vector, as-
sumed to be distributed asN(0, σ2I ), asε is i.i.d.

The assumption of independent CPUE orε in the
standard-GLM, Eq.(3), is obviously violated for a fish
population, for it ignores the spatial autocorrelation in
the many features of the population. After all, fish move
together with a positive spatial dependency. The more
closely in space the observations are made, the more
similar they are. Therefore, this positive spatial corre-
lation should be included in the CPUE standardization
by extending the standard-GLM approach.

This can be solved by resorting to geostatistical
models (Cressie, 1991). The spatial dependency is
justified in the geostatistical variogram model. With
the inherited positive spatial dependency, the error
termε = (ε1, . . . , εn) in Eq. (3) is no longer i.i.d., for
cov(εi, εj) = σij ≥ 0, i �= j, so that

Y = X� + ε (4)

whereε ∼ N(0, V ), andV = (cov(εi , εj)) is then ×
n variance–covariance matrix with non-negative off-
d
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for 0 < dij ≤ r, and cov(εi, εj) = σ2
0 + σ2

1 for dij = 0,
whereσ2

0 is the nugget effect (which represents a dis-
continuity at the origin of the variogram with amplitude
σ2

0 and corresponds to the unobserved small-scale vari-
ance and observation error),σ2

1 the partial sill or maxi-
mum level of heterogeneity, andr the range of influence
(i.e., the distance beyond which there is practically no
spatial correlation between data points). Consequently,
the expression levels off to a constant magnitude of
σ2

0 + σ2
1 at a distance greater thanr, and is generally

of the same magnitude as the statistical variance of the
sample population.

The parameters in Eq.(5), along with the param-
eter vectorβ in the spatial-GLM (Eq.(4)), can be
estimated simultaneously using the maximum likeli-
hood estimation (ML) or the restricted maximum like-
lihood estimation (REML), with the log-likelihood
function:

ML : ll(β, σ2
0, σ2, r)

= −0.5n ln(|V |) − 0.5n × ln(D′V−1D)

− 0.5

[
1 + ln

(
2π

n

)]
,

REML : ll(β, σ2
0, σ2, r)

= −0.5n ln(|V |)−0.5n ln(|X′V−1X) − 0.5(n − p)

× ln(D′V−1D) − 0.5(n − p)

{
1 + ln

[
2π

n − p

]}
(6)
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iagonal elements. This is the spatial-GLM.
The covariance cov(εi , εj) betweenεi andεj is usu-

lly a function of the distancedij from the observationa
ocationsi andj, as specified by the spatial coordina
f longitudes and latitudes. The most commonly u
odels are the exponential model, spherical mo
aussian model and the linear model, defined as:

cov(εi, εj)

= σ2
1 ×




1 − exp

(
−dij

r

)
(exponential mode

1 − 3dij

2r
+ d3

ij

2r3 (spherical model)

1 − exp

(
−d2

ij

r2

)
(Gaussian model)

1 − rdij (linear model)
(5)
whereD = Y − X(X′V−1X)
−
X′V−1Y , andp the rank

f X. An optimization procedure can be used to ge
stimateŝβ, σ̂2

0, σ̂2 and r̂ of the parameters, and s
istical inference can be made, based on the estim
arameters and the likelihood ratio test (LRT).

For example, the LRT can be used to test whe
here is spatial dependency forH0: r = 0. If the null
ypothesis is rejected, there is a significant spatia
endency in the data. The LRT can also be used to

he nugget effect asH0 : σ2
0 = 0 for the unobserve

mall-scale variance and observation error.

.4. Spatial-GLM/HBM

The same procedure used for the spatial-GLM
e applied to the effective CPUE, as defined in
2), to yield the spatial-GLM/HBM. For both spatia
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Fig. 2. Definition of the coordinate system for computing the distances between two 5◦ ×5◦ areas in the distance-based models in the spatial-GLM
(the distance of 5◦ latitudes on the Equator is set to 1).

GLM and spatial-GLM/HBM, the spatial autocorre-
lation structure was modeled as covariograms, as de-
fined in Eq.(5), which require data on the distances be-
tween observations. In the spatial-GLM, three distance-
related parameters (sill, range and nuggets) were es-
timated, along with those in the standard-GLM. The
spatial-GLM was carried out by PROC MIXED in the
SAS package (SAS Institute, 1999).

2.5. Abundance indices

The estimated abundance indices in yeari in all the
GLM models were calculated by exponentiating the
least squared means of the year effect from the GLM
model (as part of the SAS outputs) and then subtracting
from it a constant (ICCAT, 2003).

2.6. A case study

Four GLMs (standard-GLM, standard-GLM/HBM,
spatial-GLM and spatial-GLM/HBM) were used to
analyze yellowfin tuna CPUE data (1958–2001) of
the Japanese longline fisheries in the Indian Ocean,
together with some environmental factors. For the
spatial-GLM, the distances were computed by setting
up a coordinate system (Fig. 2). In this coordinate sys-
tem, the lower left corner (20◦E, 40◦S) was treated as
the origin, i.e. (lat, long) = (0, 0). By setting that the
distance of the 5◦ latitudes on the Equator is unity (=1),

the coordinates of all the central points of 5◦ × 5◦ areas
were computed. The coordinates of the four corners are
also given, inFig. 2. For this computation, the spherical
model for Earth was applied, then thex- andy-distances
from the origin to the central point of the 5◦ × 5◦ ar-
eas were computed, based on the distances between 5◦
latitudes (Table 2) (note that the distances between 5◦
longitudes = 1 at anylatitude).

In the spatial-GLM and spatial-GLM/HBM, four
distance models (Gaussian, exponential, linear, and
spherical) were also examined. Of the 10 models
fitted, two were standard-GLMs, and eight spatial-
GLMs. We evaluated their results by AIC,R2 and
graphically.

Table 2
Distance of 5◦ latitudes when the distance of 5◦ latitudes on the
Equator is unity

Latitude
range by 5◦

Latitude at the
central point

Distance of the 5◦ latitudes
at the central point

0–5 2.5 0.9990
5–10 7.5 0.9914

10–15 12.5 0.9763
15–20 17.5 0.9537
20–25 22.5 0.9239
25–30 27.5 0.8870
30–35 32.5 0.8434
35–40 37.5 0.7934
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3. Results

The results of fitting the 10 GLMs are summa-
rized in Table 3, which gives AIC,R2 and the re-

Table 3
Summary of the results of fitting the 10 GLMs and the results of the spatial independency (r) test

Type of model R2 AIC AIC (rank) A, −2LLspatial B, −2LLstandard LRT = (A) − (B) Test (rank)

Standard-GLM 0.585 75780 (10) – 75778 – –
Standard-GLM/HBM 0.602 75041 (9) – 75039 – –

Spatial-GLM
Exponential 0.749 68676 (7) 68670 75778 7108 (7)***

Gaussian 0.755 68281 (5) 68275 75778 7503 (3)***

Linear 0.711 70331 (8) 70325 75778 5453 (8)***

Spherical 0.754 68435 (6) 68429 75778 7349 (5)***

Spatial-GLM/HBM
Exponential 0.761 67649 (3) 67643 75039 7396 (4)***

Gaussian 0.767 67267 (1) 67261 75039 7778 (1)***

Linear 0.763 67876 (4) 67870 75039 7169 (6)***

Spherical 0.768 67430 (2) 67424 75039 7615 (2)***

The likelihood ratio test (LRT) statistics for H0: spatially independent (r = 0) is calculated by (A) − (B) = (−2LLspatial) − (−2LLstandard) (LL is
the value of the log-likelihood function) which is asymptoticallyχ2 distributed.
∗∗∗ Highly significant atχ2

1,0.001= 10.83.

sults of the test of the spatial independence in the data.
The spatial-GLMs always gave the best goodness-of-
fit to the data. The HBM-based GLMs always pro-
duced better goodness-of-fit than those without the
Fig. 3. Semivariogram (left panel) and covariog
ram (right panel) models in the spatial-GLM.
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Fig. 4. A comparison of the relative index of abundance of yellowfin tun r panel),
and from the spatial-GLM/HBM with that from the standard-GLM/HBM

Fig. 5. Comparisons of the stand
a from the spatial-GLM with that from the standard-GLM (uppe
(lower panel).

ard errors from the four GLMs.
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Fig. 6. A comparison of the relative index of abundance of yellowfin tuna and its 95% confidence intervals (C.I.) from the spatial-GLM with
that from the standard-GLM (upper panel), and from the spatial-GLM/HBM with that from the standard-GLM/HBM (lower panel).

HBM. Of the four distance models, the Gaussian model
had the best goodness-of-fit. Therefore, the spatial-
GLM/HBM with the Gaussian distance model was the
‘best’ model in this case study.

The residuals from the standard-GLM were not
i.i.d., but were autocorrelated within a distance of four
5◦ × 5◦ units (Fig. 3), or about 20◦ latitude. The like-
lihood ratio test (LRT) between the spatial-GLM and
standard-GLM for spatial independence ofH0: r = 0
showed that the LRT was highly significant in all cases
(Table 3).

The relative indices of the number of yellowfin
tuna from standardizing their CPUEs are provided in
Fig. 4. The point estimates, standard errors (S.E.) and
95% confidence intervals (C.I.) were also compared
among the standard-GLM, spatial-GLM, standard-
GLM/HBM and spatial-GLM/HBM (Figs. 4–7). The
temporal trends of the point estimates differed slightly
between the two methods in each comparison (Fig. 4),
while the standard errors and 95% confidence inter-

vals of the spatial-GLM were larger than those of
the standard-GLM (Figs. 5–7). Of all the GLM mod-
els, the average ratios of the 95% C.I. of the spatial-
GLM to the standard-GLM were 1.23 (upper C.I.)
and 1.09 (lower C.I.), while those for the GLM/HBM
were 1.46 (upper C.I.) and 1.35 (lower C.I.) (Fig. 7).
Thus, the C.I.s from the GLM/HBM models were much
larger.

4. Discussion

4.1. Evaluation of the spatial-GLM

Although the temporal trends in the CPUEs from the
spatial-GLMs did not differ greatly from those from the
standard-GLMs, the spatial-GLMs are preferred for an-
alyzing the CPUE data on yellowfin tuna, especially if
there is strong spatial autocorrelation among the data.
This is because the spatial-GLMs took account of the
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Fig. 7. A comparison of the 95% confidence intervals (C.I.) of the relative index of abundance of yellowfin tuna and ratios of 95% C.I. from the
spatial-GLM with that from the standard-GLM (upper panel), and from the spatial-GLM/HBM with that from the standard-GLM/HBM (lower
panel).

spatial autocorrelation effectively and yielded more re-
alistic estimates of the variances. This is not surprising,
especially considering the semivariograms and covar-
iograms from the standard-GLMs (Fig. 3). A covari-
ogram is a function of the distance between data points
that measures how strong their spatial autocorrelation
is. A positive spatial autocorrelation manifests itself
in a decrease with distance to zero at some distance,
where observations are no longer autocorrelated. Since
the covariogram does not exist for some processes, a
semivariogram is commonly used in geostatistics. It
is calculated by summing up all the squared differ-
ences of the values between each pair of the points at
different distances to measure the dissimilarity of the
data points with distance. Their graphical representa-
tions can be used to examine the spatial correlation
of the data points with their neighbors. The likelihood
ratio tests (LRT) for spatial independence ofH0: r =
0 showed that the test statistics were highly significant

in all cases (Table 3). Therefore, the spatial-GLMs per-
form better in analyzing yellowfin tuna CPUE data than
the standard-GLMs, if the data exhibit strong spatial
autocorrelation.

4.2. What are the appropriate approaches for
spatial-CPUE standardization?

What are the appropriate approaches to standardize
a set of spatial-CPUE data from a fish population? It is
rather difficult to answer this question. In the present
paper, we have only used the spatial-GLM in analyzing
the data on yellowfin tuna in the Indian Ocean. Clearly,
much work is needed on many other sets of data before
drawing any further conclusions. Also, we coupled the
spatial approach to GLMs only. Many common sta-
tistical methods, such as general additive models, re-
gression trees, and neural networks, can be also made
spatially. There is a need for searching the most appro-
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priate method for the spatially structured CPUE data
from among all possible statistical methods. This will
be a very complex and difficult task, especially consid-
ering such structure and characteristics of the CPUE
data considering the degree of spatial dependency and
spatial patterns. Simulation may be an effective method
for this evaluation. By simulating spatially structured
CPUE data with varying degrees of spatial dependency
and various spatial patterns and by analyzing them us-
ing various spatial and non-spatial statistical methods,
we can estimate the relative indices of the abundance
of the simulated population and examine the discrep-
ancies between the true index of abundance and its es-
timates. In so doing, we may be able to establish some
simple rules to select the most appropriate statistical
model. We plan to investigate such aspects in the fu-
ture.

4.3. Biases in analyzing the spatially distributed
catch rates

In analyzing the spatial catch rates data of the
Japanese tuna longline fisheries,Walters (2003)rec-
ognized that biases can arise from ignoring unfished
areas. At the initial stage of the Japanese tuna longline
fisheries in the Indian Ocean in the early 1950s, fishing
grounds were limited to the tropical waters, where the
abundance (CPUE) of yellowfin tuna was considerably
high. By the early 1960s, the fisheries had expanded to
the whole Indian Ocean, including the temperate wa-
t low.
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