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Abstract

Catch-per-unit-effort (CPUE) data have often been used to obtain a relative index of the abundance of a fish stock by
standardizing nominal CPUE using various statistical methods. The theory underlying most of these methods assumes the
independence of the observed CPUEs. This assumption is invalid for a fish population because of their spatial autocorrelation.
To overcome this problem, we incorporated spatial autocorrelation into the standard general linear model (GLM). We also
incorporated into it a habitat-based model (HBM), to reflect, more effectively, the vertical distributions of tuna. As a case study, we
fitted both the standard-GLM and spatial-GLM (with or without HBM) to the yellowfin tuna CPUE data of the Japanese longline
fisheries in the Indian Ocean. Four distance models (Gaussian, exponential, linear and spherical) were examined for spatial
autocorrelation. We found that the spatial-GLMs always produced the best goodness-of-fit to the data and gave more realistic
estimates of the variances of the parameters, and that HBM-based GLMs always produced better goodness-of-fit to the data than
those without. Of the four distance models, the Gaussian model performed the best. The point estimates of the relative indices of
the abundance of yellowfin tuna differed slightly between standard and spatial GLMs, while their 95% confidence intervals from
the spatial-GLMs were larger than those from the standard-GLM. Therefore, spatial-GLMs yield more robust estimates of the
relative indices of the abundance of yellowfin tuna, especially when the nominal CPUEs are strongly spatially autocorrelated.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction fish stock. The nominal (observed) CPUEs are affected
by changes of year, season, area of fishing and various
Catch-per-unit-effort (CPUE) data have often been environmental factors. Many statistical methods have
utilized to obtain a relative index of the abundance of a been used to ‘standardize’ them to account for such
variations. These include the general or generalized
"+ Corresponding author. Tel.: +81 543 36 6037: linear models (hereafter referred to as the standard-
fax: +81 543 35 9642, GLM), general additive models (GAM), neural net-
E-mail addresstnishida@affrc.go.jp (T. Nishida). works (NN), regression trees (RT), and othé@IAT,
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Table 1

A brief summary of the data (for details, seeshida et al. (2003)

Type of data Variables and resolutions Source

Japanese (yellowfin) tuna Catch, effort and number of hooks between National Research Institute of Far Seas Fisheries
longline commercial floats (HBF) by month and*5x 5° area (NRIFSF), Japan

fisheries data in the Indian
Ocean (1958-2001)

Marine environmental data Sea surface temperature (SST) by month and Sub-arctic Gyre Experiment (SAGE) compiled by
5° x 5° area (1958-2001) Japan Meteorological Agency, Japan
Thermocline depth (at 2@C) by month and JEDAC data set (Scripps Institution of
5° x 5° area (1958-2001) Oceanography) and GAO data set (Gestionnaire

d’Applications O@anographiques) compiled by
Institut de Recherche pour leéDeloppement (IRD),
France

2003. Of these, the standard-GLM is the most com- results of CPUE analyses, and outline our future ap-
monly used. The statistical theory underlying these proach to analyzing spatially structured CPUE data.
methods assumes that the observed CPUE data are in-
dependent. This assumption is invalid for a fish pop-
ulation, because many species of fish live and move 2. Methods
together: the more closely in space and/or fire ob-
servations of fish abundance are made, the more similar Two methods (standard-GLM and spatial-GLM)
they are. Thus, spatial autocorrelation brings a poten- were used to analyze the Japanese yellowfin tuna long-
tially major problem in standardizing the CPUEs by line CPUE data in the Indian Ocean. Each method
use of the standard-GLM, GAM, NN or RT. was employed with and without HBM. The data were

Habitat-based models (HBM) have been incorpo- detailed inNishida et al. (2003and summarized in
rated into the standard-GLM in recent CPUE standard- Table 1 The theory behind these methods is explained
izations (known below as the standard-GLM/HBM). below. The Statistical Analyses System (SAS) package
Specifically, GLM/HBMs have been used to analyze was utilized in all calculations: PROC MIXELL ttell
data on the CPUEs of some species of billfish and etal., 199§for the spatial-GLMs, and PROC GLM for
tropical tuna Hinton and Nakano, 1996; Bigelow the standard-GLMs. Both SAS procedures are available
et al., 2002; Yokawa and Takeuchi, 2002; Bigelow et in the SAS/STAT moduleJAS Institute, 1999
al., 2003. The HBM uses the effective and nominal
tuna longline fishing effort by accounting for both the 2.1, Standard-GLM
swimming depths of the fish and the gear depths in the
CPUE standardization. The standard-GLM/HBM pro- ~ The standard-GLM without HBM is of the form:
duced more accurate standardized CPUESs and relative
indices of the abundance of the fish.

In this paper, we incorporate spatial autocorrelation = INTERCEPT+ YR; + M; + A + G;
into the standard-GLM (hereafter called the spatial-
GLM) and also into the spatial-GLM/HBM. As a case +SSTje + TDyje + (YR x M);
study, we use these models to analyze data on the CPUE +(YR x A)jx + (M x A) o + (M x G)
of yellowfin tuna Thunnus albacargf the Japanese
longline fisheries in the Indian Ocean, including two +(A X Gy + (SSTx M) + (SSTx A)
environmental factors — thermocline depths (TD) and +(TD x M); + (TD x A); + &iju 1)
sea surface temperature (SST). Finally, we evaluate the

results of the spatial-GLMs, discuss the biases in the \yhereN_.CPUE is the nominal CPUE (i.e. the number

of yellowfin tuna caught per 1000 hooks); “constant”
1 Autocorrelation by time was not examined in this paper. is 10% of the global mean of the nomindlCPUE

In(N_CPUEj; + constant)
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Fig. 1. Five sub-areas adopted by the IOTC (2002) for standardizing yellowfin tuna longline CPUE data in the Indian Ocean.

(0.87193 in this case) in order to mitigate the problem affected the distribution and abundance of yellowfin
of zero catchCampbell et al., 1996INTERCEPT the tuna.

intercept (meaM_CPUE); YR (i = 1 tol) is the effect The standard-GLM model, E€LL), is a sub-model of

of year from 1958 to 2001¥); (j = 1 toJ) the effect of the full model that includes other single and interaction
month (January to Decembe#g); (k=1 toK) the effect terms (ishida et al., 2008 Because some single terms
of sub-area (1-5) adopted at the IOTC Working Party of in the full model were statistically insignificant and
Tropical Tuna (WPTT) meeting in 200B¥TC, 2002 some interaction terms caused it not to converge, as a
(Fig. 2); SST the effect of sea surface temperattie® ( result of a lack of data, these terms were excluded in
(a continuous variable); TD the thermocline depth (m) the reduced standard-GLM.

(a continuous variableki the error term, assumed

to be independently, identically distributed (i.i.d.) with 2.2. Standard-GLM/HBM

N(0,c2) for alli, j, kandl; andG; the effect of the num-

ber of hooks between floats (HBF). FollowiBigelow Because gear typ& was used in calculating

et al. (2002)and Nishida et al. (2003)the number  the effective CPUE ICCAT, 2003, the standard-

of hooks between two floats (HBF) was divided into GLM/HBM excluded any terms related to it to avoid
six classes: class 1, 5-6; class 2, 7-9; class 3, 10-11;double standardization, and is of the form:

class 4, 12-15; class 5, 16-20; class 6, 21-25. As the
Japanese tuna longline fisheries with 3—4 hooks be- In(E_CPUE;u + constant)

tween floats targeted swordfish at night, the data from = INTERCEPT+ Y; + M; + Ay + SSTij
this type of gear were excluded in subsequent analyses.

Dgtg on '?he number of hooks betweegtwo floatgare +TDijic + (YR > M)j; + (YR x A)ie
available from 1966 to 1975-2001; those from 1958 + (M x A)j + (SSTx M); + (SSTx A);
to 1965 and from 1967 to 1974 are missing. To ensure
the continuity of the data for a comprehensive analy- +(TD x M)+ (TD x A) + €ijui (2)
sis, the HBF for the period 1958-1965 was estimated where all notations are the same as in EQ, except
using its spatial pattern in 1966 and that for the pe- thatE_CPUE is the effective CPUE (i.e. the number of
riod 1967-1974 was estimated from its mean patterns ye”owﬁn tuna Caught per 1000 effective hooks)’ “con-
in 1966 and 1975. We also added the effects of sea sur-stant” is 1.78559, INTERCEPT the intercept (mean
face temperature (SST) and thermocline depth (TD) E_.CPUE), andkj is assumed to be i.i.d., withy ~
to the model, as both environmental factors may have N(0, 2) for all i, j, k andl.
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2.3. Spatial-GLM
Eqg. (1) can be written as:

Y=XB+e ©)

whereY = (In(CPUE111 + const),... , IN(CPUE

+ const)) is the vectorized CPUE from the standard-
GLM, X the corresponding design matrix, and=
(g1, ..., &iju) is the corresponding x 1 vector, as-
sumed to be distributed &0, o21), ase is i.i.d.

The assumption of independent CPUEsan the
standard-GLM, Eq(3), is obviously violated for a fish
population, for it ignores the spatial autocorrelation in
the many features of the population. After all, fish move
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for 0 < d;; < r, and cové;, ¢;) = o2 + o2 for djj = 0,
Whereag is the nugget effect (which represents a dis-
continuity at the origin of the variogram with amplitude
o and corresponds to the unobserved small-scale vari-
ance and observation errosf, the partial sill or maxi-
mum level of heterogeneity, anthe range of influence
(i.e., the distance beyond which there is practically no
spatial correlation between data points). Consequently,
the expression levels off to a constant magnitude of
o4 + o2 at a distance greater thanand is generally
of the same magnitude as the statistical variance of the
sample population.

The parameters in Eq5), along with the param-
eter vectorg in the spatial-GLM (Eq.(4)), can be

together with a positive spatial dependency. The more Stimated simultaneously using the maximum likeli-
closely in space the observations are made, the moreh00d estimation (ML) or the restricted maximum like-

similar they are. Therefore, this positive spatial corre-
lation should be included in the CPUE standardization
by extending the standard-GLM approach.

This can be solved by resorting to geostatistical
models Cressie, 1991 The spatial dependency is
justified in the geostatistical variogram model. With

the inherited positive spatial dependency, the error

terme = (e1, ..., &,) in EQ.(3) is no longer i.i.d., for
COV(S,', 8]') = 0jj >0, i # j, so that

Y=XB+e¢ 4)

wheree ~ N(O, V), andV = (cov(g, ¢j)) is then x
n variance—covariance matrix with non-negative off-
diagonal elements. This is the spatial-GLM.

The covariance coy(, ¢j) betweere; ands; is usu-
ally a function of the distanag;j from the observational
locations andj, as specified by the spatial coordinates

lihood estimation (REML), with the log-likelihood
function:

ML : (B, o2, o2, 1)
= —05nIn(|V|) — 0.51 x In(D'V~D)

afuon(2)].

REML : l(B, o2, 0%, 7)
—0.52In(|V|)=0.52 In(|X'V~1X) — 0.5(n — p)

=

(6)

x In(D'V™ID) — 0.5(n — p) {1 +1In [

whereD = Y — X(X'V~1X)” X'v~1y,andpthe rank
of X. An optimization procedure can be used to get the
estimatesB, 63, 52 and 7 of the parameters, and sta-

of longitudes and latitudes. The most commonly used tistical inference can be made, based on the estimated

models are the exponential model, spherical model,

Gaussian model and the linear model, defined as:

cov(e;, ;)
d.‘
1—exp <—”) (exponential model)
r
3
3d,/ [j .
1- — + % (sphericalmodel
= 012- X 2r + 2}"3 ( p )
—expl —— (Gaussian model)
r
1—rd;; (linear model)

(5)

parameters and the likelihood ratio test (LRT).

For example, the LRT can be used to test whether
there is spatial dependency fblp: r = 0. If the null
hypothesis is rejected, there is a significant spatial de-
pendency in the data. The LRT can also be used to test
the nugget effect aflp : o = 0 for the unobserved
small-scale variance and observation error.

2.4, Spatial-GLM/HBM

The same procedure used for the spatial-GLM can
be applied to the effective CPUE, as defined in Eq.
(2), to yield the spatial-GLM/HBM. For both spatial-
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Fig. 2. Definition of the coordinate system for computing the distances betweeh tas*%reas in the distance-based models in the spatial-GLM
(the distance of Slatitudes on the Equator is set to 1).

GLM and spatial-GLM/HBM, the spatial autocorre- the coordinates of all the central points 66 5° areas
lation structure was modeled as covariograms, as de-were computed. The coordinates of the four corners are
fined in Eq.(5), which require data on the distances be- also given, irFig. 2 For this computation, the spherical
tween observations. Inthe spatial-GLM, three distance- model for Earth was applied, then tkeandy-distances
related parameters (sill, range and nuggets) were es-from the origin to the central point of the 5 5° ar-
timated, along with those in the standard-GLM. The eas were computed, based on the distances between 5
spatial-GLM was carried out by PROC MIXED in the latitudes Table 2 (note that the distances between 5

SAS packageSAS Institute, 1999 longitudes = 1 at anytatitude).
In the spatial-GLM and spatial-GLM/HBM, four
2.5. Abundance indices distance models (Gaussian, exponential, linear, and

spherical) were also examined. Of the 10 models
The estimated abundance indices in yigarallthe ~fitted, two were standard-GLMs, and eight spatial-
GLM models were calculated by exponentiating the GLMs. We evaluated their results by AI®? and
least squared means of the year effect from the GLM graphically.
model (as part of the SAS outputs) and then subtracting
from it a constantlCCAT, 2003.

2.6. A case study Table 2 _ _ _
Distance of 5 latitudes when the distance of atitudes on the

Equator is unity

Four GLMs (standard-GLM, standard-GLM/HBM,

spatiaI—GLM and spatiaI-GLM/HBM) were used to Latitude Latitude a_tthe Distance of the .5 latitudes
. range by 5 central point at the central point
analyze yellowfin tuna CPUE data (1958-2001) of e 59990

the Japanese longline fisheries in the Indian Ocean, 5 10 o~ 0.9914

together with some environmental factors. For the 145_15 125 0.9763
spatial-GLM, the distances were computed by setting 1520 175 0.9537
up a coordinate systerkig. 2). In this coordinate sys-  20-25 225 0.9239
tem, the lower left corner (2@, 40°S) was treated as 2530 255 0.8870
the origin, i.e. (lat, long) = (0, 0). By setting that the 30-35 3% 0.8434

35-40 375 0.7934

distance of the Slatitudes on the Equator is unity (=1),
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3. Results sults of the test of the spatial independence in the data.
The spatial-GLMs always gave the best goodness-of-

The results of fitting the 10 GLMs are summa- fit to the data. The HBM-based GLMs always pro-
rized in Table 3 which gives AIC,R? and the re-  duced better goodness-of-fit than those without the

Table 3
Summary of the results of fitting the 10 GLMs and the results of the spatial independgtest (
Type of model R? AIC AIC (rank) A, —2L L spatial B, —2LL standard LRT =(A) — (B) Test (rank)
Standard-GLM 0.585 75780 (10) - 75778 - -
Standard-GLM/HBM 0.602 75041 9) - 75039 - -
Spatial-GLM
Exponential 0.749 68676 7) 68670 75778 7108 “7)
Gaussian 0.755 68281 (5) 68275 75778 7503 3)
Linear 0.711 70331 8) 70325 75778 5453 “18)
Spherical 0.754 68435 (6) 68429 75778 7349 “15)
Spatial-GLM/HBM
Exponential 0.761 67649 3) 67643 75039 7396 4
Gaussian 0.767 67267 ) 67261 75039 7778 (1)
Linear 0.763 67876 4) 67870 75039 7169 “l6)
Spherical 0.768 67430 ) 67424 75039 7615 "2)

The likelihood ratio test (LRT) statistics forgdspatially independent € 0) is calculated byA) — (B) = (—2LLspatia) — (—2LLstandard (LL is
the value of the log-likelihood function) which is asymptoticaifdistributed.
*** Highly significant atx21,0,001= 10.83.
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Fig. 4. A comparison of the relative index of abundance of yellowfin tuna from the spatial-GLM with that from the standard-GLM (upper panel),
and from the spatial-GLM/HBM with that from the standard-GLM/HBM (lower panel).

0.20
— Spatial-GLM
\ Spatial-GLM/HBM |

5 0.15 — Standard-GLM
g --------- Standard- GLM/ HBM
T 0.10
e
=
8
wv

005 ==

0.00 OO] ‘OI ‘(\I‘ ‘ﬂ" ‘OI IOO‘ IOI It\ll ‘ﬁ" ‘\D‘ IOO‘ ‘OI INI Iﬁ‘l ‘\D‘ ‘OO‘ ‘O‘ ‘(\ll ‘Vrl I\D‘ IOOI ‘O‘

Fig. 5. Comparisons of the standard errors from the four GLMs.



272 T. Nishida, D.-G. Chen / Fisheries Research 70 (2004) 265-274

15

Standard- GLM and 95%C.1 \/\ Spatial-G LMand 95%C.L
AN

WA,

](JJ

alve

>

Relative index of abundance
Relative index of abundance

2\ A
5 \// 5 \V/ \/\/\/\/\/\
0 L 0 L e
S N X QA Q > o N W “ S 3 D N\ Q N N > A Q > o S W 5 > N > N\ Q
© N\ N N o o o 9 ) ) ' o N N N N o o ©
FEFFFF I I IS FEFFFHFIIT I FITFFIO S
25 - 251

\/.\ Spatial-GLM/HBM and 95%C.1.

N

ol Standard-GLM/HBMand 95%C.1.
v

VAR
vy

Relative index of abundance

Relative index of abundance
\
%
5>
o

N (N N S R S SN T SN BN AN N S
FRFFFFHFTITFTFFFTS SIS FFF PSS
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that from the standard-GLM (upper panel), and from the spatial-GLM/HBM with that from the standard-GLM/HBM (lower panel).

HBM. Of the four distance models, the Gaussian model vals of the spatial-GLM were larger than those of
had the best goodness-of-fit. Therefore, the spatial- the standard-GLMKigs. 5-7. Of all the GLM mod-
GLM/HBM with the Gaussian distance model was the els, the average ratios of the 95% C.I. of the spatial-
‘best’ model in this case study. GLM to the standard-GLM were 1.23 (upper C.I.)
The residuals from the standard-GLM were not and 1.09 (lower C.l.), while those for the GLM/HBM
i.i.d., but were autocorrelated within a distance of four were 1.46 (upper C.1.) and 1.35 (lower C.IBid. 7).
5° x 5° units Fig. 3), or about 20 latitude. The like- Thus, the C.I.s from the GLM/HBM models were much
lihood ratio test (LRT) between the spatial-GLM and larger.
standard-GLM for spatial independenceHyd: r = 0
showed that the LRT was highly significant in all cases
(Table 3. 4. Discussion
The relative indices of the number of yellowfin
tuna from standardizing their CPUEs are provided in 4.1. Evaluation of the spatial-GLM
Fig. 4. The point estimates, standard errors (S.E.) and
95% confidence intervals (C.l.) were also compared  Although the temporal trends in the CPUEs from the
among the standard-GLM, spatial-GLM, standard- spatial-GLMs did not differ greatly from those from the
GLM/HBM and spatial-GLM/HBM Figs. 4-J. The standard-GLMs, the spatial-GLMs are preferred for an-
temporal trends of the point estimates differed slightly alyzing the CPUE data on yellowfin tuna, especially if
between the two methods in each comparigég.(4), there is strong spatial autocorrelation among the data.
while the standard errors and 95% confidence inter- This is because the spatial-GLMs took account of the
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spatial-GLM with that from the standard-GLM (upper panel), and from the spatial-GLM/HBM with that from the standard-GLM/HBM (lower
panel).

spatial autocorrelation effectively and yielded more re- in all casesTable 3. Therefore, the spatial-GLMs per-
alistic estimates of the variances. This is not surprising, form betterin analyzing yellowfin tuna CPUE data than
especially considering the semivariograms and covar- the standard-GLMs, if the data exhibit strong spatial
iograms from the standard-GLM§&ify. 3). A covari- autocorrelation.

ogram is a function of the distance between data points

that measures how strong their spatial autocorrelation 4.2, What are the appropriate approaches for

is. A positive spatial autocorrelation manifests itself spatial-CPUE standardization?

in a decrease with distance to zero at some distance,

where observations are no longer autocorrelated. Since  What are the appropriate approaches to standardize
the covariogram does not exist for some processes, aa set of spatial-CPUE data from a fish population? It is
semivariogram is commonly used in geostatistics. It rather difficult to answer this question. In the present
is calculated by summing up all the squared differ- paper, we have only used the spatial-GLM in analyzing
ences of the values between each pair of the points atthe data on yellowfin tuna in the Indian Ocean. Clearly,
different distances to measure the dissimilarity of the much work is needed on many other sets of data before
data points with distance. Their graphical representa- drawing any further conclusions. Also, we coupled the
tions can be used to examine the spatial correlation spatial approach to GLMs only. Many common sta-
of the data points with their neighbors. The likelihood tistical methods, such as general additive models, re-
ratio tests (LRT) for spatial independencetdd: r = gression trees, and neural networks, can be also made
0 showed that the test statistics were highly significant spatially. There is a need for searching the most appro-
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