Japanese longline CPUE for bigeye tuna in the Indian Ocean up to 2004 standardized by GLM applying gear material information in the model

Hiroaki OKAMOTO and Hiroshi SHONO

National Research Institute of Far Seas Fisheries 5 chome 7-1, Shimizu-Orido, Shizuoka-City, 424-8633, Japan

Abstract

Japanese longline CPUE for bigeye tuna from 1960 to 2004 was standardized by GLM (CPUE-LogNormal error structured model) which SST (Sea Surface Temperature) was included in the model as oceanographic factor. NHF (Number of Hooks between Float) which was divided into six classes and main-line materials was applied in the model as fishing gear information. In the early 1990s, quick shift of longline gear configuration to larger NHF occurred. This shift of configuration seems to be derived from the introduction of Nylon material into longline gears. In order to remove the effect of the gear shift accompanied with change in gear material, information of main line materials was newly applied in the standardization model.

In the tropical area, the main longline fishing ground for bigeye, the CPUE which has continuously declined since 1960 until 2002 except for 1977 and 1978, showed a little increase in 2003 and 2004. Although the relative CPUE fluctuated drastically, and no clear trend was observed in the temperate area, obvious declining trend has been observed since 1994. By applying gear material information in the model after 1989, declining trend in 1994 and after was slightly weakened. Since Catch model with Negative Binomial error structure also applied for comparison, the relative trend was quite similar to that from CPUE-LogNormal model.

1. Introduction

The number of hooks between float (NHF) is one of the important indicator to know the targeting of the longline operation and has been used to standardize longline CPUE. It is well known that NHF increased quickly in the middle of 1970s at the tropical area according to the shift of targeting from yellowfin to bigeye tuna (Suzuki et al, 1977). In the end of 1980s through early 1990s, similar sort of increase in NHF was observed in tropical and temperate areas, that is, from NHF=13 to NHF=20 in the tropical and from NHF=7 to NHF=10 in the temperate (Okamoto et al., 2004). The big shift in the gear configuration of this time, however, seems not to be brought by target shifting but by the introduction of new material, Nylon mono-filament, for longline gear (Okamoto, 2005). It is naturally supposed that the different gear material may cause the difference in catch ability. That is, CPUE may be different between same NHF of different material. For example, NHF 15 with mainline of previous material might have different catchability from that of NHF 15 with nylon main line. Therefore, it is desirable to include gear material information in the model to standardize the targeting more appropriately.

2. Materials and methods

In the previous standardization of longline CPUE for bigeye, MLD (Mixing Layer Depth) was applied in the model. MLD data had been downloaded from JEDAC (Joint

Environmental Data Analysis Center) website of Scripps Institution of Oceanography. However, because the data source of MLD stopped to supply it, MLD was not be able to be used this time.

Area definition:

Area definition used in this study was changed from that used in the last bigeye assessment (Okamoto et al, 2004) to the new area definition which was discussed and agreed at the IOTC WPTT meeting in 2005. Previous and new area definitions were shown in Fig. 1. Main fishing ground of Japanese longline fishery was divided into seven sub-areas and CPUE standardization was done for three cases of the sub-area combinations, Tropical (sub-areas 1-5), South (sub-areas 6 & 7) and ALL (sub-areas 1-7) Indian Ocean. Area 67 in the south area was not used in this study.

Environmental factors:

As environmental factors, which are available for the analyzed period from 1960 to 2004, SST (Sea Surface Temperature) was applied. The original SST data, whose resolution is 2-degree latitude and 2-degree longitude by month from 1946 to 2004, was downloaded from NEAR-GOOS Regional Real Time Data Base of Japan Meteorological Agency (JMA).

http://goos.kishou.go.jp/rrtdb/database.html

It is necessary to get password to access the data retrieving system. The original data was recompiled into 5-degree latitude and 5-latitude longitude by month from 1960 to 2004 using the procedures described in Okamoto et al. (2001), and used in the analyses.

Catch and effort data used:

The Japanese longline catch (in number) and effort statistics from 1960 up to 2004 were used. 2004 data is preliminary. The catch and effort data set from aggregated by month, 5-degree square, NHF (the number of hooks between floats, and main line material, was used for the analysis. Data in strata in which the number of hooks was less than 5000 were not used for analyses. As the NHF information does not available for the period from 1960 to 1974, NHF was regarded to be 5 in this period. Main line material was categorized in to two, 1 = Nylon and 2 = other. Although this information on the materials has been collected since 1994, the nylon material was started to be used by distant water longliner in the tropical Indian Ocean in around the late 1980s and spread quickly in the early 1990s (Okamoto 2005). And as a result of introduction of the new material, the larger number of NHF than 17 or 18 would become possible to be used. Therefore, the material of NHF 17 or larger was assumed to be nylon since 1990.

GLM (Generalized Linear Model):

CPUEs based on the number of catch was used;

The number of caught fish / the number of hooks * 1000

The model used for GLM analyses (CPUE-LogNormal error structured model) with SST was as follows.

YR(i): effect of year,

 $MN_{(j)}$: effect of fishing season (month),

AREA(k): effect of sub-area,

NHFCL(1) : effect of gear type (class of the number of hooks between floats),

SST(m): effect of SST,

ML(n): effect of material of main line,

YR (i)*AREA (k) : interaction term between year and sub-area,

MN (j)*AREA (k) : interaction term between fishing season and sub-area,

AREA (k)*NHFCL (l) : interaction term between sub-area and gear type,

AREA(k)*SST (m) : interaction term between sub-area and SST,

NHFCL(l)*ML(n) : interaction term between sub-area and MLD,

e(ijkl..) : error term.

The number of hooks between float (NHF) was divided into 6 classes (NHFCL 1: 5-7, NHFCL 2: 8-10, NHFCL 3: 11-13, NHFCL 4: 14-16, NHFCL 5: 17-19, NHFCL 6: 20-21) as later explanation.

Effect of year was obtained by the method used in Ogura and Shono (1999) that uses lsmean of Year-Area interaction as the following equation.

$$\begin{split} CPUE_i &= \Sigma \ \ W_j * (exp(lsmean(Year i*Area _j))\text{-}constant) \\ Where \ CPUE_i &= CPUE \ in \ year \ i, \\ W_j &= Area \ rate \ of \ Area \ j \ , \ (\Sigma \ W_j = 1), \\ lsmean(Year*Area_{ij}) &= least \ square \ mean \ of \ Year-Area \ interaction \ in \ Year \ i \\ and \ Area \ j, \\ constant &= 10\% \ of \ overall \ mean \ of \ CPUE. \end{split}$$

Previous model, in which MLD is included and a model, in which ML factor and its relating interactions were not included, were also applied to know effect of lack of the MLD and effect of newly applied ML on the results of the standardization.

Negative Binomial error structure assumption was also applied for comparison. In order to get quarterly abundance index as input data for SS2 (Stock Synthesis 2), one another model in which quarter was included in the model instead of month was run. In this case, area weighting was not done.

3. Results and discussion

CPUE standardizations by GLM:

The bigeye CPUE (catch in number per 1000 hooks) was standardized by GLM (CPUE-LogNormal error structured model) for each of three area categories, Tropical (Areas 1-5), South (Areas 6 & 7) and All Indian Ocean (Areas 1-7), as described in the materials and method section.

Trends of CPUE in each area category (Tropical, South and All Indian Ocean) were shown in Fig. 2 overlaying Nominal CPUE in real scale and relative scale. In the tropical area, CPUE continuously decreased from around 9.0 (real scale) in 1960 to 3.0 in 2002 with exception of abrupt high value in 1977 and 1978. In 2003 and 2004, it has slightly increased into about 4.0. Standardized CPUE in the south area which didn't show clear trend during the period between 1984 and 2000 (CPUE was 3.5 on average), decreased to 2.3 in 2003 and increased to 3.0 in 2004. As a result, CPUE in all Indian Ocean, which had decreased until 2002, increased a little in 2003 and 2004. Results of ANOVA and distributions of the standard residual in each analysis were shown in Table 1 and Fig. 3, respectively. Distributions of the standard residual did not show remarkable difference from the normal distribution. F test showed that the effects of all explanatory variables included in the model were significant in the standardization for tropical Indian Ocean, but Area, ML, AREA*NHFCL, and SST*AREA were not significant in the south area, and ML was not significant in the all Indian Ocean.

CPUE trends described above (CASE 3) were presented in Fig. 4 overlaying with the results from previous model in which MLD was included (CASE 1) and from a model in which ML was not included (CASE 2). There was not remarkable difference in CPUE trend between including or not-including MLD in the model. In the case of main line materials, the CPUE standardized by the model, in which ML was included, tend to be relatively a little bit higher than that from model without ML in the tropical area while no difference was shown in the south area.

Annual values of standardized CPUE by area were listed in Appendix Table 1. Standardized CPUE of each month and each NHFCL by material were compared for tropical and temperate area in Fig. 5 and 6, respectively. In the temperate, CPUE was highest in summer (Jun–Sep) and lowest in winter (Nov-Feb). Although the seasonal trend in tropical was not so clear, that in winter was highest in winter and lowest in March and April. Regarding the combination of NHFCL with main line materials, larger NHFCL shows higher CPUE in the case of non-nylon main line, while smallest (NHFCL1) and largest (NHFCL 6) classes were rather low in CPUE than other NHFCL 2 - 4. In the latter case, the CPUEs of NHFCL 2 through NHFCL 5 were about the same level each other. Standardized CPUE of non-nylon main line in tropical area was lower than nylon main line for all NHFCL except for NHFCL 6.

The results of the standardization applying Catch model with Negative Binomial error structure were shown in Fig. 7 overlaid with those from CPUE-LogNormal error structured model just for comparison. In the Negative Binomial model, the same explanatory variables as that used in lognormal model were used without careful examine. Basic structure of the model was as follows.

E[Catch] = Effort * exp(Intercept + each explanatory valuables)

where, Catch ~ Negative Binomial(α, β)

Their trends were almost same each other in tropical and south Indian Ocean.

Finally, quarterly CPUE trend from 1960 to 2004 were shown in Fig. 8 overlaid with year trend. As described in Method section, area weighting was not done for quarterly CPUE. Nevertheless, quarterly CPUE showed very similar trend to annual CPUE. The values of quarterly CPUE were listed in Appendix Table 2.

4. Recerences

Shono, H. and M. Ogura, M. (1999): The standardized skipjack CPUE including the effect of searching devices, of the Japanese distant water pole and line fishery in the Western Central Pacific Ocean. ICCAT-SCRS/99/59. 18p

- Okamoto, H., Miyabe, N., and Matsumoto, T. (2001): GLM analyses for standardization of Japanese longline CPUE for bigeye tuna in the Indian Ocean applying environmental factors. IOTC/TTWP/01/21, 38p.
- Okamoto, H. Miyabe, N., and Shono, H. (2004): Standardized Japanese longline CPUE for bigeye tuna in the Indian Ocean up to 2002 with consideration on gear categorization. IOTC/WPTT/04/18. 14 pp.
- Okamoto, H. (2005): Recent trend of Japanese longline fishery in the Indian Ocean with special reference to the targeting. IOTC/WPTT/05/11, 15pp.
- Suzuki Z., Warashina Y., and Kishida M., 1977: The comparison of catches by regular and deep tuna longline gears in the western and central equatorial Pacific. Bull. *Far Seas*

Fish. Res. Lab., 15, 51-89.

	Source	D.F.	S.S.	M.S.	F Value	Pr≻F	R-Square
	Model	315	3717.94	11.80	37.41	<.0001	0.351646
	Year	44	487.79	11.09	35.14	<.0001	
	Month	11	80.78	7.34	23.28	<.0001	
	Area	4	62.99	15.75	49.92	<.0001	
	NHFCL	5	24.57	4.91	15.58	<.0001	
TROPICAL	SST	1	17.68	17.68	56.03	<.0001	
	ML	1	1.90	1.90	6.04	0.014	
	Year*Area	176	403.52	2.29	7.27	<.0001	
	Month*Area	44	137.29	3.12	9.89	<.0001	
	Area*NHFCL	20	65.26	3.26	10.34	<.0001	
	Area*SST	4	57.27	14.32	45.38	<.0001	
	NHFCL*ML	5	19.75	3.95	12.52	<.0001	
	Model	129	3940.91	30.55	53.82	<.0001	0.351732
					10.00	(
	Year	44	405.09	9.21	16.22	<.0001	
	Month	11	444.38	40.40	71.18	<.0001	
	Area	1	0.05	0.05	0.09	0.76	
SOUTH	NHFCL	5	30.97	6.19	10.91	<.0001	
	SST	1	259.93	259.93	457.96	<.0001	
	ML	1	0.02	0.02	0.04	0.838	
	Year*Area	44	154.10	3.50	6.17	<.0001	
	M onth*A rea	11	67.47	6.13	10.81	<.0001	
	Area*NHFCL	5	4.29	0.86	1.51	0.1822	
	Area*SST	1	0.57	0.57	1.01	0.315	
	NHFCL*ML	5	13.38	2.68	4.72	0.0003	
	Model	439	10742.51	24.47	63.59	<.0001	0.447026
	37			14.00	00.00	(0.001	
	Year	44	653.99	14.86	38.63	<.0001	
	Month		76.61	6.96	18.10	<.0001	
	Area	6	81.00	13.50	35.08	<.0001	
	NHFCL	5	35.47	7.09	18.44	<.0001	
ALL_IND	SST	1	7.44	7.44	19.33	<.0001	
	ML	1	0.40	0.40	1.04	0.3089	
	Y ear*A rea	264	921.60	3.49	9.07	<.0001	
	M onth*A rea	66	534.57	8.10	21.05	<.0001	
	Area*NHFCL	30	81.81	2.73	7.09	<.0001	
	Area*SST	6	106.08	17.68	45.95	<.0001	
	NHFCL*ML	Ъ	19.33	3.87	10.04	<.0001	

Table 1. ANOVA table of GLM.

Fig. 1 Definition of sub-areas used in this study. TROPICAL, SOUTH and ALL INDIAN area categories in this paper consist of sub-areas 1-5, sub-areas 6-7 and sub-areas1-7, respectively. Area67 was not used in this study.

Fig. 2. Standardized CPUEs in real (A) and relative (B) scales for ALL Indian, Tropical and South areas derived from new model with ML (Main line material) overlaid with Nominal CPUE.

Fig. 3. Standardized residuals of year based standardization for each area expressed as histograms (upper figures) and QQ plots (bottom figures)..

Fig. 4. CPUE trends derived from new model with ML (Main line material, CASE3) overlaid with the results from previous model in which MLD was included (CASE 1) and from a model in which ML was not included (CASE 2). In the CASE1, 2004 was not included because mixing layer depth data in 2004 was not available. Bottom figures were magnified view of upper figures for the period from 1991 to 2004.

Fig. 5. Standardized CPUE in real scale by month for Tropical and Temperate Indian Ocean. Unit of CPUE is catch in number per 1000 hooks.

Fig. 6. Standardized CPUE expressed in real scale by NHFCL and mainline materials for Tropical and Temperate Indian Ocean. Unit of CPUE is catch in number per 1000 hooks.

Fig. 7. Bigeye CPUE standardized by Catch-Negative Binomial model (GM_NB) and CPUE-LogNormal model (GLM).

Fig. 8. Quarterly CPUE trend (blue line and dot) from 1960 to 2004 overlaid with yearly CPUE (red dot). Area weighting was not done for quarterly CPUE.

Appendix Table 1. Annual value of standardized Bigeye CPUE in All, Tropical and Temperate Indian Ocean from 1960-2004 expressed in relative scale in which the average from 1960 to 2004 is 1.0.

YEAR	ALL_IND	TROPICAL	SOUTH	_	2002	0.5207	0.4729	0.7331
1960	1.2791	1.4248	0.6554	-	2003	0.5716	0.5423	0.6430
1961	1.0599	1.1698	0.5519	_	2004	0.6605	0.5936	0.8442
1962	1.2326	1.3517	0.6493					
1963	1.1390	1.2879	0.6304					
1964	1.1222	1.2373	0.6069					
1965	0.9335	1.0433	0.5926					
1966	1.0619	1.2020	0.6131					
1967	0.9858	1.0149	0.8252					
1968	1.1166	1.1591	0.9027					
1969	1.0765	1.0856	1.0142					
1970	1.2269	1.0992	1.6616					
1971	0.9319	0.9105	1.1424					
1972	0.9886	0.9259	1.3742					
1973	1.0641	1.0819	1.0905					
1974	1.0538	1.1162	0.8742					
1975	0.8065	0.8181	0.8271					
1976	0.8986	0.8990	0.7810					
1977	1.7210	1.6669	2.0994					
1978	1.5708	1.5597	1.6717					
1979	1.1787	1.0754	1.2695					
1980	1.1983	1.0724	1.5159					
1981	1.0667	1.0378	1.0651					
1982	1.2039	1.1927	1.1596					
1983	1.2625	1.1625	1.4806					
1984	0.9783	0.9859	0.9874					
1985	0.8927	0.9337	0.8152					
1986	1.0282	1.0933	0.7527					
1987	1.2927	1.3180	1.0479					
1988	1.0678	1.0876	0.9159					
1989	0.9686	0.9949	0.8540					
1990	0.9241	0.9656	0.7567					
1991	0.9055	0.8395	1.1254					
1992	0.8609	0.8531	0.8130					
1993	0.8931	0.8379	1.0879					
1994	0.8410	0.7481	1.3385					
1995	0.8003	0.7700	1.0257					
1990	0.0100	0.7904	0.0564					
1997	0.0000	0.0400	0.9001					
1990	0.1123	0.0909	1.1394					
2000	0.1294	0.0774	1 10/6					
2000	0.0094	0.0010	0.8125					
2001	0.0030	0.5711	0.0133					

				me average		00.00	-001101		
YEAR	QT	All ind	Tropic.	South	YEAR	QT	All ind	Tropic.	South
1960	1	0.9746	1.3020	0.3083	1971	1	0.7839	0.7149	0.9153
1960	2	1.2496	1.4758	0.7033	1971	2	1.2021	0.9505	1.9446
1960	3	1.3601	1.5717	0.8439	1971	3	1.1992	1.2167	1.2356
1960	4	1.1766	1.5261	0.4859	1971	4	1.1233	1.2370	0.6835
1961	1	0.8269	1.0814	0.2613	1972	1	1.0239	1.0242	0.6209
1961	2	1.0869	1.2482	0.5807	1972	2	1.1083	0.9310	1.7331
1961	3	1.1838	1.2591	0.9058	1972	3	1.1760	0.8875	2.2581
1961	4	1.0334	1.2882	0.4485	1972	4	1.0425	1.0937	0.8404
1962	1	1.0604	1.3111	0.5203	1973	1	1.2899	1.3433	0.9850
1962	2	1.1901	1.2863	0.9984	1973	2	1.2108	1.2355	1.1274
1962	3	1.1070	1.4786	0.5225	1973	3	1.0838	0.9505	1.3335
1962	4	1.1904	1.4438	0.6415	1973	4	0.9814	1.0222	0.7681
1963	1	1.0683	1.2931	0.5530	1974	1	1.0585	1.0972	0.8806
1963	2	1.1258	1.2492	0.8063	1974	2	1.0710	0.9485	1.1107
1963	3	1.3482	1.6304	0.8091	1974	3	1.2067	1.1791	1.1885
1963	4	1.0956	1.3890	0.4952	1974	4	0.8914	1.1585	0.3467
1964	1	0.9459	1.1819	0.4304	1975	1	0.8281	0.8487	0.6615
1964	2	1.2021	1.3353	0.7720	1975	2	0.9019	0.7680	1.1164
1964	3	1.0495	1.2027	0.6492	1975	3	0.9640	0.8449	1.2256
1964	4	1.0519	1.1893	0.6312	1975	4	0.7278	0.8431	0.3557
1965	1	0.8023	1.0423	0.2662	1976	1	0.6878	0.7346	0.6325
1965	2	0.9326	1.0544	0.5599	1976	2	0.9714	1.0056	0.6742
1965	3	1.0230	1.0623	0.8268	1976	3	0.9534	0.9257	0.8144
1965	4	0.9750	1.1586	0.5128	1976	4	0.7700	0.8698	0.3394
1966	1	1.0335	1.3320	0.3842	1977	1	1.6759	1.7235	1.0205
1966	2	0.9584	1.0867	0.6310	1977	2	2.3360	1.3946	4.1166
1966	3	1.1860	1.3124	0.8584	1977	3	2.6060	2.3238	3.2791
1966	4	1.0499	1.2966	0.4925	1977	4	1.7056	1.7396	1.3580
1967	1	0.9092	1.0515	0.5214	1978	1	2.0967	1.9324	2.6367
1967	2	0.9897	0.8521	1.2801	1978	2	1.4932	1.3152	1.5865
1967	3	1.1079	1.0431	1.1737	1978	3	1.7094	1.5547	1.8431
1967	4	0.8790	1.0237	0.4997	1978	4	1.4126	1.5765	0.7722
1968	1	0.9451	1.0415	0.6227	1979	1	1.0706	1.0789	1.0003
1968	2	1.2156	1.0929	1.3753	1979	2	1.3685	1.0855	2.3151

Appendix Table 2. Quarterly value of standardized Bigeye CPUE from 1960-2004 expressed in relative scale in which the average from 1960 to 2004 is 1.0.

1968	3	1.3346	1.4734	1.0374	1979	3	1.0885	0.8599	1.7697
1968	4	1.0039	1.2593	0.4634	1979	4	0.8823	1.1074	0.5383
1969	1	1.0543	1.1959	0.6311	1980	1	0.8711	0.7467	1.1960
1969	2	0.8630	0.8984	0.6805	1980	2	1.4555	1.2543	1.6743
1969	3	1.2379	1.1945	1.2493	1980	3	1.0866	0.8664	1.6884
1969	4	1.2157	1.1398	1.5267	1980	4	1.3045	1.2689	1.1576
1970	1	1.3496	1.2398	1.7312	1981	1	0.9347	0.9433	0.7910
1970	2	1.2738	1.0089	1.9744	1981	2	1.2909	1.1426	1.5529
1970	3	1.4533	1.2644	1.9481	1981	3	1.1708	1.0146	1.4679
1970	4	0.8630	0.9333	0.6560	1981	4	1.1569	1.1863	0.9409

Appendix Table 2. Continued.

e	endix Ta	one z .	Continue	ea.						
	YEAR	QT	All ind	Tropic.	South	YEAR	QT	All ind	Tropic.	South
	1982	1	1.0556	1.0710	0.9246	1994	1	0.6886	0.6581	0.8509
	1982	2	1.8171	1.6640	2.0221	1994	2	0.8760	0.6775	1.4219
	1982	3	1.2656	1.1404	1.5923	1994	3	0.9190	0.8911	1.4748
	1982	4	1.1979	1.3189	0.4346	1994	4	0.8630	0.8375	1.0142
	1983	1	1.1840	1.1653	0.8644	1995	1	0.8698	0.8749	0.8716
	1983	2	1.3314	1.1961	1.5671	1995	2	0.9970	0.8563	1.2932
	1983	3	1.3634	1.1324	2.0380	1995	3	0.8096	0.6454	1.1140
	1983	4	1.1806	1.1369	1.2028	1995	4	0.7100	0.7896	0.6333
	1984	1	0.8445	0.8668	0.6723	1996	1	0.7885	0.7122	0.8830
	1984	2	1.0918	0.9141	1.5324	1996	2	0.8351	0.8396	1.0569
	1984	3	1.4337	1.2594	1.8616	1996	3	0.8735	0.9015	1.1539
	1984	4	0.9860	1.1041	0.6661	1996	4	0.6654	0.7317	0.6103
	1985	1	0.9337	0.9797	0.6940	1997	1	0.6173	0.5947	0.7445
	1985	2	0.9998	0.8686	1.2010	1997	2	0.7871	0.8834	0.9931
	1985	3	1.1052	1.0214	1.2224	1997	3	0.6039	0.5276	0.9459
	1985	4	0.9381	1.1008	0.4094	1997	4	0.6803	0.6374	0.8284
	1986	1	0.9781	1.0708	0.6518	1998	1	0.7379	0.7028	0.9534
	1986	2	1.0209	1.0879	0.7292	1998	2	0.7281	0.6622	1.0953
	1986	3	1.1686	1.0602	1.7206	1998	3	0.7366	0.6524	1.1901
	1986	4	1.1874	1.2973	0.9447	1998	4	0.5967	0.5927	0.6631
	1987	1	1.2468	1.4152	0.7072	1999	1	0.6698	0.6424	0.7808
	1987	2	1.1026	1.0563	1.2081	1999	2	0.7813	0.7934	1.0367
	1987	3	1.3912	0.9874	2.1411	1999	3	0.6928	0.6017	1.0587
	1987	4	1.1877	1.3563	0.6885	1999	4	0.5803	0.5991	0.5684

1988	1	1.0565	1.2121	0.4331	2000	1	0.6138	0.5405	0.9578
1988	2	1.1317	0.8644	1.8030	2000	2	0.6445	0.5833	0.9966
1988	3	0.9511	0.8318	1.2080	2000	3	0.5266	0.4316	0.9796
1988	4	1.0736	1.1750	0.7281	2000	4	0.5345	0.5015	0.6930
1989	1	0.8816	0.9638	0.5303	2001	1	0.5297	0.4684	0.7041
1989	2	1.0981	0.9718	1.4250	2001	2	0.6332	0.6354	0.8002
1989	3	1.1045	0.8699	1.7014	2001	3	0.5248	0.5391	0.7432
1989	4	1.0419	1.2332	0.5073	2001	4	0.5114	0.4825	0.5818
1990	1	0.8969	1.1066	0.4006	2002	1	0.5761	0.5237	0.7601
1990	2	0.9276	0.7968	1.3664	2002	2	0.5502	0.5356	0.7092
1990	3	1.2186	1.0824	1.1843	2002	3	0.3697	0.3311	0.6201
1990	4	0.8194	0.9592	0.4712	2002	4	0.4102	0.3942	0.5334
1991	1	0.8336	0.8720	0.6414	2003	1	0.4195	0.3930	0.6083
1991	2	0.9787	0.9743	1.1725	2003	2	0.5063	0.5424	0.5681
1991	3	1.0312	0.9291	1.4015	2003	3	0.4222	0.3891	0.7004
1991	4	0.9364	0.7233	1.1058	2003	4	0.5110	0.4693	0.8438
1992	1	0.7416	0.8080	0.5796	2004	1	0.4698	0.4173	0.7355
1992	2	0.8946	0.8370	0.9760	2004	2	0.5554	0.5145	0.7771
1992	3	0.7035	0.6909	0.7904	2004	3	0.4874	0.4068	0.8908
1992	4	0.9164	0.8995	0.8829	2004	4	0.6542	0.6142	0.8293
1993	1	0.8681	0.9477	0.7904					
1993	2	0.7465	0.6863	1.0046					
1993	3	0.7456	0.8027	1.0037					
1993	4	0.8758	0.7250	1.1610					