National Report of the Republic of Korea, 2006

Soon-Song Kim, Seon-Jae Hwang, Doo-Hae An and Dae-Yeon Moon National Fisheries Research and Development Institute, Busan 619-705, Republic of KOREA

Abstract

The Korean tuna longline fishery has shown a decreasing trend from the late 1970s to recent years in both number of fishing vessels and annual catches. In 2006, total catch amounted to 7,375 mt by 26 longliners in the Indian Ocean, which is slightly high catches as compared to 2005. Catch consists of 93 mt of southern bluefin tuna, 3,210 mt of yellowfin tuna, 237 mt of albacore, 2,945 mt of bigeye tuna, 409 mt of other tunas, 475 mt of billfishes and 6 mt of sharks, respectively. The National Fisheries Research and Development Institute (NFRDI) began to operate fisheries observer program in 2002 to monitor Korean distant-water fisheries for tunas and to meet the requirements of regional fisheries bodies. In 2006 and 2007, one Korean observer monitored one of the Korean tuna longline vessels in the western Indian Ocean, respectively.

General Fishery Statistics

Catch

Tunas in the Pacific and Indian Ocean have been the most important target species for distant-water fishery industries in Korea. Korean tuna fishery has operated its longline fleet in the Indian Ocean since the mid-1960s. Major target species of tunas include yellowfin, bigeye and albacore tunas. However, in recently albacore tuna remains as a minor species whereas southern bluefin tuna was enlisted in one of the target species of Korean longliners.

Catches by longline fishery has shown a decreasing trend from a peak at 71,100 mt in 1978 to 2002 (Table 1) and then increasing to 2004. In 2006, annual total catch amounted to 7,375 mt, which is slightly high catches as compared to 2005. Catch consists of 93 mt of southern bluefin tuna, 3,210 mt of yellowfin tuna, 237 mt of albacore, 2,945 mt of bigeye tuna, 409 mt of other tunas, 475 mt of billfishes and 6 mt of sharks, respectively (Table 2 and Fig. 1). Catch of southern bluefin tuna increased

to the previous year and bigeye tuna and albacore also increased in 2006, while yellowfin tuna catches in 2006 was the same as 2005.

Recently, yellowfin and bigeye tunas have been the most important species for Korean tuna longline fishery because of higher commercial value in most of Japanese sashimi market. In 2006, the two species accounted for most of the catch by longliner (43.5% and 40.0% respectively) from the Indian Ocean.

The traditional fishing grounds of Korean tuna longline fishery were mainly formed in the central tropical area between 20°N and 20°S. From 1991 onward some longliners moved to the south (43 °N) of the Indian Ocean where they target southern bluefin tuna, yellowfin tuna, bigeye tuna and albacore catches were also recorded. In 2006, Korean longliners were operated in the fishing grounds with a range of 5°N~35°S and 30°~55° E. Total catch of all was caught in western Indian Ocean. The fishing grounds was not extend to the eastern Indian Ocean as compared to 2005 (Fig. 2).

Fleet structure

Number of Korean tuna longline fishing vessel in the Indian Ocean has shown a decreasing trend from a peak in 1975. In 2006, only 26 vessels were operating in the Indian Ocean, which is a decrease by 2 vessels as compared to 2005. The size of Korean tuna longliners ranges from 277 to 525 gross tonnage classes.

Size composition data

Fishermen on board are encouraged to collect size data of main target species, bigeye and yellowfin tuna. Fig. 3 showed the size distribution of yellowfin tuna (YFT) and bigeye tuna (BET) caught by Korean longliners during the past 2 years in the Indian Ocean. Size composition in 2006 ranges from 74 to 163cm Fork length (FL) for YFT and from 92 to 167 cm FL for BET, respectively. The mean FL of YFT was 122.6 cm with mode 124~126 cm and that of BET was 130.2 cm with two mode (118~120 cm and 134~136 cm). The size of these target species has shown decreasing trend.

National data collection system

Korean longline fisheries in the Indian Ocean usually have operated in all year round since the fishery started. Thus, fisheries statistics are collected and reported for a calendar year. Coverage rate in catch of all species was 52 to 69% during the 1981-1985

periods, but it increased to the highest level of 91% in 1987. In recent years, the coverage rates maintained over 50%.

There are two national data collection systems for Korean tuna fisheries. The first system has been operated by the Korean Deep-Sea Fisheries Association to collect total catch by species. All Korean distant-water fishing vessels report their catch records in terms of weight by species to their companies once a week or at 10-day intervals. The Association compiles the data by month and by FAO fishing area to submit to the Ministry of Maritime Affairs and Fisheries for the final review and publication. Both the Association and the Ministry publish the catch statistics for official use annually.

The second data collection system is to sample catch and effort data based on the logbooks. This system was lawful in 1977 by the Ministry of Agriculture and Fisheries. According to this domestic regulation, distant-water fishing vessels have to submit the reports of their fishing operations within 30 days (home-based) or 60 days (foreign-based) after completion of their operations to the National Fisheries Research and Development Institute (NFRDI). The NFRDI of Korea has monitored and compiled catches and fishing-efforts of tuna longliners in the Indian Ocean. The requested catch and efforts data were already provided to the IOTC secretariat.

Implementation of recommendations

As a responsible fishing nation, Korea has implemented recommendations and resolutions adopted by regional fisheries organizations. Legislation of domestic regulations, initiation of observer program, and submission of fisheries statistics are among its efforts to meet the requirements by various fisheries bodies including IOTC.

Other relevant information

The National Fisheries Research and Development Institute (NFRDI) began to operate fisheries observer program in 2002 to monitor Korean distant-water fisheries including those for tunas and to meet the requirements of regional fisheries bodies. At the initial stage, the scale of observer program will be fairly small to cover only for the fisheries to be urgently implemented such as a southern bluefin tuna longline fishery in CCSBT convention area, but it will be gradually developed to a bigger scale to cover all required areas of fisheries.

The goal of the first stage of observer program development is to establish a domestic training system to educate national observers. In 2006 and 2007, a total of 9 observer

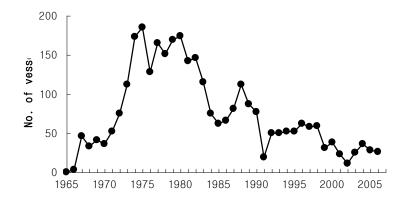

candidates received a trainship from Korean longline observer program provided by NFRDI. All nine observers joined 2-3 months on-board Korean commercial fishing vessels in 2006. To monitor the Korean tuna longline vessel in the Indian Ocean, NFRDI dispatched one scientific observer in 2006 and 2007, respectively. These results of observer program for the Indian Ocean will be reported later.

Table 1. Number of vessel, catch (ton) and CPUE (no. of fish/100 hooks) by Korean tuna longline fishery in the Indian Ocean, $1966\sim2005$. * Catch included FAO area 51, 57 and 58

Year	No. of vessel	Catch (ton)	CPUE (No of fish / 100 hooks)	Year	No. of vessel	Catch (ton)	CPUE (No of fish / 100 hooks)
1966	3	761		1991	19	6,317	1.38
1967	46	6,594		1992	50	10,311	1.42
1968	33	11,596		1993	50	14,198	1.20
1969	41	18,612		1994	52	14,581	1.08
1970	36	8,808		1995	52	10,905	1.15
1971	52	16,786		1996	62	18,432	1.34
1972	75	20,967		1997	58	18,100	1.30
1973	112	29,799		1998	59	8,411	0.88
1974	173	41,958		1999	31	3,836	0.82
1975	185	47,908	1.64	2000	38	6,888	0.83
1976	128	43,497	1.86	2001	23	4,033	0.92
1977	165	66,015	2.48	2002	11	1,259	0.47
1978	151	71,123	2.37	2003	25	3,840	1.12
1979	169	46,176	1.66	2004	36	7,735	1.42
1980	174	38,085	1.28	2005	28	6,958	1.49
1981	142	36,138	1.47	2006	26	7,375	1.14
1982	146	42,531	1.60				
1983	115	36,975	1.38				
1984	75	24,613	1.32				
1985	62	28,185	1.49				
1986	66	30,639	1.73				
1987	81	30,904	1.78				
1988	112	34,469	1.49				
1989	87	23,610	1.00				
1990	77	20,335	1.00				

Table 2. Annual catch by species and FAO statistical area for the Korean longline fishery in the Indian Ocean, 1995-2006

	Area	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Southern Bluefin tuna	51	314	1,402	1,415	463	328	363	513	215	75	32	93
	57	597	181	147	210	112	347	136	6	39	32	75
	58	371	101	117	563	456	317	150	0	37		
	sub-tot		1,583	1,562	1,236	896	710	649	221	114	32	93
Yellowfin	51	3,426	3,607	2,218	718	991	1,240	242	1,679	2,744	2,446	3,209
	57	17	35	47	85	73	161	90	421	1,324	849	1
tuna	58				105	747				-,:	V 17	
	sub-tot	3,443	3,642	2,265	908	1,811	1,401	332	2,100	4,068	3,295	3,210
Albacore	51	14	102	118	26	85	31	7	56	126	135	237
	57		102	4	1			3	39	224	48	
	58				-	10						
	sub-tot	14	102	122	27	95	31	10	95	350	183	237
	51	10,737	10,129	3,154	608	1,677	1,145	178	854	1,778	1,787	2,945
Bigeye tuna	57	48	77	33	479	129	256	8	267	688	694	2,743
	58	40	,,	33	258	1,414	230	0	207	000	074	
	sub-tot	10,785	10,206	3,187	1,345	3,220	1,401	186	1,121	2,466	2,481	2,945
	51	1,036	1,199	705	182	171	294	22	99	173	400	409
Other	57	46	5	19	18	1/1	29	22	22	5	400	407
Other tunas	58	40	3	19	44	358	29			3		
tunas	sub-tot	1,082	1,204	724	244	529	323	22	99	178	400	409
		51	1,204	147	8	42	18	9				176
	51	31				42		3	50	120	210	170
Swordfish	57 58		8	2	14 7	21	19	3	35	135	106	
		51	204	1.40			27	10	0.5	255	216	176
	sub-tot	51	204	149	29	63	37	12	85	255	316	176
	51	1	75	101	10	79	16		11	43	20	17
Blue marlin	57 58			2	6					1		
mamm		1	75	102	1.0	70	1.0		11	4.4	20	17
	sub-tot	1		103	16	79	16		11	44	20	17
	51		65	43	1	12	2		3	17	11	39
Striped marlin	57				1	8	1		3	11	11	
marmi	58		C 5	43	1	20	3			28	22	20
	sub-tot	2	65	43	1	20	3		6	28	22	39
Sailfish	51	3	5									2
	57 58											
		2	-									2
	sub-tot 51	3 8	5 40	20	2	10	10	4	16	<i></i>	55	109
		0	40	20		12	10	4	16	55	55	109
Black marlin	57				7	12	13	2	20	59	51	
mami	58	8	40	20		13	22	-	26	114	100	100
	sub-tot		40	20	13	25	23 74	6	36	114	106	109
0.1	51	2,125	939	217	4	124		38	30	42	6	132
Other billfishes	57	9	22	15	8	1	4	4	36	74	96	
	58	2.124	0.61	222	5	23	70	10		116	102	122
Sharks	sub-tot	2,134	961	232	17	148	78	42	66	116	102	132
	51		13	4			10			4	1	6
	57					2				1		
	58		10	4		2	10			4	4	
	sub-tot	10.515	13	4	2.621	2 521	10	1.012	2.612	1	1 5 102	6
Total -	51	17,715	17,772	8,142	2,021	3,521	3,203	1,013	3,013	5,174	5,103	7,374
	57	717	328	269	829	323	830	246	827	2,561	1,855	1
	58				986	3,044						_
	total	18,432	18,100	8,411	3,836	6,888	4,033	1,259	3,840	7,735	6,958	7,375

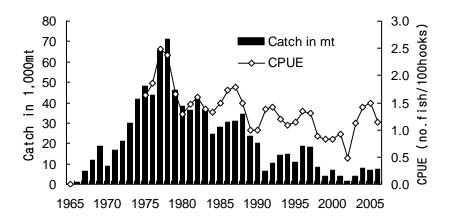


Fig. 1. Annual number of fishing vessels and nominal catch for the Korean tuna longline fishery in the Indian Ocean, 1966-2006.

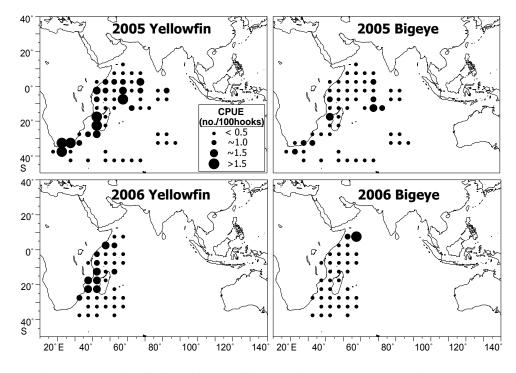


Fig. 2. Catch distribution of yellowfin and bigeye tuna in the Indian Ocean by Korean tuna longline fishery in 2005 and 2006.

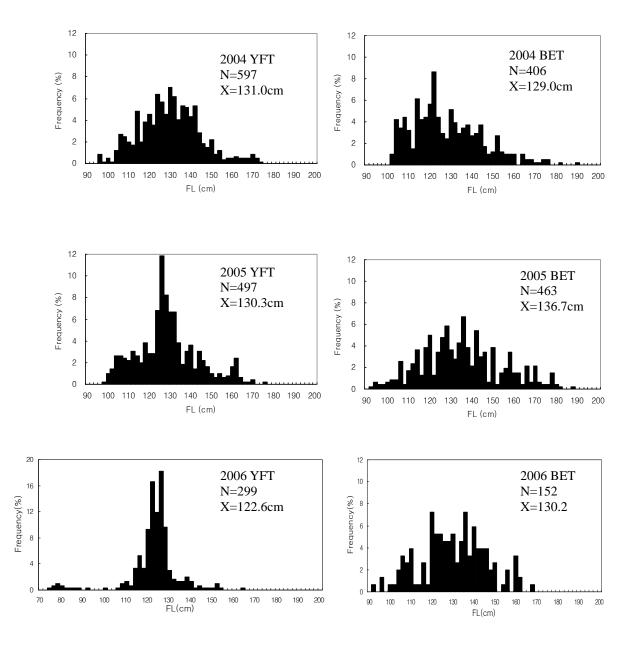


Fig. 3. Size composition of yellowfin tuna (YFT) and bigeye tuna (BET) caught by Korean tuna longliners from 2004 to 2006 in the Indian Ocean.