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Summary

Data collected through 20 observer fishing trips were used to quantify
the  number  of  silky  sharks  taken  as  bycatch  by  the  French  tuna
purse seine fishery of  the Western Indian Ocean. 1,385 immature
silky sharks of which 85% was discarded at sea and 15% retained
aboard, were observed as bycatch during 685 fishing sets observed
from October  2005 to  April  2008.  Zero-inflated regression  models
fitted  with  Bayesian  methods  were  used  to  explain  silky  shark
bycatch as a function of fishing mode (free vs. fishing aggregating
device-associated (FAD) schools), area, and season. Model results
showed that silky sharks occurred in 24% of the fishing sets with an
expected number of sharks per set estimated to be 2.02 ± 0.05. The
3 covariates were found to significantly explain  both the presence
and number of silky sharks caught by the French purse seiners. FAD
was shown to have a strong positive effect on the number of silky
sharks caught, an expected value of 4.3 sharks being taken in FAD-
associated  schools  versus  0.3  shark  in  free  schools.  There  were
significant differences in silky shark bycatch between seasons and
areas with higher bycatch than average in July-September and in the
South-East Seychelles area while fewer sharks were expected to be
caught in the North Somali area. Results are discussed within the
context  of the ecosystem approach to fisheries for the analysis  of
ecosystem effects of fishing.
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1. Introduction

In the recent years, the European tuna purse seine fishery catches annually about
250,000 t of major commercial tunas, i.e. more than 75% of the annual total
catch of tuna and tuna-like species caught by purse seiners in the Indian Ocean.
Species  primarily  targeted  by  the  European  tuna  purse-seine  fishery  of  the
Indian Ocean include yellowfin tuna Thunnus albacares (Bonnaterre 1788) and
skipjack tuna Katsuwonus pelamis (Linnaeus 1758); albacore Thunnus alalunga
(Linnaeus 1758) and bigeye tunas Thunnus obesus (Lowe 1839) being caught as
secondary target species, mostly as juveniles under fishing aggregating devices
(FADs).  More  than  fifty  non-targeted  marine  species including  billfishes,
selaceans, turtles, cetaceans, and several  finfishes can be taken as incidental
bycatch in the tuna purse-seine fisheries of the Indian Ocean  (Amandè 2007;
Gonzalez  et al.  2007; Romanov 2002). Bycatches are either discarded at sea
because they have no commercial  value,  retained aboard fishing vessels  for
consumption by the fishing crew, or sold on local fish markets because they can
not be processed by tuna canneries.

Incidental  bycatch  and  associated  discarding  is  often  difficult  to  quantify
because it is generally not or poorly recorded in logbooks by fishing masters.
The issues raised by bycatch and discarding are however of increasing concern
because such practices are responsible for economic loss, juvenile mortality,
ecological effects on key species which are relevant to the overall ecosystem
structure and functioning, and added threat to endangered or high ethical value
species  (Pascoe  1997;  Garcia  and  Cochrane  2005).  In addition,  catches  of
juvenile tunas that are discarded or sold on local  fish markets are generally
absent of official statistics whereas they should be included in stock assessment
models  in  use  for  providing  scientific  advice  to  fisheries  managers  and
stakeholders  (Clucas 1997). There has been a growing interest about bycatch
and discards in the world fisheries in the last decades  (Alverson  et al. 1994;
Harrington et al. 2005; Rosenberg 2005; Kelleher 2005) and the importance of
monitoring and reducing bycatch and discards has been emphasized as a key for
an ecosystem-based fishery management (Garcia and Cochrane 2005; Pikitch et
al. 2004).

While  several  studies  have  been  conducted  in  the  Pacific  Ocean  based  on
observer data (Edwards and Perkins 1996; Lawson 1997; Perkins and Edwards
1998; Olson  et al. 2006) bycatch remain poorly studied in the tropical purse-
seine  fisheries  of  the  Atlantic  and  Indian  Oceans  (Gaertner  et  al.  2002;
Romanov 2002). In the Western Indian Ocean (WIO), the only studies published
in  scientific  journals  concern  the  Soviet/Russian/Liberian-flag  purse  seiners
based on about 500 fishing sets observed during the mid-1980s and early 1990s
(Romanov 2008).  Recently,  analyses based on observers aboard French and



Spanish fishing vessels and scientific surveys have described the composition
and spatial distribution of bycatch  in the western and eastern parts of the Indian
Ocean (Delgado de Molina  et al.  2005; Rajruchithong  et al. 2005, Viera and
Pianet 2006, Gonzalez et al. 2007). Despite these analyses, few information is
currently available about quantitative estimates of bycatch and discards of the
European purse-seine fishery (Amandè et al. 2008).

In the present  analysis,  we focused on silky shark  Carcharhinus falciformis
(Müller and Henle 1839), the most frequent species of shark taken as bycatch in
the tuna purse-seine fisheries of the Indian Ocean (Amandè 2007; Delgado de
Molina et al. 2005; Gonzalez  et al. 2007). The objective was to estimate the
amount of silky sharks per set taken as bycatch in the French tuna purse-seine
fishery  of  the  WIO.  Silky  shark’s  catch  generally  has  many  zero-valued
observations and also includes high values (Fig. 1). Perkins and Edwards (1996)
examined such types of data in the purse-seine fishery of the eastern tropical
Pacific Ocean using a delta method that may also be applicable to the estimation
of non-target species. Statistical models based on a large dataset of observer data
were used to predict the amount of silky shark caught per fishing set. A zero-
inflated Poisson regression model  fitted with Bayesian methods was used to
quantify the expected number of silky sharks taken by the French tropical tuna
purse-seiners.

2. Materials and methods

Data

Data were collected within the framework of the European program of data
acquisition ‘Data  Collection Regulation’  (DCR).  Information about  sets  was
collected by observers placed aboard French tuna purse-seiners during fishing
trips from October 2005 to April 2008. A total of 685 fishing sets were observed
from 20 observer trips made during this period, corresponding to 613 fishing
days. The coverage rate has evolved from about 2% of total fishing days in 2005
to reach 8% in 2007. The data consist in visual estimates of the commercial
catch  because weighting total  catch  is  not  feasible aboard  purse-seiners  for
logistical  reasons. For  each fishing set,  the observer records the quantity in
weight or number and average estimate of the bycatch and discards in weight or
length for each species. Information about the fishing sets and environmental
conditions is also recorded, i.e. fishing time, sea surface temperature, fishing
mode, geographic position, etc.

The number of  silky sharks caught  per set  during the fishing trips was not
always available because observers sometimes only recorded a total and/or an
average  weight  of  sharks  caught.  In  such  cases,  data  were  converted  into



numbers  using the  published  Length-Weight  relationship  W =  2.103  *  L 3.23

(Froese and Pauly 2008).

Factors affecting bycatch

Several factors have been shown to influence levels of discarding and bycatch,
including the fishing methods and technical characteristics of the fishing vessel
(gear selectivity, size, fishing mode, holding capacity, etc.), the spatio-temporal
variability of the resource, the environmental  conditions that can affect  both
resource availability and catchability,  and the market incentives (Rochet and
Trenkel 2005). In the present analysis, we focused on the effect of the fishing
mode that  has  been shown to  be  of  major  importance for  tuna purse seine
fisheries (Gaertner et al. 2002). Tuna purse-seine sets are generally categorized
into 3 types of fishing mode but only 2 were considered in the present analysis:
tuna concentrations associated with FADs and free schools (FSC). Here, FAD
includes  any  type  of  floating  object,  i.e.  natural  logs,  palm  branches,
anthropogenic flotsam, and specially constructed FADs equipped or not with
relocation equipment such as satellite transmitters.

To increase sample size, all years available were pooled in the present analyis,
i.e. no year effect was considered. The spatial variability in silky shark bycatch
was investigated by considering large spatial areas of the WIO (Fig. 2). The
fishing area of the Indian Ocean has been stratified into ten strata said “ET
areas” based on differences in catch composition (Pianet  et al. 1998).  These
areas were considered here as factors to represent also different habitats for silky
shark. Seasonal variations can be very high in the Indian Ocean and related to
monsoon and El Nino-Southern Oscillation (ENSO) events (Krishnamurthy and
Kirtman 2003).  To account for  seasonal changes in silky shark bycatch,  the
quarter corresponding to the period of fishing was included as a covariate into
the model.  The sampling design was quite unbalanced and there were some
confounding effects between area and season due to the spatial reallocation of
the fishing fleets throughout the year in the WIO (Table I)

Statistical model

A mixture distribution with added zeros was used to model the number of silky
sharks caught per set. Mixture models have been used in different contexts by
several  authors and are appropriate for  modelling skewed data.  By contrast,
regression models with commonly used discrete distributions such as Poisson or
Negative  Binomial  may  not  fit  such  data  well,  i.e.  they  do  not  relate  well
covariates to the large percentage of  zeros and the few occurrences of  high



values (Perkins and Edwards 1996; Wang and Alba 2006; Martin  et al. 2005;
Lord et al. 2005; Ghosh et al. 2006). Thus, the zero-inflated distribution is more
appropriate for modelling real-life data that display overdispersion and excess
zeros in the case of the silky shark bycatch (Minami et al. 2007). In the present
analysis, a zero-inflated Poisson (ZIP) regression model that is a modification of
the Poisson model with added zeros was used. This model allows for "excess
zeros" in count models under the assumption that the  silky shark bycatch is
characterized by 2 regimes due to 2 distinct processes: one where data always
have  zero  counts,  and  one  where  data  have  zero  or  positive  counts.  The
likelihood of being in either state is estimated using a  Bernoulli trial while the
number of sharks in the second state are estimated using a Poisson distribution.

Let yi be the observed catch of silky shark in the ith fishing set. The observation
is choosen from the first process (the perfect state) with probability 1-  pi and
from the second process (the imperfect state) with probability  pi. The perfect
state generates only zero values and the imperfect state is able to produce any
possible value of the Poisson distribution (Minami et al. 2007).
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where λ is the mean parameter of the Poisson distribution.

The distributional assumption of the silky shark bycatch yields a probability
model with two parameters:  θ = {р,  λ}. Thus, the probability function for the
ZIP regression model is expressed as: 

f yi∣zi , xi , , , , p = { 1�pi g0∣xi ,i , for yi = 0
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where g(yi |  xi,  µi) is the Poisson density function given by equation (1). The
probability of being in the imperfect state (pi) and the mean in this state (µi) were
modelled via logistic and log-linear regressions respectively:
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where the kth covariate values for the ith observation are zik and xik. No interaction
effect  was  considered  in  the  present  analysis.  Estimated  coefficients  of  the
model  (γ and  β) were  derived  from  Bayesian  methods  considering  non
informative  prior  distribution.  The  model  was  fitted  using  the  R  statistical
modelling freeware with the BRugs and coda packages (R Development Core
Team 2008).

Posterior distributions of the parameters were obtained through Markov chain
Monte  Carlo  methods  that  are  implemented  in  BRugs  in  the  form  of  a
Metropolis-Hastings within Gibbs algorithm. We used the Gelman and Rubin
approach for monitoring convergence of MCMC by launching 3 parallel chains
with starting overdispersed values.

Predicting silky shark bycatch

Posterior distributions for the significant coefficients were used to calculate the
mean and 95% confidence interval (CI) of the probability ( p) and the average
number of silky sharks (µ). For visualisation purpose, the expected number of
silky sharks predicted by the ZIP regression model was predicted considering
each covariate individually, i.e. averaging the effects of other covariates.

3. Results

For the 685 fishing sets observed aboard French purse seiners from October
2005 to April 2008, the percentage of null sets was about 40% and 10% for
FSCs and FADs, respectively. A total of 1,385 silky sharks corresponding to a
total  weight  of  about  30  t  were  recorded  as  bycatch through  the  observer
programme. The silky sharks appeared in 24% of the total sets, 15% and 28% on
FSCs and FADs, respectively. 1,183 silky sharks caught by the purse-seiners
during this  period were discarded at  sea (790 dead and 393 alive)  and 202
conserved  aboard  for  later  use  (for  sale  or  self  consumption).  The  length
frequency of the silky sharks fluctuates between 50-250 cm, dominated by the
100  cm  individuals  corresponding  to  immature  individuals  (Oshitani  et  al.
2003). The figure 3 shows no difference in bycatch length of male comparing to
female.
  
The expected number of silky shark per set estimated with the ZIP model was
2.02 ± 0.05 (Table 2). The probability of an observation to be in the imperfect
state, i.e. the state in which sharks can occur but not certain, was 0.24 ± 0.01
(Table 2). A significant effect of the 3 covariates on the probability p of being in
the imperfect state was shown with the ZIP regression model (Table 2). The
fishing mode was shown to affect p, with a strong positive effect of FAD on the
value of p (coefficient = 1.56). The probability p was also shown to vary with



season throughout the year, with the highest probability of catching silky sharks
during  the  months  of  July-September  (coefficient  =  0.69).  There  was  a
significant difference between spatial areas of the Western Indian Ocean, with
lower values of p in North Somali and higher values of p in South Somali (Table
2).

In  the  imperfect  state,  the average value  estimated with  the ZIP regression
model was 7.42 ± 0.37 sharks. Under the assumption of a Poisson distribution,
such a high value of  µ equal to 7.42 implies that the probability of observing
zero shark in the imperfect state is quasi null, i.e. the probability of being in state
1 and that of the zero values are quasi identical (0.76). The 3 covariates were
found to significantly explain the mean number of silky shark µ in the imperfect
state (Table 2). There was a positive significant effect of FAD on the number of
silky  sharks  caught  (coefficient  =  1.15).  There  were  significant  differences
between seasons with more silky sharks caught during the first quarter of the
year.  The number of sharks caught as bycatch was significantly higher than
average in  the Mozambique Channel  (coefficient  =  0.84)  and South  Somali
(coefficient = 0.28).

Model predictions

The ZIP model predicts a few number of silky sharks per set caught on free
school sets (0.29) associated with a small  variability whereas the number of
sharks caught is about 15 times more important on FAD-associated sets (Fig. 4).
Predictive values indicate a  seasonal profile with silky shark bycatch higher
during the third quarter compared to the rest of the year (Fig. 5). The variability
appears however high during this time period and this could be due to the rather
low sample size during the July-September period while the purse seiners are
mainly located in the North West of the Seychelles and South Somali areas. The
catch  of  silky  sharks  appears  higher  than  average in  the South  East  of  the
Seychelles (3.5 individuals per set) compared to the other areas and lower in the
North Somali (Fig. 6).

4. Discussion

Observer data recently acquired through the DCR European program provide a
unique opportunity to assess the amount of sharks and other associated species
taken as bycatch in the purse-seine fisheries of the Indian Ocean, silky shark be-
ing the main shark species taken by the European purse seiners in the Indian
Ocean (Amandè et al. 2008). Our findings show that silky sharks, most of them
being immature, were caught in 24% of the fishing sets, in about 40% of FAD-
associated school sets and in less than 15% for free school sets. In the WIO, the
French tuna purse seine fishery generates few silky shark  bycatch that are al-



most exclusively caught under FADs. Considering the whole French tuna purse
seine fishery, about  2 silky sharks were estimated to be caught per fishing set
with major differences between areas and seasons.

Explaining silky shark bycatch

The regression models used to explain both the presence and number of silky
sharks  caught  included  fishing  mode,  area,  and  season.  The  estimates  of
probability of presence and mean number of silky sharks have shown significant
spatio-temporal patterns in silky shark bycatch in addition to the strong effect of
the fishing mode. Although only 24% of all fishing sets contained silky sharks,
the results showed that the FADs substantially increased the probability of silky
shark  presence (> 40%) while  the free schools decreased them (15%).  This
could be mainly due to the gregarious behaviour of juvenile silky sharks that
tend  to  gather  in  schools  under  FADs  for  feeding  and  appear  then  more
vulnerable to the purse seine fishing gear.

FAD-associated fishing sets showed a larger amount of silky sharks compared to
free schools with quite a high variability, indicating the number of silky sharks
could strongly vary from one concentration to another. This could be due to
local  oceanographic  conditions,  prey  availability,  or  differences  in  the  tuna
school  composition  or  size.  Including  environmental covariates  such  as  sea
surface temperature or chlorophyll-a concentration and covariates describing the
composition  of  tuna  concentration  in  regression  models  could  improve  our
understanding of the processes explaining silky shark bycatch. 

Zero-inflated models 

Zero-inflated models have been used in many ecological cases including fishery
data analysis with excess zeros (Fletcher et al. 2005). The main objective is to
determine the origin of the zeros: the 'false' zeros coming from the perfect state
and the 'true' zeros coming from the imperfect state. The potential sources of
zeros in ecological data are developed in Martin et al.  (2005). Such models
appear particularly appropriate for bycatch analysis in purse seine fisheries that
are characterized by many zero values and some occurrences of extreme values
(Minami et al. 2007).

Our  results  indicate  a  high  value  for  the  mean  parameter  of  the  Poisson
distribution, suggesting that the ZIP is not fully adapted and a zero inflated
negative Binomial  (ZINB) distribution might fit  better the data and be more
consistent with underlying dynamics. Such a ZINB has been shown to lead to
better statistical fittings than ZIP models but can also lead to poorer fits when
data are dominated by zero values such as silky shark in the case of free schools



(Minami  et  al. 2007).  Using  both  approaches in  parallel  to  compare model
outputs  might  help  assessing  the  robustness  of  the  results.  Including  other
observation data of silky shark bycatch as from the Spanish fleet in the analysis
would increase the bearing and consistency of our findings. Including a year
effect could allow tracking temporal trends in silky shark abundance following
Minami et al. (2007) who have shown a significant decrease in the percentage of
sets with no reported silky shark bycatch during 1994-2004. Such methods could
be applied to other bycatch species when the dataset size is sufficient.

5. Conclusion

Modelling observations of associated-fauna species caught with tuna during a
fishing  set  is  a  major  prerequisite  to  identify  the major  factors  explaining
bycatch and to quantify their level at ecosystem scale. Such analyses are a first
step to propose potential measures to mitigate the adverse ecosystem effects of
fishing. For instance, our findings indicate that a reduction in FAD-fishing in the
South East of the Seychelles would result in a substantial reduction in silky
shark bycatch. Evaluating the impact on tuna catch and economic consequences
for  the  fishing  fleets  of  such  measures  is  however  crucial  to  address  their
usefulness and justification. In addition, mitigation measures for the purse seine
fishery should be considered in a context where longline fishing gears have been
shown to result in higher levels of shark bycatch but where observer data remain
generally poorly available.
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Figure captions

Fig.  1.  (a)  Fishing set  histogram of  null  and positive values of  silky shark
bycatch (b) Frequency histogram (in number) of positive bycatch values
per fishing set

Fig. 2. Size frequency histogram by sex for silky shark (a) males and (b) females

Fig. 3. Spatial distribution of observed fishing sets per statistical rectangle of 1°
latitude and  1°  longitude in  the Western  Indian Ocean,  FSC = Free
school (lightgrey), FAD = Fishing aggregating device- associated school
(darkgrey). Solid lines define “ET” areas

Fig.  4.  Predicted  number  of  silky  sharks  per  set  for  each  fishing  mode
considered in the study. FSC = free school; FAD = fishing aggregating
device-associated  school.  Solid  line  indicates  the  95%  confidence
interval

Fig. 5. Predicted number of silky sharks per set for each season of the year.
Solid line indicates the 95% confidence interval

Fig. 6. Predicted number of silky sharks per set for each Western Indian Ocean
area considered in the study. Solid line indicates the 95% confidence
interval
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Fig. 1. (a) Fishing set histogram of null and positive values of silky shark bycatch (b) Frequency histogram (in number) of positive bycatch
values per fishing set



length

F
re

qu
en

cy

50 100 150 200 250

0
10

0
20

0
30

0

(a)

length

F
re

qu
en

cy

50 100 150 200 250

0
10

0
30

0 (b)

Fig. 2. Size frequency histogram by sex: (a) male and (b) female
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Table I. Number of fishing sets per strata observed during 0ctober 2005 to January 2008

ET Areas

Fishing
mode

Quarter NW
Seychelles

SE Seychelles Mozambique
Channel

Maldives
Chagos

North
Somali

South
Somali

Total

FSC

Jan - Mar 8 42 6 35 26 18 135

Apr - Jun 39 30 36 - - - 105

Jul - Sept 30 - - - - 23 53

Oct - Dec 26 90 - 24 - 34 174

Total FSC 103 162 42 59 26 75 467

FAD

Jan - Mar 18 9 3 7 6 6 49

Apr - Jun 12 10 13 - - 2 37

Jul - Sept 9 - - - - 19 28

Oct - Dec 33 23 - 10 1 37 104

Total FAD 72 42 16 17 7 64 218

Total 175 204 58 76 33 139 685



Table II. Estimates of coefficients, standard errors (se) and 95% confidence interval for the zero inflated regression model.
Significant coefficients are marked by xxx

Covariates Mean se 2.5% 97.5% Significance

p

Intercept -1.29 0.21 -1.72 -0.91 xxx

Fishing mode
FSC -1.56 0.12 -1.81 -1.33 xxx
FAD 1.56 0.12 1.33 1.81 xxx

Quarter

Jan - Mar -0.61 0.23 -1.08 -0.17 xxx
Apr - Jun 0.07 0.24 -0.40 0.53 -
Jul - Sept 0.69 0.28 0.15 1.24 xxx
Oct - Dec -0.15 0.18 -0.51 0.21 -

Area

North Somali -1.35 0.71 -2.92 -0.14 xxx
South Somali 0.46 0.30 -0.11 1.06 -

NW Seychelles 0.30 0.26 -0.22 0.82 -
SE Seychelles 0.29 0.28 -0.25 0.85 -

Mozambique Channel
C

0.04 0.21 -0.54 0.36 -
Arabian sea 0.27 0.34 -0.12 1.08 -

µ

Intercept 1.85 0.12 1.57 2.07 xxx

Fishing mode
FSC -0.15 0.04 -0.23 -0.07 xxx
FAD 0.15 0.04 0.07 0.23 xxx

Quarter

Jan - Mar 0.29 0.06 0.14 0.40 xxx
Apr - Jun -0.33 0.14 -0.49 0.20 -
Jul - Sept 0.13 0.09 -0.12 0.26 -
Oct - Dec -0.09 0.06 -0.24 0.01 -

Area

North Somali -0.88 0.42 -1.75 -0.28 xxx
South Somali 0.02 0.13 -0.21 0.29 -

NW Seychelles 0.26 0.15 -0.10 0.55 -
SE Seychelles 0.84 0.19 0.44 1.20 xxx

Mozambique Channel
C

-0.16 0.16 -0.46 0.16 -
Arabian sea 0.28 0.13 0.04 0.55 xxx

P (imperfect state) 0.24 0.01 0.21 0.26 xxx
Bycatch mean  | imperfect state 7.42 0.37 6.67 8.13 xxx
ZIP mean 2.02 0.05 1.91 2.13 xxx
Probability of zero bycatch 0.76 0.01 0.74 0.79 xxx




