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Abstract 

 
 
This paper is an exploration of the potential growth characteristics of Indian Ocean 
tunas (yellowfin, bigeye and skipjack) which seeks to integrate the extensive mark-
recapture data set gathered during the Regional Tuna Tagging Project – Indian Ocean 
(RTTP-IO), into the growth estimation procedure, where once only otolith and size 
frequency data existed for yellowfin and bigeye. This work explores first the 
integration of the tagging data with otolith data into a coherent estimation scheme and 
also explores a range of growth models and which might be most suitable for a given 
species. Key issues with respect to different signals in the otolith and tagging data for 
yellowfin and bigeye tuna are detailed and potential solutions are discussed. 
 
Introduction 
 
For Indian Ocean yellowfin and bigeye tuna, for many years the only data available 
with which to estimate growth was the otolith readings (Huang et al. 1973; Stequert et 
al., 1996) and the size frequency collected in the different fisheries of the Indian 
Ocean, especially the one collected by on the purse-seine fleet operating in the 
Western Indian Ocean (Lumineau, 2002). Certainly for yellowfin tuna, the growth 
estimates arising from various growth curves fitted to the data were not considered 
satisfactory as the different studies based on length frequency analysis showed either 
that the growth was following a Von Bertalandy curve (Marcille and Stequert, 1976 ; 
Anderson, 1988), or a two stanza curves similar to the models used in the Atlantic and 
Pacific (Marsac and Lablache, 1985 ; Marsac, 1991, Lumineau, 2002).(). With the 
large wealth of growth increment data now available from the RTTP-IO for all three 
key tuna species there is an opportunity to either integrate these data with the otolith 
data (yellowfin and bigeye) or in the case of skipjack estimate a full Indian Ocean 
growth curve for the first time. 
 
Data summary 
 
The RTTP-IO is a project funded under the 9th European Development Fund (EDF) of 
the European Union, implemented by the Indian Ocean Commission (IOC) and 
Supervised by the Indian Ocean Tuna Commission (IOTC). The tagging activities 



started in 2005 with two pole-and-line vessels chartered for 31 months to operate in 
the Western Indian Ocean. In September 2007, the tagging activities arrived to an end 
after 168 163 tuna had been tagged and released (54 663 YFT, 34 570 BET, 78 324 
SKJ and 606 unidentified tuna. So far, more than 24 000 of these fish have been 
recaptured and reported to the headquarters of the project based with the IOTC 
Secretariat in Seychelles, from more than 15 countries. However, most of the reported 
recoveries are coming from fish caught by the purse-seine fleet based in Seychelles. 
 
Depending on where, during which process and who recovered the tagged fish, the 
quality of the data associated that will be used for the growth study is highly variable. 
However, quality indicators have been recorded during the measurement at tagging 
and at recovery in order to be able to discriminate the data. Furthermore, each 
recovery should ideally be associated to one position and date of catch, in order to 
calculate the time-at-liberty (time spent by the tagged fish between the release date 
and the recapture date). However, due to the process of storing and unloading the fish 
on the purse-seiners, this is not always possible. In fact, fish are loaded to different 
wells which can contained several sets, and so several date and location of catch and 
therefore, it is not always possible to have the real date of catch for all the recoveries. 
Around 20% of the recoveries are made during the fishing operation, when the fish is 
loaded into the wells. In this case, the finder is able to identify the exact date and 
position of the recapture. In this exploratory work, only this subset of recoveries – 
found during the fishing operation – have been analysed, and this subset have been 
filter in order to keep only the measurement data of good quality. This represents 
1084 recovered yellowfin, 836 recovered bigeye and 1713 recovered skipjack. 
 
Models & methods 
 
For the growth work we worked almost exclusively with three candidate 
growth models. The first was the well known von Bertalanffy growth 
equation relating length, l, to age, a, as follows: 
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Here the parameters are the maximum growth, ∞L , the growth rate, k, and the ‘age’  
at zero length, t0. A second model, more complex and also more flexible, called the 
Richards model was also employed: 
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The parameters, that are familiar with the von Bertalanffy model, have essentially the 
same interpretation but L0 is a minimum length parameter, tmax is the age at maximum 
growth rate and β is a parameter that allows the growth rate to slow down then speed 
up as the fish ages, if required. A final model, with one less parameter than the 
Richards model but allowing this two-stage growth rate, was also considered: 
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Here, the common parameters mean the same but maximum growth occurs at μ/2 and 
if γ ≤ 1 then the model acts like a von Bertalanffy model, and if greater than 1 acts 
more like the Richards model, allowing for the two-stage growth behaviour. The 
Gascuel growth model (Gascuel et al, 1992), with one extra parameter than the 
Richard’s model, was initially included in the model set but, given it possesses no 
closed-form inverse, it was found to be computationally infeasible to fit this model to 
the data. 
 
The otolith readings of length-at-age, (the Stequert data primarily) for the yellowfin 
and bigeye were assumed to be normally distributed about their model-predicted 
counterparts in the likelihood function: 
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Here, ),(ˆ θal is simply the model-predicted length of the fish given it is aged a. The 
variance of this relationship is modelled as follows: 
 
 222

PEageoto σσσ += ,       (5) 
 
where 2

ageσ  is an ageing error fixed term and 2
PEσ  is a process error term that is 

estimated along with the parameters of the model, denoted henceforth by θ.  
 
With respect to the integration of the tagging data, we have measurements of length-
at-release, length-at-recapture and time-at-liberty, so for each recovered fish we have 
an increment of growth and a time over which this increment occurred. Also, given a 
growth model, we can predict this growth increment given the length-at-release and 
the corresponding time-at-liberty so the likelihood of the observed growth increment, 
χ, given the model-predicted growth increment, χ̂ , is assumed to be normal: 
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The form of the variance term in Eq. (6) is as follows: 
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The reason for the complex nature of the process error term, 2

χσ , is to attempt to 
model the fact that the natural variation in the growth increment is related to both the 
length-at-release and the time-at-liberty – one school of thought is that given variation 
in growth seems to increase with age and/or length then there is clearly going to be 
such an influence on the growth increment for both longer release lengths and longer 
times at liberty. For computational purposes, the variance term was expressed as an 



exponential log-sum. The total likelihood of all the data given the model would be the 
product of Eq (4) and Eq. (6) but for numerical purposes, we maximise the log-
likelihood function with respect to the growth and process error parameters. 
 
As a final possibility we allowed for a specific penalty term to give a certain weight 
(via a normal density function) to an arbitrary age at which the length was assumed 
known. We point out that such a term was not included in the analyses presented here 
but, depending on considerations and recommendations, could be used in future work. 
 
All analyses were undertaken in R, using the optim(…) function. The authors 
experienced significant problems getting a gradient-based optimiser to work (the L-
BFGS-B algorithm) and, as such, approximate variance-covariance information that 
can normally be derived from such methods was not available. We found that the only 
reliable optimisation algorithm (other than the simulated annealing option) was the 
Nelder-Mead algorithm (Nelder and Mead, 1965) which cannot produce variance-
covariance information and, as such, we cannot produce any standard errors for the 
current parameter estimates. 
 
Observation error terms 
 
Estimates of variance were provided for the Stequert otolith data and also for the 
measurements of length (REF JULIEN/ALE?). For the length data, the precision of 
the measured length was said to be around +/- 1cm so we assumed that 25.02 =lσ , so 
that the 95% confidence interval envelopes this range of length-measurement error. 
With respect to the otolith data, the situation is a little more complex – we have 
measurements for the error in the ageing reading from the otliths, but based only on 4 
different readings. Also, it was not clear how to translate this ageing error into an 
observation error for the observed length-at-age, without already invoking a growth 
curve or something similar. Another issue that arose in the early exploratory runs was 
that there appears to be some critical value of this observation error for length-at-age 
at which the estimation algorithm appears to abandon these otolith data altogether, in 
the sense that the optimal parameter estimates ignore the age data altogether and fit 
only to the tag data, producing clearly nonsense answers. This is to be expected: the 
growth increment data alone cannot possibly hold information relating to the age-
specific model parameters (t0 for example). This was a dilemma – without the otolith 
information we can only fit reduced versions of the growth curves (as we do for the 
skipjack) or we must begin to fix values of the age-specific parameters, or apply the 
penalty term already mentioned in order to supply this vital age-specific anchor in the 
data. 
 
For the yellowfin and bigeye data, only the Richards and the alternative two-stage 
model in Eq. (3) were fitted given the apparent evidence for the two-stage growth in 
the tag growth increment data and using model selection criteria detailed later on. 
Figure 1 shows the fits to both the Stequert otolith data and the tag growth increment 
data for yellowfin. Clearly, there is a mismatch between what the otolith data suggests 
about length-at-age and what the tagging data predicts in terms of how the fish grow. 
At the youngest ages the tagging data expect the fish to be longer at the lower ages 
than the otolith data. Also, the asymptotic length, ∞L , is much lower than that 
predicted by the otolith data alone. A similar problem appears when fitting the 
Richards model to the bigeye data, Figure 2, albeit not a significantly as is the case 
with the fits to the yellowfin data. When trying the sigmoidal model from Eq. (3) a 
similar problem appeared for both species, and similar answers were obtained that 



were, statistically speaking, no better than those obtained using the Richards model 
and, given the familiarity of the group with the Richards model, this model was used 
for the purposes of plots etc. Also, in all cases there was significant evidence for 
increased variation in the growth increment with both time-at-liberty and length-at-
release – the longer a fish was at release and the longer it was out at sea the more 
variable the growth increment appears to be. This is interesting as some studies have 
seen evidence that yes we do see increased variation with length-at-release but not 
necessarily time-at-liberty (the argument being that and environmental changes 
affecting growth rates should ‘average out’ better over longer periods at sea). Perhaps 
this happens but it is no means true that it must occur this way – to look at this result 
from another perspective we might consider that increases in growth variation with 
both length-at-release and time-at-liberty are proxies for an increase in the variation of 
growth rate with increasing age and length, which is something we might well expect. 
 
 

 
Figure 1: Fits to the otolith and tagging growth increment data for yellowfin 
tuna using the Richards growth model. Otolith data are the black circles and the 
observed length at recapture is given by the red triangles. Not the clear two-stage 
growth rate in the tagging data and the disparity between the younger age otolith 
data and the tagging data. 
 
 
 
 



 
Figure 2: Fits to the otolith and tagging growth increment data for bigeye tuna 
using the Richards growth model. Otolith data are the black circles and the 
observed length at recapture is given by the red triangles. Not the clear two-stage 
growth rate in the tagging data and the disparity between the younger age otolith 
data and the tagging data. 
 
One very important issue is also the stability of the results – by this we mean the 
robustness of the estimates of growth to alternate starting points for the R-based 
optimiser. In an ideal world situation we would always arrive at the same optimal 
answer (i.e. that which maximises the log-likelihood). This situation does not appear 
to apply in our case: 
 
Multiple starting points for the different parameters to estimate were used to try and 
see if there was indeed any multi-modality in the log-likelihood and it appeared that 
there was. The main issue is that we lack observations of length-at-age or growth 
increments at the longer lengths and higher ages, which would naturally give us 
information on the asymptotic length. However, this parameter also strongly 
correlates (levels close to 1 in absolute terms) with some of the other parameters, so 
the observations at lower ages are heavily influencing the estimate of asymptotic 
length – something they would in reality hold little information on; as a result, the 
estimates of asymptotic length tend to ‘jump-around’ quite a lot (from 120-150cm for 
yellowfin but less so for the bieye). There are many local optima for the parameters so 
we cannot really give a definitive estimate for the growth parameters in this present 
formulation for yellowfin and also for bigeye – the simpler von Bertalanffy model 
simply does not fit the tagging data at all but the data lack the information to fully 
separate the parameters in the more complex models that can accommodate the two-
stage growth rate. It was then study to fix one of the criteria, especially the asymptotic 
length. (maybe we could give a couple of fits with realistic Linf (160 for example and 
180) and see how this is affecting the curve. I did not manage to get fits for these one 



that could results in a plot (in all my attemps with the fix Linf, the curve is way 
outside, and doesn’t appear). 
 
Model selection criteria 
 
Seen as we are comparing models, we need some kind of model selection criteria. The 
one we chose to use, given models with differing numbers of parameters but the same 
composite normal likelihood function and data, uses the AIC and the chi-squared 
distribution. For a given model M1 and a more parsimonious model (i.e. with less 
parameters) M2, then for a given likelihood function, L(θ | X), and associated MLE 
estimates θ1 and θ2, respectively, the following statistic: 
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is a chi-squared random variable, with degrees of freedom equal to the number of 
extra parameters in model M1. The probability that model M1 is no better than model 
M2 is then easy to assess using the chi-squared distribution thus giving us a 
significance test for whether a more complex model improves on a more 
parsimonious one. It should be noted that this test is strictly only for nested models, 
and neither the Richards nor the sigmoidal model reduce down to the von Bertalanffy 
model.  
 
When comparing the von Bertalanffy model with the Richards or the sigmoidal 
model, for both bigeye and yellowfin tuna, there was a significant improvement in 
moving to either of the more complex models – even though we have stated that we 
do not believe there is a unique MLE for these more complex models, any of the two 
to three ‘local’ MLEs all suggested a highly significant improvement in the fits to the 
data with these models. This is not a major surprise, given that the von Bertalanffy 
model simply cannot accommodate the apparent two-stage growth behaviour seen in 
the yellowfin and bigeye tagging data. With respect to choosing between the 
sigmoidal model of Eq (3) and the Richards model, depending on the choice of MLE 
we used, the Richards model either presented a significant improvement (p < 0.05) or 
did not. Both models can reproduce the two-stanza growth curve and in the plots we 
showed the fits to the data using the Richards model, given that this has already been 
applied to these stocks and the Richards model has already been tested (Lumineau, 
2002) whereas the model in Eq (3) has not. 
 
This criterion was used to differentiate not just the growth models but also to see 
whether both the otolith data process error term and the more complex generalised 
variance function for the growth increment process error term were warranted. For 
both yellowfin and bigeye, the inclusion of the otolith process error term was highly 
significant (p < 0.001). For the growth increment process error term the inclusion of 
both the time-at-liberty and length-at-release terms were also highly significant (p < 
0.0005) and this was the case for all three species. 
 
 
For skipjack, there is no apparent evidence for this two-stage growth rate so a simple 
growth increment von Bertalanffy model was fitted to these data – it should be noted 
that in this case we can only estimate the k and ∞L  parameters and not t0 because we 
have no age data at all to tell us what this parameter might be. We used the same 
likelihood as used before and detailed in Eq. (6) and the same observation/process 
error structure as defined in Eqs. (7) and (8). Figure 3 shows the fits to the growth 



increments for the skipjack tagging data. The estimates were k=0.289 and ∞L = 76cm 
– slightly slower growing than in other oceans but nothing that would appear 
suspicious. 
 
 
 

 
Figure 3: Fits to the skipjack length-at-recapture given length-at-release 
assuming a von Bertalanffy growth model. Obviously the negative increments 
cannot be fitted but overall the fit is reasonably good. 

 
Discussion 
 
The results detailed in this paper represent a first analysis of how we might use the 
wealth of tagging data to explore growth models for all three key tuna species in the 
Indian Ocean. With respect to yellowfin and bigeye tuna, when integrating the growth 
increments from the tagging data into a probability model with the otolith data it is 
clear that the von Bertalanffy model cannot fit the tagging information at all well. 
When moving to a more complex form of growth model that can accommodate the 
apparent two-stage growth behaviour of these two species we seem to lose the ability 
to estimate an unequivocal maximum likelihood estimate for the parameters. Also, 
there is a clear disparity at the younger ages between what the tagging and the otolith 
data think about length-at-age.  
 
For the skipjack data, the growth rate and asymptotic length parameters of the von 
Bertalanffy model were estimated using a simple growth increment form of this 
model and using the tag data only, given no otolith data for this species. In this case 
the MLE was robust to different starting values and displayed none of the instability 
seen in the more complex yellowfin and bigeye models. The resultant parameter 
estimates did not seem to be massively different to those estimated for Maldivian 
skipjack (Adam and Kirkwood, pers. com.). 
 
For all three models, there was strong evidence for an increase in the variation in 
growth with both time-at-liberty and length-at-release, both of which could be 
considered as proxy effects for an increased variation in growth with age and length, 



as one might expect. However, one of the main arguments levelled against the 
estimates of asymptotic length in this work and in previous such studies (IOTC, 2007) 
is that such an asymptotic length simply does not tally with observed catch-at-length 
data. One thing to consider though is this: is the observed strong variance effect 
enough to produce the types of lengths seen in the catches with a sufficiently high 
probability, even with such a low ‘mean’ asymptotic length? The point being that 
what you see in the catches might simply be highly variable but not improbable 
realisations from such an uncertain growth curve. Seen as these fish are seemingly 
never aged (by inspection of the spread in the otolith data) it is impossible to know 
whether we have an artificially small estimate of asymptotic length or if the larger fish 
seen out there are not-so-improbable super-individuals, which one might expect to see 
given the apparent variation in growth at the longer lengths and older ages. 
 
One would have to conclude that these analyses in this paper are insufficient to 
establish a robust growth curve for yellowfin and also for bigeye tuna at this stage. 
For skipjack, we appear to have a robust and sensible growth model which can be 
used for the construction of a length transition matrix, which is vital for any sort of 
realistic attempt to integrate the tagging and catch data into an assessment model. 
How to progress with the growth modelling for yellowfin and bigeye is something 
that the Working Party will hopefully be able to clarify, but here are some potential 
options for consideration: 
 
One obvious first choice is to fix one (or maybe more) of the key parameters – 
particularly the asymptotic length. If we abandon the idea of integrating the otolith 
and the tag data then we will have to fix the age-specific parameters of the more 
complex growth curves if we wish to estimate the other parameters from the tag data 
alone, given the growth increment data tell us nothing about age, per se. We have the 
option of choosing a specific set of points at which we specify the length at a given 
age, using the penalty option outlined previously, but this is obviously extremely 
subjective. Another option is to use Bayesian approaches – such multiple modality in 
the likelihood is less of a problem then (we are deriving a sample from the 
parameter’s posterior distribution, not simply the MLE) and we can perhaps use 
informative priors for asymptotic length instead of simply fixing the values. With the 
Bayesian option we may also develop a better understanding of the variation in the 
estimated parameters, which was not possible using maximum likelihood techniques.  
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