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Abstract 
 

Preliminary tagging data from the Regional Tuna Tagging Project – Indian Ocean were 
used to calculate updated growth parameters for skipjack tuna (Katsuwonus pelamis) 
in the Indian Ocean. The parameters were calculated using two variations of Fabens 
method and a Schnute model. The L∞ values estimated by the two Fabens methods 
are within historical values calculated for skipjack in the Indian Ocean, while the K 
values were lower, implying a slower growth rate than historically assumed. The 
Schnute model indicated that growth is different between small and large individuals. 
None of the model fits were particularly good, although this is probably due to the very 
preliminary nature of the data. Akaike information Criterion values were calculated for 
the different models and the Fabens model assuming a power law relationship between 
growth variability and time at liberty had the lowest AIC value. It is hoped that the 
models estimated in this study can be compared to more flexible and complex two-
stanza growth models to  ascertain whether the simple models are appropriate for use 
in future skipjack stock assessment models and hence for management advice. 

 

1 Introduction 
 
Growth is one of the four factors (recruitment, growth, natural mortality, and fishing 
mortality) of biomass change, and it is therefore a critical requirement for assessing the 
status of an exploited population. Estimates of growth, or more specifically a 
mathematical description of increase in length or weight with age of fish, are essential 
for stock assessment methods such as cohort analysis (Ricker 1975) or age-structured 
models (Hillborn 1990). Different methods are commonly used to obtain growth 
estimates: (1) analysis of growth increment data from tagging studies (Fabens 1965, 
Francis 1988), (2) analysis of the hard parts of the fish (e.g., otoliths, vertebrae, etc; 
Campana 2001), and (3) analysis of cohort progressions in length-frequency 
distributions (Schaefer 1961). 
 
Unfortunately, skipjack (Katsuwonis pelamis) has proved difficult to age as the modes 
in length-frequency data are difficult to identify because of high growth rates, 
continuous recruitment, and variability in growth (Schaefer 1961, Joseph and Calkins 
1969) and direct estimates of age have been hampered by the lack of consistent check 
marks on hard parts of the fish (Wild and Forman 1980, Uchiyama and Struhsaker 
1981). Furthermore, skipjack growth parameters may vary with latitude (Bard and 
Antoine 1986). Due to these difficulties, Josse et al. (1979) suggested that tagging data 
provide the best means of estimating growth rates for skipjack. In the Indian Ocean 
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region, the recent availability of data from the Regional Tuna Tagging Project of the 
Indian Ocean (RTTP-IO) may enable scientists to assess the growth of skipjack in the 
Indian Ocean with tagging data. Although this has been done before (Adam 1999), the 
work was restricted to the Maldives.  
 
The aim of this paper is to provide two different growth models, fitted to the preliminary 
tagging data available for skipjack tuna in the Indian Ocean. It is hoped that these 
models can be contrasted with more dynamic two-stanza models (Fontaneau pers 
com.) in order to obtain a “more realistic” model for inclusion in stock assessment 
models and hence for management advice. 

2 Models 
 
The data included in this analysis are the skipjack tagging data available to the IOTC 
Working Party on Tagging Data Analysis (WPTDA) from the RTTP-IO. Due to the fact 
that the data currently available from the RTTP-IO are preliminary and require 
“cleaning up”, for the purpose of this study, no error in the measurement of length was 
simulated. This is clearly an oversimplification and can be considered unrealistic 
(Francis 1988), but measurement error can be simply incorporated into these models at 
a later stage once the available tagging data has been finalised.  
 
2.1 Fabens estimation 
 
Fabens (1965) formalised the translation of the Von Bertalanffy curve (1938) into a 
form suitable for use with tagging data. This model was chosen in preference to other 
methods such as those formulated by Gulland and Holt (1959) and Munro (1982) as it 
is considered to produce more accurate estimates of L and K (Sundberg 1984). The 
model is described by the following equation: 
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Where: ∆L is the difference between the length at release and the length at recapture. 

L∞ is the asymptotic average maximum body length 
Lt is the length at release 
K is the growth rate coefficient, and 
∆t is the time at liberty. 
 

Two different assumptions were simulated regarding the variation in growth among the 
observed data. Firstly, a constant variance was assumed where the variance was 
independent of the observed length. This model was fitted by minimising the following 
negative log likelihood: 
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Where: σ2 is the constant variance of the residuals fitted as an additional parameter. 
This assumption will be referred to as the Fabens method constant variation model in 
this paper.  
 
Francis (1988), however, suggested that several other deviation patterns could occur. 
In this study, a residual standard deviation that followed a power law was simulated. 
This was decided on after preliminary attempts to fit the data using lognormal and 
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constant multiplier variances were unsuccessful. The residual standard deviation was 
thus: 
 

τυσ L̂∆=  
 
Where: υ and τ are additional parameters estimated separately.  
This assumption will be referred to as the Fabens method power law model in this 
paper. 

 
2.2 Schnute model 

 
Although the Von Bertalanffy model is commonly used in fisheries stock assessments, 
it is not necessarily the best or most realistic model in every scenario (Haddon 2001). 
Baker et al. (1991) proposed a length-based analog of Schnute's (1981) size-at-age 
model. This length-based growth model related mean size at recapture to mean size at 
release. Francis (1995) reformulated Baker et al.'s model to (1) make the parameters 
more meaningful, (2) optimize the model for parameter estimation, and (3) allow the 
error structure to be formulated in terms of growth increments, rather than lengths at 
recapture. The model equation includes five parameters; the first two, y1 and y2 are 
arbitrary fish sizes, small and large respectively, fixed by the user; the remaining 3 
which are estimated, are g1 and g2 which are the mean growth increments for fish of 
size y1 and y2, respectively, over a given time period (years in the following analysis); 
and b, which describes the curvature in the model. A further four parameters, a, c, λ1 
and λ2 are estimated within the model and are simply formulated from the above 
parameters to make the final model calculation more convenient. 
 
The formulation of the model when a ≠ 0 and b ≠  0 is given below (Francis 1995). 
This model is referred to as the Schnute growth model (Maunder 2001): 
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Where: Gpred = predicted mean increment of growth 

L = length at release 
∆t = time at liberty, and 
a, c, λ1 and λ2 are parameters used to make the calculations more convenient.  
 

These are defined as 
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λ1 = y1 + g1
λ2 = y2 + g2 

 
Variance in growth is defined as a function of both length at release and time at liberty, 
and this model is referred to as the Generalized variance model (Maunder 2001): 
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( ) γβασ tLtLg ∆=∆,2  
 
To avoid computational problems the following formulation is used: 
 

( ) ( ) ( ) ( )( )tLtLg ∆++=∆ lnlnlnexp,2 γβασ  
 

The growth increment reduces with increasing length at release and increases with 
time at liberty; therefore, following the Francis variance model, β and γ are expected to 
be negative and positive, respectively. If both β and γ are equal to zero then the 
variance is constant, if β is zero then the variance is a function of time at liberty only, 
and if γis zero then the variance is a function of length at release only. 
 
As measurement error has been ignored, the negative log likelihood term for this model 
follows Fournier et al.s (1990) robust likelihood function: 
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The addition of the 0.01 ensures that the influence of observations reduces rapidly as 
their distance from the predicted value grows greater than three standard deviations 
(Fournier et al 1990). 
 
 
2.3 Model selection 
 
The different models were evaluated using the Akaike Information Criterion (AIC; 
Akaike 1973).   
 

pAIC 2ln2 +−= l  
  
Where: ln l  is the log likelihood, and 

 p is the number of parameters 
 

The best model is that with the lowest AIC value depending on the criteria preferred. 
 

3 Results  
 
3.1 Fabens method 
 
The output parameters for the Fabens method models are presented in Table 1. The 
model assuming a power law relationship for growth variance provided marginally 
better fits to the observed data according to the estimated log likelihood values. It does, 
however, necessitate the estimation of an additional parameter. The L∞ values differed 
between models with the constant variance model estimating a smaller L∞ value. The K 
values are very similar, with the constant variance model estimating a slightly higher 
growth rate than the power law model. 
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Table 1: Parameter estimates for the growth of skipjack tuna using Fabens Method. 
Parameter L∞ K σ2 υ τ  R2 -ln l  
Constant 
variance  

79.55 0.27 2.33 NA NA 0.49 19818.88 

Power law 
variance 

82.91 0.24 NA 1.87 0.17 0.49 19594.55 

 
The model fits of growth to the observed growth data are presented in figures 1 and 2 
for the constant variation and power law models respectively. There is a high degree of 
variation in the observed growth rates. Some of the variation may be reduced once the 
preliminary dataset has been finalised, so it is difficult at this stage to infer any 
conclusion from the observed data. This has resulted in relatively poor model fits to the 
data. The R2 values indicate that the two models are effectively explaining the same 
amount of variation in the data. Both models estimated a similar rate of growth per 
year, a characteristic already observed by the similar K values estimated for both 
models. 
 
The relationship between growth variability and time at liberty is presented in figure 3 
for the power law model. The model estimates a logarithmic relationship between 
growth variability and time at liberty. Variability is estimated to increase rapidly in the 
first six month after release, after which the rate of variability decreases. No true 
asymptote is reached, however, the variance in growth is relatively similar after one 
year. 
 
3.2 Schnute model 
 
The parameter estimates for the Schnute model are presented in table 2. As with the 
Fabens method, the fit of the model was not good. The growth parameters g1 and g2 
clearly indicate that growth is not constant amongst all size groups with growth rate 
decreasing with increasing length. 
 
Table 2: Parameter estimates for the Schnute growth model 
Parameter g1 g2 b α β γ  R2 -ln l  
Value 8.15 5.97 6.90 3.15 -0.05 0.18 0.50 19643.24 
 
The Schnute model fit to the observed data is presented in figure 4. The fit of the 
Schnute model to the data, differs to both Fabens Method estimations. The Schnute 
model estimates higher growth rates for all fish sizes, but particularly for smaller fish 
that lie outside the range of the observed data. Unlike the two Fabens method 
estimations, the growth rate predicted by the Schnute model does not continue to 
decrease with size, but rather stabilises for skipjack greater than 50 cm in length. This 
model explained marginally more of the variation in the data than the Fabens 
estimations according to the calculated R2 value. 
 
The variance in the growth rate as a function of time at liberty for the Schnute model is 
presented in figure 5. This relationship estimated by the Schnute model is very similar 
to that estimated by the Fabens power law model. Both models predict a logarithmic 
relationship between growth variation and time at liberty, with the majority of variation 
occurring in the first six months after release with a more gentle increase occurring 
after one year at liberty.  
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3.3 Model selection 
 
The AIC values calculated for the different model scenarios are listed in table 3. Similar 
to the negative log likelihood values, the Fabens power law model showed the lowest 
AIC value from all models, which, in turn, can be interpreted as the best model for 
describing the growth characteristics of skipjack in the Indian Ocean. It must be noted, 
however that the data used in these models are very preliminary and the differences in 
the values of the goodness of fit between models, small. It is thus clear, that further 
analysis should be carried out before making any definitive conclusions.  
 
 
Table 3: AIC values for the different growth models calculated using skipjack tagging 
data 
 Number of 

parameters (p) 
-ln  l AIC value 

Fabens method 
(constant variation) 

3 19818.88 39643.76 

Fabens method 
(power law 
variation) 

4 19594.55 39197,10 

Schnute model 6 19643.24 39296,48 
 

4 Discussion 
 

In the absence of reliable growth estimates for skipjack tuna from direct age estimation 
and/or length-frequency analysis, mathematical descriptions of growth from tagging 
data, i.e. growth increment and time at liberty provide the best alternative method for 
growth estimation (Adam 1999). A number of studies have reviewed the growth rates of 
skipjack tuna and have described a wide range of estimates for the various growth 
parameters (Rothschild 1967, Joseph and Calkins 1969, Josse et al. 1979, Forsbergh 
1980, Bayliff 1988). This study has utilised two different models for estimating the 
growth of skipjack tuna in the Indian Ocean. The commonly used Fabens Method 
produces estimates of the standard Von Bertalanffy growth parameters (excluding t0) 
thus making comparisons between studies possible.  
 
The L∞ values estimated by both Fabens models in this study lie within the range of 
values historically calculated for the Indian Ocean, which range from a maximum of 90 
cm (Mohan and Kunhikoya 1985) to a minimum of 60.6 cm (Marcille and Stequert 
1976). The K values estimated by the models in this study are very similar. Although 
the K values estimated in this study are similar to the value calculated by Hallier and 
Gaertner (2006) in the Atlantic Ocean they are both lower than any other K values 
calculated for this species in the Indian Ocean (Marcille and Stequert 1976, Mohan and 
Kunhikoya 1985, Adam 1999). The higher values of L∞ estimated in this and other 
studies are probably more realistic taking into account fishery catch at length data. 
Apart from the study by Adam (1999), most growth studies of skipjack tuna from the 
Indian Ocean are from length-frequency data. For skipjack tuna, a tropical species 
exhibiting year-round spawning (Stéquert and Ramcharrun 1996), growth estimates 
using length-frequency methods are considered to be of little value (Joseph and 
Calkins 1969, Josse et al. 1979, Wild and Hampton 1994) and therefore those results 
may not be strictly comparable with the results of this analysis. 
 
Previous growth studies in the Indian Ocean which have utilised tag and recapture data 
have been concentrated around the Maldives archipelago (Yesaki and Waheed 1992, 
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Anderson et al. 1996, Adam 1999) two of which produced linear estimates of growth 
(Yesaki and Waheed 1992; Anderson et al. 1996) which are considered inappropriate 
for describing the growth of tuna species across their full size range (Sibert et al. 1983). 
The Von Bertalanffy growth parameters estimated by Adam (1999) were considerably 
different to those obtained in this study. The L∞ and K values in that study being 64.3 
cm and 0.55 y-1 respectively. Adam’s (1999) study, however was based on data 
collected solely from skipjack tagged and recovered in the Maldives, included 216 data 
points as opposed to the 8755 included in this study and estimated an L∞ that is not 
really supported by fishery data.  
 
The common usage of the Von Bertalanffy growth model does not necessarily mean 
that the Von Bertalanffy approach is the most suitable for describing the growth of 
skipjack tuna. As a result an additional method, the Schnute model, was included in 
this study. Direct comparisons of this method with the other growth studies are not as 
straightforward, as the Schnute model does not produce estimates of the Von 
Bertalanffy parameters except in the special case where the parameter b is set to one 
(Maunder 2001) which did not occur in this study. The Schnute model is more flexible 
than the Fabens method, with the inclusion of extra parameters facilitating a wider 
range of relational forms than the standard Von Bertalanffy model (Haddon 2001). This 
method has been used to investigate the growth of skipjack in the eastern Pacific 
Ocean (Maunder 2001). In both the Pacific and Indian Ocean, growth was found to 
decrease with increasing size with estimates of rapid growth for smaller individuals and 
fairly constant growth for medium to large individuals. Unfortunately, the range of 
release lengths does not include significant numbers of small and large fish, making 
the estimation of growth less certain for these sizes. Although the Schnute model 
describes the data better than the simple constant variation Fabens method model, it 
does not fit the data as well as the power law model although it does have the best R2 
value. The additional parameters estimated by the model resulted in a higher AIC value 
than the power law model. It is possible that the inclusion of measurement error will 
change the fit of the model, but due to the very preliminary nature of the data it was 
decided to keep the model simple, as the final data may differ from those currently 
available. At a later stage, the model can be re-parameterised and re-estimated.   
 
The purpose of this study has been to provide updated estimates of growth for skipjack 
tuna in the Indian Ocean, using the recently acquired data from the RTTP-IO. It is of 
increasing concern, however, that most mathematical models used to simulate growth 
studies in fishes do not take into account changes in growth patterns that occur 
between life stages (Dumas et al. 2007). For this reason, more complex, two stanza 
growth models have been proposed to fully incorporate these changes (Gasceul et al. 
1992).  Two stanza growth has been observed and modelled for several tuna species 
using both tagging and otolith studies (FAO 2001). The models devised in this study 
have intentionally been made very simple. It is envisioned that the growth models 
proposed in this study can be contrasted with the more complex models in order to 
determine if they are still appropriate for simulating the growth of skipjack tuna in the 
Indian Ocean. It would also be useful to assess the influence the different models have 
on potential skipjack assessment models, as stock assessment models provide the 
bulk of information used for fisheries management advice. 
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Figure 1: Fit of the Fabens method growth model to the observed tagging data for Skipjack tuna 
in the Indian Ocean using constant variance in growth. 
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Figure 2: Fit of the Fabens method growth model to the observed tagging data for Skipjack tuna 
in the Indian Ocean using a power law of growth variance. 
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Figure 3: Individual growth variation versus time at liberty for the Fabens method growth model 
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Figure 4: Fit of the Schnute model growth model to the observed tagging data for Skipjack tuna 
in the Indian Ocean. 
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Figure 5: Individual growth variation versus time at liberty for the Schnute growth model 
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