Fundamental Distinction In •ютс-2008-wptt-36 Experimental Design

Basic Data to be Collected

Only Number Recaptured Number Recaptured & Number Examined For Tags

Single Release Tag Attrition

Brownie

Multiple Releases

Mortality Rates

Petersen Population Size

Population Dynamics Model

$$N_{i+1,t+1} = N_{i,t} \exp -F_{i,t} - M_{i,t}$$
$$E R_{i,t} = \frac{F_{i,t}}{F_{i,t} + M_{i,t}} N_{i,t} 1 - \exp -F_{i,t} - M_{i,t}$$

Same basic model for overall population and population of tag fish underlies Brownie and tag attrition approach (alternatively can use other formulations for relationship between F and M – e.g. seasonal fishery)

Difference due to Z in year i (Ratio will remain same independent of reporting rate)

F= 0.3 M=0.2 1600 Releases Each Year for 3 Years

		Expected number of returns from age class <i>i</i>				
Release Age	Number of releases	1	2	3	4	
1	N_1	$N_1 u_1$	$N_1S_1u_2$	$N_1S_1S_2u_3$	$N_1 S_1 S_2 S_3 u_4$	
2	N_2		$N_2 u_2$	$N_2S_2u_3$	$N_2S_2S_3u_4$	
3	N_3			$N_3 u_3$	$N_3 S_3 u_4$	

$$S_i = \exp -F_i - M_i$$

$$u_i = \frac{F_i}{F_i + M_i} \quad 1 - S_i$$

		Expected number of returns from age class <i>i</i>				
Release Age	Number of releases	1	2	3	4	
1	N_1	$N_1 u_1$	$N_1S_1u_2$	$N_1S_1S_2u_3$	$N_1 S_1 S_2 S_3 u_4$	
2	N_2		$N_2 u_2$	$N_2S_2u_3$	$N_2S_2S_3u_4$	
3	N_3			$N_3 u_3$	$N_3 S_3 u_4$	

$$S_i = \exp -F_i - M_i$$

$$u_i = \frac{F_i}{F_i + M_i} \quad 1 - S_i$$

		Expected number of returns from age class <i>i</i>				
Release Age	Number of releases	1	2	3	4	
1	N_1	$N_1 u_1$	$N_1S_1u_2$	$N_1S_1S_2u_3$	$N_1 S_1 S_2 S_3 u_4$	
2	N_2		$N_2 u_2$	$N_2S_2u_3$	$N_2S_2S_3u_4$	
3	N_3			$N_3 u_3$	$N_3 S_3 u_4$	

$$S_i = \exp -F_i - M_i$$

$$u_i = \frac{F_i}{F_i + M_i} \quad 1 - S_i$$

- releases aggregated by month and estimated age using Alain's growth curve
- For each age/month event predict number of recaptures for each month
- Only used releases for ages 0, 1, 2 and 3
- Only used recaptures through age 4
- Reporting rate for PS returns estimated by assuming 100% for at sea recovery and seeding estimates for those not recaptured at sea.

- Reporting rate for other fisheries assumed to be zero i.e. model predicting the number of PS recaptures
- Overall reporting rate estimated by scaling PS reporting rate by proportion of the catch by age in a year caught by PS fishery – yields age and year specific estimates
- No account of tag loss
- Various parameterizations examined for M and F
- Significant best fit was for age specific M for ages 0, 1 and 2+ (but age specific M's are likely to have high CVs)
- Significant best fit was for F separable by age and overall F's levels varying monthly

- Reporting rate for other fisheries assumed to be zero –
 i.e. model predicting the number of PS recaptures
- Overall reporting rate estimated by scaling PS reporting rate by proportion of the catch by age in a year caught by PS fishery – yields age and year specific estimates

	0	1	2	3
2005.00	0.59	0.64	0.30	0.37
2006.00	0.84	0.70	0.24	0.36
2007.00	0.79	0.63	0.32	0.32

F (quarterly) at age 4 by month

