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1 Introduction 
This paper presents the stock assessment of yellowfin tuna (Thunnus albacares) in the Indian Ocean 

(IO). The methodology used for the assessment is that commonly known as MULTIFAN-CL (Fournier et al. 
1998; Hampton and Fournier 2001; Kleiber et al. 2003; http://www.multifan-cl.org), which is software that 
implements a size-based, age- and spatially-structured population model. Parameters of the model are estimated 
by maximizing an objective function consisting both of likelihood (data) and prior information components. 

MULTIFAN-CL is routinely used to conduct the stock assessment of tuna stocks of the western and 
central Pacific Ocean, including yellowfin tuna (e.g., Langley et al. 2007). For the Indian Ocean, stock 
assessments of yellowfin tuna before 2008 had been conducted using more traditional methods such as VPA 
and production models (refs). MULTIFAN-CL has the functionality to integrate data from tag release/recovery 
programmes and, thereby, utilise the information collected from the large-scale tagging programme conducted 
in the Indian Ocean in recent years. For this reason, the IOTC Working Party on Tagging Data Analysis held in 
June–July 2008 recommended conducting an assessment of the IO yellowfin tuna stock using MULTIFAN-CL 
software (IOTC 2008a). 

A preliminary stock assessment of IO yellowfin tuna using MULTIFAN-CL was conducted in 2008 
(Langley et al. 2008). The assessment was reported to the IOTC 10th Working Party on Tropical Tunas (WPTT) 
and the assessment was refined during that meeting (IOTC 2008b). This report presents the results of an 
updated assessment that includes an additional year of data (tag recoveries, length frequency, catch and effort) 
and incorporates the refinements in model structure and assumptions that were recommended by the WPTT, 
including: 

• a revision of the regional boundaries,   

• the estimation of trends in catchability for the longline fisheries during the early period (1960–1972) of the 
model, 

• estimation of dome-shaped selectivity for the longline fisheries, 

• inclusion of a Taiwanese standardised longline CPUE index for the region 1 longline fishery,   

• a lower overall level of natural mortality,  

• and specified values of steepness in the SRR.      

The overall objectives of the assessment are to estimate population parameters, such as time series of 
recruitment, biomass and fishing mortality that indicate the status of the stock and impacts of fishing. We also 
summarise stock status in terms of well-known reference points, such as the ratios of recent stock biomass to 

the biomass at maximum sustainable yield ( MSYcurrent BB
~

) and recent fishing mortality to the fishing mortality 

at MSY ( MSYcurrent FF
~

).   

2 Background 

2.1 Biology 

Yellowfin tuna (Thunnus albacares) is a cosmopolitan species distributed mainly in the tropical and 
subtropical oceanic waters of the three major oceans, where it forms large schools. The sizes exploited in the 
Indian Ocean range from 30 cm to 180 cm fork length. Smaller fish (juveniles) form mixed schools with 
skipjack and juvenile bigeye tuna and are mainly limited to surface tropical waters, while larger fish are found 
in surface and sub-surface waters. Intermediate age yellowfin are seldom taken in the industrial fisheries, but 
are abundant in some artisanal fisheries, mainly in the Arabian Sea. 

http://www.multifan-cl.org/
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The tag recoveries of the RTTP-IO provide evidence of large movements of yellowfin tuna, thus 
supporting the assumption of a single stock for the Indian Ocean. Fisheries data indicate that medium sized 
yellowfin concentrate for feeding in the Arabian Sea, that dispersion not being yet reflected in the present set of 
tag recovery data.  

Longline catch data indicates that yellowfin are distributed continuously throughout the entire tropical 
Indian Ocean, but some more detailed analysis of fisheries data suggests that the stock structure may be more 
complex. A study of stock structure using DNA was unable to detect whether there were subpopulations of 
yellowfin tuna in the Indian Ocean. 

Spawning occurs mainly from December to March in the equatorial area (0-10°S), with the main 
spawning grounds west of 75°E. Secondary spawning grounds exist off Sri Lanka and the Mozambique 
Channel and in the eastern Indian Ocean off Australia. Yellowfin size at first maturity has been estimated at 
around 100 cm, and recruitment occurs predominantly in July. Newly recruited fish are primarily caught by the 
purse seine fishery on floating objects. Males are predominant in the catches of larger fish at sizes larger than 
150 cm (this is also the case in other oceans).  

Preliminary tag data of the RTTP-IO clearly support a two-stanza growth pattern for yellowfin but more 
work is needed to achieve an appropriate integration of otolith and tagging data and agree on a growth model to 
be used in the assessment of this stock. 

There are no direct estimates of natural mortality (M) for yellowfin in the Indian Ocean. In previous IO 
stock assessments, estimates of M at length based on those from other oceans have been used. These were then 
converted to estimates of M at age using two growth curve models. This indicated a higher M on juvenile fish 
than for older fish. 

Before the RTTP-IO, there was little information on yellowfin movement patterns in the Indian Ocean, 
and what information there was came from analysis of fishery data, which can produce biased results because 
of their uneven coverage. However, there is good evidence that medium sized yellowfin concentrate for feeding 
in the Arabian Sea. Feeding behaviour is largely opportunistic, with a variety of prey species being consumed, 
including large concentrations of crustacea that have occurred recently in the tropical areas and small 
mesopelagic fishes which are abundant in the Arabian Sea. 

2.2 Fisheries 

Yellowfin tuna, an important component of tuna fisheries throughout the IO, are harvested with a 
diverse variety of gear types, from small-scale artisanal fisheries (in the Arabian Sea, Mozambique Channel and 
waters around Indonesia, Sri Lanka and the Maldives and Lakshadweep Islands) to large, distant-water 
longliners and purse seiners that operate widely in equatorial and tropical waters. Purse seiners catch a wide 
size range of yellowfin tuna, whereas the longline fishery takes mostly adult fish. 

Prior to 1980, annual catches of yellowfin tuna remained below about 80,000 mt. Annual catches 
increased markedly during the 1980s and early 1990s, reaching about 350,000 mt, mainly due to the 
development of the purse-seine fishery as well as an expansion of the other established fisheries (longline, 
gillnet, baitboat, handline and, to a lesser extent, troll). Catches remained at about 350,000 mt for the next 
decade then increased sharply to reach a peak of about 500,000 mt in 2004/2005 driven by a large increase in 
catch by all fisheries, especially the purse-seine (free school) fishery. In subsequent years, total annual catches 
have declined sharply, although catches from the smaller fisheries (gillnet, handline, baitboat, and troll) tended 
to increase through the 2000s. The total catch in 2008 was estimated to be 322,000 mt.  

In recent years (2005–2007), purse seine has been the dominant fishing method, harvesting 37% of the 
yellowfin tuna catch (by weight), with the longline, gillnet, and handline fisheries comprising 27%, 19% and 
9% of the total catch, respectively. A smaller component of the catch was taken by the regionally important 
baitboat (4.1%) and troll (3.7%) fisheries. The purse-seine catch is generally distributed equally between free-
school and associated (log and FAD sets) schools, with the exception of the large catches from free-schools in 
2003–2005.  

Most of the yellowfin catch is taken from the western equatorial region of the IO (47%; region 2, see 
Figure 1) and, to a lesser extent, the Arabian Sea (25%), and the eastern equatorial region (21%, region 5).  The 
purse-seine and baitboat fisheries operate almost exclusively within the western equatorial region, while catches 
from the Arabian Sea are principally by handline, gillnet, and longline (Figure 2). Catches from the eastern 
equatorial region (region 5) were dominated by longline and gillnet (around Sri Lanka and Indonesia). The 
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southern Indian Ocean (region 4) accounts for a small proportion of the total yellowfin catch (1%) taken 
exclusively by longline (Figure 2). 

3 Data compilation 
The data used in the yellowfin tuna assessment consist of catch, effort, and length-frequency data for 

the fisheries defined in the analysis, and tag release-recapture data. The details of these data and their 
stratification are described below. More details relating to the compilation of these data are provided in Herrera 
(2009). 

3.1 Spatial stratification 

The geographic area considered in the assessment is the Indian Ocean, defined by the coordinates 
40°S−25°N, 20°E−130°E. Within this overall area, a five-region spatial stratification was adopted for the 
assessment (Figure 1). The rationale for this stratification was to separate the tropical area, where both surface 
and longline fisheries occur year-round, from the higher latitudes, where the longline fisheries occur more 
seasonally. The spatial stratification is also designed to minimise the spatial heterogeneity in the magnitude and 
trend in longline CPUE and the size composition of the longline catch. 

Following the recommendations of the WPTT, the regional structure was refined from that used in the 
2008 stock assessment with the extension of region 3 northward to 10°S and eastward to 60°E (Figure 1). The 
main reason for the change was to separate the purse-seine fishery in the northern Mozambique Channel 
(10−15°S) from the equatorial region. The fishery in the northern Mozambique Channel exhibits strong 
seasonal variation in effort and catch and the size composition of the catch differs from the equatorial region.  

3.2 Temporal stratification 

The time period covered by the assessment is 1960−2008. Within this period, data were compiled into 
quarters (Jan−Mar, Apr−Jun, Jul−Sep, Oct−Dec). While catch data are available prior to 1960, this represents 
the first year for which standardised longline CPUE indices were available. 

3.3 Definition of fisheries 

MULTIFAN-CL requires the definition of “fisheries” that consist of relatively homogeneous fishing 
units. Ideally, the fisheries so defined will have selectivity and catchability characteristics that do not vary 
greatly over time (although in the case of catchability, some allowance can be made for time-series variation). 
Twenty-five fisheries have been defined for this analysis on the basis of region, time period, gear type, and, in 
the case of purse seine, set type (Table 1).  

A composite longline fishery was defined in each region (LL 1–5) aggregating the longline catch from 
all fleets (principally Japan and Taiwan and, in region 5, Indonesia). For the five longline fisheries, there is a 
strong decline in catch rates during the early period of the model (1960–1971). During the 2008 assessment, the 
WPTT agreed that it is unlikely that this decline is solely attributable to changes in stock abundance and the 
model was given the freedom to estimate a (declining) trend in catchability during this period. This required 
each of the area-specific longline fisheries to be separated into two time periods (1960–1971 and 1972 
onwards).  

The purse-seine catch and effort data were apportioned into two separate method fisheries: catches 
from sets on associated schools of tuna (log and drifting FAD sets; PS LS) and from sets on unassociated 
schools (free schools; PS FS). Purse-seine fisheries operate within regions 1, 2, 3 and 5 and, unlike the 2008 
assessment, separate purse-seine fisheries were defined in regions 2, 3 and 5, with catches, effort and length 
frequency data from area 1 reassigned to region 2.  

A single baitboat fishery was defined within region 2 (essentially the Maldives fishery). As with the 
purse-seine fishery, a small proportion of the total baitboat catch and effort occurs on the periphery of region 2, 
within regions 1 and 5. The additional catch and effort was assigned to the region 2 fishery. Gillnet fisheries 
were defined in Arabian Sea (region 1), including catches by Iran, Pakistan, and Oman, and in region 5 (Sri 
Lanka and Indonesia). A very small proportion of the total gillnet catch and effort occurs in region 2, with 
catches and effort reassigned to area 1. 
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Three troll fisheries were defined, representing separate fisheries in regions 2 (Maldives), 3 (Comoros) 
and 5 (Sri Lanka and Indonesia). Moderate troll catches are also taken in regions 1 and 4, the catch and effort 
from this components of the fishery reassigned to the fisheries within region 2 and 5, respectively. 

A handline fishery was defined within region 1, principally representing catches by the Yemenese fleet. 
Moderate handline catches are also taken in regions 2, 3 and 5, the catch and effort from this components of the 
fishery reassigned to the fishery within region 1.  

For regions 1 and 5, a miscellaneous (“Other”) fishery was defined comprising catches from artisanal 
fisheries other than those specified above (e.g. trawlers, small purse seines or seine nets, sport fishing and a 
range of small gears).  

3.4 Catch and effort data 

Catch and effort data were compiled according to the fisheries defined above. All catches were 
expressed in numbers of fish (Figure 3). 

Limited effort data were available for the handline (HD 1), gillnet (GN 1 and 5), other (OT 1 and 5) and 
the troll (TR 3 and 5) fisheries and, for records with no effort, effort was set to “missing”. A low penalty weight 
was specified for effort and (temporal) catchability deviations to minimise the influence of these effort data on 
the model results. 

Effort data units for the two purse seine fisheries are defined as the total days fishing and/or searching 
by the purse-seine fleet; i.e., the effort data has not been allocated between the two set types and essentially the 
equivalent effort series is used for the two fisheries. Effort data for the handline, baitboat, gillnet, and troll 
fisheries were defined as number of fishing trips. 

The time-series of catch-per-unit-effort (CPUE) for all fisheries are shown in Figure 5. For the longline 
fisheries (LL 1–5), effective (or standardised) effort was derived using generalized linear models (GLM) from 
the Japanese longline fleet (2–5) (Okamoto san, 27/9/2009) and for the Taiwanese longline fleet in region 1 
(Figure 6). Standardised longline CPUE indices for the Taiwanese fleet were available for 1979–2007. 

For these longline fisheries, a common catchability coefficient (and selectivity) was estimated in the 
assessment model, thereby, linking the respective CPUE indices among regions. This significantly increases the 
power of the model to estimate the relative (and absolute) level of biomass among regions. However, as CPUE 
indices are essentially density estimates it is necessary to scale the CPUE indices to account for the relative 
abundance of the stock among regions. For example, a relatively small region with a very high average catch 
rate may have a lower level of total biomass than a large region with a moderate level of CPUE.    

The approach used was to determine regional scaling factors that incorporated both the size of the 
region and the relative catch rate to estimate the relative level of exploitable longline biomass among regions. 
This approach is similar to that used in the WCPO regionally disaggregated tuna assessments. The scaling 
factors were derived from the Japanese longline CPUE data from 1960–75, essentially summing the average 
CPUE in each of the 5*5 lat/longitude cells within a region. The relative scaling factors thus calculated for 
regions 1–5 are 0.21, 1.00, 0.55, 0.15, and 0.85, respectively.  

For each of the principal longline fisheries, the GLM standardised CPUE index was normalised to the 
mean of the GLM index from 1960–75 — the equivalent period for which the region scaling factors were 
derived. The normalised GLM index was then scaled by the respective regional scaling factor to account for the 
regional differences in the relative level of exploitable longline biomass between regions. Standardised effort 
was calculated by dividing the quarterly catch by the quarterly (scaled) CPUE index. 

As noted in the previous section, the composite longline fishery in each region was separated into two 
time periods (1960–1971 and 1972 onwards).  

Within the model, effort for each fishery was normalised to an average of 1.0 to assist numerical 
stability. The principal longline fisheries were grouped to share common catchability parameters in the various 
analyses. For such grouped fisheries, the normalisation occurred over the group rather than for the individual 
fisheries so as to preserve the relative levels of effort among the fisheries. 
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3.5 Length-frequency data 

Available length-frequency data for each of the defined fisheries were compiled into 95 2-cm size 
classes (10−12 cm to 198−200 cm). Each length frequency observation for purse seine fisheries represents the 
number of fish sampled raised to the sampling units (sets in the fish compartment) while for fisheries other than 
purse seine each observation consisted of the actual number of yellowfin tuna measured. A graphical 
representation of the availability of length samples is provided in Figure 7. The data were collected from a 
variety of sampling programmes, which can be summarized as follows: 

Purse seine: Length-frequency samples from purse seiners have been collected from a variety of port sampling 
programmes since the mid-1980s. The samples are comprised of very large numbers of individual fish 
measurements. 

Longline: Length and weight data were collected from sampling aboard Japanese commercial, research and 
training vessels. Weight frequency data collected from the fleet have been converted to length frequency data 
via a processed weight-whole weight conversion factor and a weight-length key. Length frequency data from 
the Taiwanese longline fleet are also available from 1980−2007. In recent years, length data are also available 
from other fleets and periods, especially fresh-tuna longline fleets from Indonesia and Taiwan,China (IOTC-
OFCF sampling) 

Gillnet: Length data are available from both GN 1 and 5 fisheries. 

Baitboat: Size data are available from the fishery from 1983 to 2005.  

Troll: No size data are available from the TR 2 and 3fisheries. The troll fishery in region 5 was sampled during 
two periods: 1985−1990 (Indonesian fishery) and 1994−98 (Sri Lankan fishery). 

Handline: Limited sampling of the handline fishery was conducted over the last decade.    

Other: No length samples are available from the “Other” fishery in region 1 (OT 1) and only a small number of 
samples are available from the OT 5 fishery.   

Length data from each fishery/quarter were simply aggregated assuming that the collection of samples 
was broadly representative of the operation of the fishery in each quarter.  

3.6 Tagging data 

A considerable amount of tagging data was available for incorporation into the MULTIFAN-CL 
analysis. The data used consisted of yellowfin tuna tag releases and returns from the IOTC Regional Tuna 
Tagging Project (RTTP) conducted during 2005−2007. Most of the tag releases occurred within the western 
equatorial region (region 2) and a high proportion of these releases occurred in the second and third quarters of 
2006 (see IOTC 2008a for further details). Limited tagging also occurred within regions 1 and 3. The model 
included all tag recoveries up to the end of 2008. 

For incorporation into the MULTIFAN-CL analyses, tag releases were stratified by release region, time 
period of release (quarter) and the same length classes used to stratify the length-frequency data. A total of 
54,393 releases were classified into 15 tag release groups in this way.  

The returns from each size class of each tag release group were then classified by recapture fishery and 
recapture time period (quarter). The results of associated tag seeding experiments, conducted during 
2005−2008, have revealed considerable temporal variability in tag reporting rates from the IO purse-seine 
fishery (Hillary et al. 2008). Reporting rates were lower in 2005 (57%) compared to 2006 and 2007 (89% and 
94%). MULTIFAN-CL assumes a constant fishery-specific reporting rate for each fishery (or fishery group). 
To account for the temporal change in reporting rate, the number of tag returns from the purse-seine fishery in 
each stratum (tag group, year/quarter, and length class) were corrected using the respective estimate of the 
annual reporting rate. A reporting rate of 90% was assumed for the correction of the 2008 tag recoveries.    

In total, 9,435 tag recoveries (corrected for reporting rate) could be assigned to the fisheries included in 
the model. Almost all of the tags released in region 2 were recovered in the home region, although some 
recoveries occurred in adjacent regions, particularly regions 1 and 3. A small number of tags were recovered in 
region 5 (from tags released in region 2) and there were no tags recovered from region 4 (Table 2). 

A significant proportion (35%) of the tag returns from purse seiners were not accompanied by 
information concerning the set type and, consequently, these returns could not be linked to a specific purse 
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seine fishery. To enable these tags to be incorporated within the model, it was necessary to aggregate the tag-
return data across set types for the purse seine fisheries in each region. The population dynamics model was in 
turn configured to predict equivalent estimated tag recaptures by these grouped fisheries.  

For the purse-seine fisheries, the tag dataset was corrected for reporting rates (as described above) and 
the reporting rates were essentially fixed at a value of 0.81 to account for initial tag retention rates (0.9) 
(Gaertner and Hallier 2008) and the proportion of the total purse-seine catch examined for tags (0.9). 

4 Model description −−−− structural assumptions, parameterisation, and 
priors 

The model can be considered to consist of several components, (i) the dynamics of the fish population; 
(ii) the fishery dynamics; (iii) the dynamics of tagged fish; (iv) observation models for the data; (v) parameter 
estimation procedure; and (vi) stock assessment interpretations. Detailed technical descriptions of components 
(i) − (iv) are given in Hampton and Fournier (2001) and Kleiber et al (2003) and are not repeated here. Rather, 
brief descriptions of the various processes are given, including information on structural assumptions, estimated 
parameters, priors and other types of penalties used to constrain the parameterisation. For convenience, these 
descriptions are summarized in Table 3. In addition, we describe the procedures followed for estimating the 
parameters of the model and the way in which stock assessment conclusions are drawn using a series of 
reference points. 

4.1 Population dynamics 

The five-region model partitions the population into 5 spatial regions and 28 quarterly age-classes. The 
first age-class has a mean fork length of around 22 cm and is assumed to be approximately three months of age 
based on ageing studies of yellowfin tuna in other oceans (e.g. Lehodey and Leroy 1999). The last age-class 
comprises a “plus group” in which mortality and other characteristics are assumed to be constant. For the 
purpose of computing the spawning biomass, we assume a fixed maturity schedule (Table 3) consistent with the 
observations of Itano (2000). No published maturity data are available for yellowfin tuna in the Indian Ocean.  

The population is “monitored” in the model at quarterly time steps, extending through a time window 
of 1960−2008. The main population dynamics processes are as follows: 

4.1.1 Recruitment 

Recruitment is the appearance of age-class 1 fish in the population. Recruitment is assumed to occur 
instantaneously at the beginning of each quarter. This is a discrete approximation to continuous recruitment, but 
provides sufficient flexibility to allow a range of variability to be incorporated into the estimates as appropriate.  

The distribution of recruitment among the five model regions was estimated within the model and 
allowed to vary over time in a relatively unconstrained fashion. The time-series variation in spatially-
aggregated recruitment was somewhat constrained by a lognormal prior. The variance of the prior was set such 
that recruitments of about three times and one third of the average recruitment would occur about once every 25 
years on average. 

Spatially-aggregated recruitment was assumed to have a weak relationship with the spawning biomass 
via a Beverton and Holt stock-recruitment relationship (SRR). The SRR was incorporated mainly so that yield 
analysis could be undertaken for stock assessment purposes. We therefore opted to apply a relatively weak 
penalty for deviation from the SRR so that it would have only a slight effect on the recruitment and other model 
estimates (see Hampton and Fournier 2001, Appendix D). Typically, fisheries data are not very informative 
about SRR parameters and, following the recommendations of the WPTT, three alternative values of steepness 
(h) were considered (0.60, 0.70, and 0.80). 

4.1.2 Initial population 

The population age structure in the initial time period in each region was assumed to be in equilibrium 
and determined as a function of the average total mortality during the first 20 quarters. This assumption avoids 
having to treat the initial age structure, which is generally poorly determined, as independent parameters in the 
model. The initial age structure was applied to the initial recruitment estimates to obtain the initial populations 
in each region. 
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4.1.3 Growth 

The standard assumptions made concerning age and growth are (i) the lengths-at-age are normally 
distributed for each age-class; (ii) the mean lengths-at-age follow a von Bertalanffy growth curve; (iii) the 
standard deviations of length for each age-class are a log-linear function of the mean lengths-at-age; and (iv) the 
probability distributions of weights-at-age are a deterministic function of the lengths-at-age and a specified 
weight-length relationship (see Table 3). These processes are assumed to be regionally invariant. 

As noted above, the population is partitioned into 28 quarterly age-classes. The number of older age 
classes allows for the possibility of significantly older and possibly larger fish in the early years of the fishery 
when exploitation rates were very low. 

Previous studies have revealed that the growth of yellowfin tuna less than about 80 cm deviate from the 
standard von Bertalanffy growth pattern. Growth was modelled to allow the mean lengths of the first eight 
quarterly age-classes to be independent parameters, with the remaining mean lengths following a von 
Bertalanffy growth curve. These deviations attract a small penalty to avoid over-fitting the size data. 

4.1.4 Movement 

Movement was assumed to occur instantaneously at the beginning of each quarter through movement 
coefficients connecting regions sharing a common boundary. However, fish can move between non-contiguous 
regions in a single time step due to the “implicit transition” computational algorithm employed (see Hampton 
and Fournier 2001; Kleiber et al. 2003 for details). Movement is parameterised as the proportion of fish in a 
given region that move to the adjacent region. There are six inter-regional boundaries in the model with 
movement possible across each in both directions. Four seasonal movements were allowed, each with their own 
movement coefficients. Thus there is a need for 2×6×4 = 48 movement parameters. The seasonal pattern of 
movement persists from year to year with no allowance for longer-term variation in movement. The movement 
coefficients are invariant with respect to age. 

4.1.5 Natural mortality 

Natural mortality (M) was held fixed at pre-determined age-specific levels. The relative trend in natural 
mortality at age is comparable to that applied in the Pacific Ocean (western and central; eastern) yellowfin tuna 
stock assessments, although the overall magnitude of M is considerably lower (as recommended by the WPTT 
2008) (Figure 8). 

4.2 Fishery dynamics 

The interaction of the fisheries with the population occurs through fishing mortality. Fishing mortality 
is assumed to be a composite of several separable processes − selectivity, which describes the age-specific 
pattern of fishing mortality; catchability, which scales fishing effort to fishing mortality; and effort deviations, 
which are a random effect in the fishing effort − fishing mortality relationship. 

4.2.1 Selectivity 

Selectivity is assumed to be fishery-specific and time-invariant. For all fisheries, selectivity was 
modelled using a cubic spline interpolation to estimate age-specific selectivity. This is a form of smoothing, but 
the number of parameters for each fishery is the number of cubic spline “nodes” that are deemed to be sufficient 
to characterise selectivity over the age range. We chose five nodes, which seems to be sufficient to allow for 
reasonably complex selectivity patterns. For all fisheries, the selectivity for the last four age-classes, for which 
the mean lengths are very similar, was constrained to be equal. 

The longline fisheries were assumed to have a common selectivity among fisheries and time periods. 

No length frequency data are available for the “Other” fishery in region 1, while limited data are 
available from the OT 5 fishery. Similarly, size data were available from the troll fishery in region 5, but not 
from the fisheries in regions 2 and 3. The selectivity of the “Other” fisheries was assumed to be equivalent 
among the two regions, while a common selectivity was assumed for the troll fisheries in regions 2 and 5. 

4.2.2 Catchability 

For the non longline fisheries (1972 onwards), catchability was allowed to vary slowly over time (akin 
to a random walk) using a structural time-series approach. Catchability was also allowed to vary for the 
longline fisheries during the early model period (1960-1971). Random walk steps were taken every one or two 
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years, and the deviations were constrained by prior distributions of mean zero and variance specified for the 
different fisheries according to our prior belief regarding the extent to which catchability may have changed.  

A number of fisheries have limited or no effort data (HD 1, GN 1 and 5, OT 1 and 5 and TR 3 and 5). 
In the absence of effort data, MFCL assumes a notional value for the effort. For these fisheries, the variance on 
the catchability deviations was high (approximating a CV of about 0.7), thereby, allowing catchability changes 
(as well as effort deviations) to predict the observed effort without the assumed effort series influencing the 
trend in stock abundance. For the other fisheries with time-series variability in catchability, the catchability 
deviation priors were assigned a variance approximating a CV of 0.10.  

The longline fisheries (1972 onwards) were grouped for the purpose of initial catchability, and time-
series variation was assumed not to occur in this group. As noted earlier, this assumption is similar to assuming 
that the CPUE for these fisheries indexes the exploitable abundance both among areas and over time.  

Catchability for all fisheries was allowed to vary seasonally. 

4.2.3 Effort deviations 

Effort deviations, constrained by prior distributions of zero mean, were used to model the random 
variation in the effort – fishing mortality relationship. For the non longline fisheries, the variance was set at a 
moderate level (approximating a CV of 0.2). For the main longline fisheries (LL 1-5), the variance was set at a 
lower level (approximating a CV of 0.1) because the effort had been standardised in prior analyses and these 
longline fisheries provide wide spatial coverage of the respective areas in which they occur. 

4.3 Dynamics of tagged fish 

4.3.1 Tag mixing 

In general, the population dynamics of the tagged and untagged populations are governed by the same 
model structures and parameters. An obvious exception to this is recruitment, which for the tagged population 
is simply the release of tagged fish. Implicitly, we assume that the probability of recapturing a given tagged fish 
is the same as the probability of catching any given untagged fish in the same region. For this assumption to be 
valid, either the distribution of fishing effort must be random with respect to tagged and untagged fish and/or 
the tagged fish must be randomly mixed with the untagged fish. The former condition is unlikely to be met 
because fishing effort is almost never randomly distributed in space. The second condition is also unlikely to be 
met soon after release because of insufficient time for mixing to take place. Depending on the disposition of 
fishing effort in relation to tag release sites, the probability of capture of tagged fish soon after release may be 
different to that for the untagged fish. It is therefore desirable to designate one or more time periods after 
release as “pre-mixed” and compute fishing mortality for the tagged fish based on the actual recaptures, 
corrected for tag reporting (see below), rather than use fishing mortalities based on the general population 
parameters. This in effect desensitizes the likelihood function to tag recaptures in the pre-mixed periods while 
correctly discounting the tagged population for the recaptures that occurred.  

We assumed that tagged yellowfin mix fairly quickly with the untagged population at the region level 
and that this mixing process is complete by the end of the second quarter after release. The release phase of the 
tagging programme was essentially restricted to region 2. To date, the distribution of tags throughout the wider 
IO appears to be relatively limited. This is evident from the low number of tag recoveries from the fisheries 
beyond region two, although these data are unlikely to significantly inform the model regarding movement rates 
given the lack of information concerning tag reporting rates from many of these fisheries (see below). 

4.3.2 Tag reporting 

In principal, tag-reporting rates can be estimated internally within the model. In practice, experience 
has shown that independent information on tag-reporting rates for at least some fisheries tends to be required 
for reasonably precise estimates to be obtained. We provided reporting rate priors for all fisheries that reflect 
our prior opinion regarding the reporting rate and the confidence we have in that opinion. For the purse-seine 
fisheries, the tag dataset was corrected for reporting rates (from the tag seeding experiments) and the reporting 
rates were essentially fixed at a value of 0.81 to account for initial tag retention rates (0.9) and the proportion of 
the total purse-seine catch examined for tags (0.9). 

  For the other fisheries, we have no auxiliary information with which to estimate reporting rates, so 
relatively uninformative priors were used for those fisheries. All reporting rates were assumed to be stable over 
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time. The proportions of tag returns rejected from the analysis because of insufficient data were incorporated 
into the reporting rate priors. 

4.4 Observation models for the data 

There are three data components that contribute to the log-likelihood function — the total catch data, 
the length-frequency data and the tagging data. The observed total catch data are assumed to be unbiased and 
relatively precise, with the SD of residuals on the log scale being 0.07. 

The probability distributions for the length-frequency proportions are assumed to be approximated by 
robust normal distributions, with the variance determined by the effective sample size and the observed length-
frequency proportion.  

The size frequency data is assigned an effective sample size lower than the actual number of fish 
sampled. Reduction of the effective sample size recognises that (i) length frequency samples are not truly 
random (because of clumping in the population with respect to size) and would have higher variance as a result; 
and (ii) the model does not include all possible process error, resulting in further under-estimation of variances.  

For the initial model runs, the size data were considered to be moderately informative and were given 
an according weighting in the likelihood function; individual length frequency distributions were assigned an 
effective sample size of 0.05 times the actual sample size, with a maximum effective sample size of 50.  

A log-likelihood component for the tag data was computed using a negative binomial distribution in 
which fishery-specific variance parameters were estimated from the data. The negative binomial is preferred 
over the more commonly used Poisson distribution because tagging data often exhibit more variability than can 
be attributed by the Poisson. We have employed a parameterisation of the variance parameters such that as they 
approach infinity, the negative binomial approaches the Poisson. Therefore, if the tag return data show high 
variability (for example, due to contagion or non-independence of tags), then the negative binomial is able to 
recognise this. This should then provide a more realistic weighting of the tag return data in the overall log-
likelihood and allow the variability to impact the confidence intervals of estimated parameters. A complete 
derivation and description of the negative binomial likelihood function for tagging data is provided in Hampton 
and Fournier (2001) (Appendix C). 

4.5 Parameter estimation and uncertainty 

The parameters of the model were estimated by maximizing the log-likelihoods of the data plus the log 
of the probability density functions of the priors and smoothing penalties specified in the model. The 
maximization was performed by an efficient optimization using exact derivatives with respect to the model 
parameters. Estimation was conducted in a series of phases, the first of which used arbitrary starting values for 
most parameters.  

The Hessian matrix computed at the mode of the posterior distribution was used to obtain estimates of 
the covariance matrix, which was used in combination with the Delta method to compute approximate 
confidence intervals for parameters of interest. 

4.6 Stock assessment interpretation methods 

Several ancillary analyses were conducted in order to interpret the results of the model for stock 
assessment purposes. The methods involved are summarized below and the details can be found in Kleiber et al. 
(2003). Note that, in each case, these ancillary analyses are completely integrated into the model, and therefore 
confidence intervals for quantities of interest are available using the Hessian-Delta approach.  

4.6.1 Fishery impact 

Many assessments estimate the ratio of recent to initial biomass as an index of fishery depletion. The 
problem with this approach is that recruitment may vary considerably throughout the time series, and if either 
the initial or recent biomass estimates (or both) are “non-representative” because of recruitment variability, then 
the ratio may not measure fishery depletion, but simply reflect recruitment variability. 

We approach this problem by computing biomass time series (at the region level) using the estimated 
model parameters, but assuming that fishing mortality was zero. Because both the real biomass Bt and the 
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unexploited biomass B0t incorporate recruitment variability, their ratio at each time step of the analysis 
t

t

B

B

0

 can 

be interpreted as an index of fishery depletion. The computation of unexploited biomass includes an adjustment 
in recruitment to acknowledge the possibility of reduction of recruitment in exploited populations through 
stock-recruitment effects. 

4.6.2 Yield analysis 

The yield analysis consists of computing equilibrium catch (or yield) and biomass, conditional on a 
specified basal level of age-specific fishing mortality (Fa) for the entire model domain, a series of fishing 
mortality multipliers, fmult, the natural mortality-at-age (Ma), the mean weight-at-age (wa) and the SRR 
parameters α and β. All of these parameters, apart from fmult, which is arbitrarily specified over a range of 
0−50 in increments of 0.1, are available from the parameter estimates of the model. The maximum yield with 

respect to fmult can easily be determined and is equivalent to the MSY. Similarly the total ( MSYB
~

) and adult (

MSYBS
~

) biomass at MSY can also be determined. The ratios of the current (or recent average) levels of fishing 
mortality and biomass to their respective levels at MSY are of interest as limit reference points. These ratios are 
also determined and their confidence intervals estimated using a profile likelihood technique. 

For the standard yield analysis, the Fa are determined as the average over some recent period of time. In 
this assessment, we use the average over the period 2004−2007. We do not include 2008 in the average as 
fishing mortality tends to have high uncertainty for the terminal data year of the analysis. 

The MSY based reference points were also computed using the average annual Fa from each year 
included in the model (1960−2008). This enabled temporal trends in the reference points to be assessed and a 
consideration of the differences in MSY levels under historical patterns of age-specific exploitation. 

5 Sensitivity analyses 
The model described above was denoted as the base case model as it most closely approximated the 

model preferred by the WPTT in 2008. A range of separate model options were investigated, as described in 
Table 4. For comparison, all model sensitivities were conducted with the intermediate value of steepness (0.70). 
The analyses included: 

i. Running the model without the tag release/recovery data (no-tag). 

ii.  Changing the parameterisation of the selectivity of the longline fisheries from cubic spline to logistic 
(longline select). 

iii.  Growth parameters fixed to replicate the mean length-at-age estimates from the analysis of yellowfin 
growth data (A. Fonteneau, WPTT 2008) (AF-growth). 

iv. Fixing natural mortality at age at the higher values assumed in the current WCPO yellowfin tuna stock 
assessment (WCPO-M). 

v. Reconfiguring the longline standardised effort series to incorporate at assumed 1% per annum increase in 
longline efficiency from 1972 to 2008 (LL q increase).  

6 Results 
The results from the base-case and the range of sensitivities are presented below. In the interests of 

brevity, some categories of results are presented for the base-case only (with the intermediate value of 
steepness; i.e. 0.70). The main stock assessment-related results are also summarised for all analyses. 

6.1 Fit statistics and convergence 

A summary of the fit statistics for the eight IO analyses is given in Table 5. The model with the lowest 
value of steepness (0.60) yielded a substantial improvement in fit to the length data compared to the other two 
comparable model runs. Recruitment deviations are only weakly constrained by the steepness of the SRR and 
the differences in fit may be due to the model converging at a local minimum. 

The model option with an increase in longline efficiency (longline select) resulted in a marginal 
improvement in the overall fit due to a reduction in the effort deviations. The other model options resulted in a 
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weaker fit to the data, particularly the alternative growth option (AF-growth) with a much weaker fit to the 
length frequency data.   

6.2 Fit diagnostics (base-case) 

We can assess the fit of the model to the three predicted data classes − the total catch data, the length 
frequency data and the tagging data. In addition, the estimated effort deviations provide an indication of the 
consistency of the model with the effort data. The following observations are made concerning the various fit 
diagnostics: 

• The log total catch residuals by fishery are shown in Figure 9. The magnitude of the residuals is in keeping 
with the model assumption (CV=0.05) and they generally show even distributions about zero. 

• For almost all fisheries, there is good fit to the length frequency data revealed from a comparison of the 
observed and predicted length data aggregated over time (Figure 10).  

• For most fisheries, the size composition of individual length samples is consistent with the temporal trend 
in the size composition of the fishery-specific exploitable component of the population (Figure 11). A 
number of fisheries have considerable variability in the size frequency data (for example, PS FS 2, 3, & 5, 
TR 5 and LL 3) which may be partly due to sampling error. Further, the model does not reflect the strong 
decline in the length of fish sampled from the gillnet fishery in region 1 (GI 1); such a trend was not evident 
in the length data collected from the other fisheries in the same region, most notably the longline fishery 
(LL 1). 

• Most of the tag returns are from the purse-seine fishery in region 2. The fits of the model to the tagging data 
compiled by calendar time and by time at liberty are shown in Figure 12 and Figure 13, respectively. 
Overall, the model predicts the number of tag recoveries very well, with the exception of a considerable 
underestimation of the number of tags recovered in the first quarter of 2007 from the purse-seine fishery – 
fishery specific recoveries by quarter are presented in Figure 14. Tag recoveries from the non purse-seine 
fisheries are not considered to be informative and the model has the flexibility to freely estimate reporting 
rates for these fisheries. However, it is worth noting that the model generally fits the temporal trend in tag 
recoveries from a number of the other fisheries, particularly in region 2 (BB2, TR2, LL2, and OT1) 
indicating the assumption of a constant reporting rate, albeit low (except for TR 2), may be reasonable for 
these fisheries. 

• The model predicts tag attrition reasonably well (Figure 13). Most of the tag recoveries are from fish at 
liberty for up to about two years largely reflecting the period of release (most tags were released during 
2006) as well as the relatively high fishery-specific mortality by the purse-seine fleet. The decline in tag 
recoveries for extended periods at liberty is partly related to the cumulative effect of natural and fishery 
induced mortality on the younger age classes and the lower reporting rates of tags by the longline fleets. 

• The overall consistency of the model with the observed effort data can be examined in plots of effort 
deviations against time for each fishery (Figure 15). If the model is coherent with the effort data, we would 
expect an even scatter of effort deviations about zero. On the other hand, if there was an obvious trend in 
the effort deviations with time, this may indicate that a trend in catchability had occurred and that this had 
not been sufficiently captured by the model. For most of the principal longline fisheries (1972 onwards), 
there is no strong trend evident in the effort deviations. 

• A number of fisheries have limited of no effort data. For these fisheries, the model tends to fit any trend in 
catch through the effort deviations (rather than temporal variation in catchability). Hence, for a number of 
fisheries (GI 1 & 5, HD 1, and TR 3) there are strong trends in the effort deviations (Figure 15). However, 
given the low penalty associated with the effort deviations these observations are not influential in the 
model fit (the effort deviations associated with missing effort are excluded from the likelihood).    

6.3 Model parameter estimates (base-case unless otherwise stated) 

6.3.1 Growth 

The estimated growth curve is shown in Figure 16. The non-von Bertalanffy growth of juvenile 
yellowfin tuna is evident, with slow growth for young age classes and near-linear growth in the 70−120 cm size 
range. Growth in length is estimated to continue throughout the lifespan of the species, attenuating as the 
maximum is approached. The estimated variance in length-at-age increases with increasing age (Figure 16). 
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The growth estimated from the MFCL model is substantially different from the growth estimated by 
Alain Fonteneau (WPTT 2008) that was used in the AF-growth analysis (Figure 16). Growth rates are depressed 
for the first 12 quarters before increasing rapidly until approaching a maximum length slightly smaller than 
estimated by the MFCL model.  

6.3.2 Movement 

Two representations of the movement estimates are shown in Figure 17 and Figure 18. The estimated 
movement coefficients for adjacent model regions are shown in Figure 17. Coefficients for some region 
boundaries are close to zero, while overall, most movement rates are low. Movement rates are highest between 
region 2 and adjacent regions with the highest movement rate of 17% (of all fish) occurring from region 1 to 
region 2 in the second quarter.  

The distribution of regional biomass by source region derived from a simulation using the movement 
coefficients is presented in Figure 18. The simulation indicates that most biomass within a region is sourced 
from recruitment within the region, although significant mixing occurs between regions 2 and 3 (about 20% per 
generation), regions 1 and 2, and regions 2 and 5. Regional fidelity is highest in region 4 with very limited 
transfer of biomass from this region and almost all biomass sourced from recruitment within the region (Figure 
18). 

Note that the lack of substantial movement between some regions could simply be due to limited data 
for the estimation of the movement parameters. In the model, a small penalty is placed on movement 
coefficients different to zero. This is done for reasons of stability, but it would tend to promote low movement 
rates in the absence of data that are informative about movement. An alternative model formulation would be to 
have high movement rates, rather than zero movement, as the “null hypothesis”.  

6.3.3 Selectivity 

The common selectivity of the longline fisheries, parameterised using a cubic spline function, is 
strongly dome-shaped with a peak selectivity at age 10 quarters and low selectivity for age classes older than 15 
quarters (Figure 19). The associated purse-seine and baitboat fisheries have a high selectivity for juvenile fish, 
while the free-school purse-seine fishery selects substantially older fish. There are regional differences in the 
selectivity of the free-school purse-seine fisheries with the fishery in region 3 catching substantially younger 
fish than in the other regions (2 and 5). 

Limited or no size data were available for a number of fisheries, specifically the artisanal fisheries (OT 
1 & 5) and the troll fishery in regions 2 and 3 (TR 2 & 3). Consequently, selectivity for these fisheries is poorly 
estimated or, in the absence of size data, assumed equivalent to a fishery with the same gear code in another 
region.    

6.3.4 Catchability 

The model accounts for the early (pre 1972) decline in longline CPUE by estimating a strong decline in 
catchability in most regions (Figure 20). For the principal longline fisheries (1972 onwards), catchability was 
assumed to be constant over time, with the exception of seasonal variation (not shown in figure). 

Time-series changes in catchability are evident for several other fisheries; there is evidence of a general 
increase in catchability for the purse seine fisheries, particularly the associated sets fishery (PS LS 2, 3, and 5). 
However, given that the purse-seine effort data are not separated by set type, these trends may partly reflect a 
shift in the proportion of associated sets in the aggregated purse-seine effort data. 

For many of the non industrial scale fisheries, no reliable effort data were available. For these fisheries, 
the trends in catchability are meaningless. Instead, the trends in catchability provide a mechanism for the model 
to fit the catch data, in conjunction with the effort deviations, given the notional effort. The constraints on 
temporal trends in catchability are relaxed for these fisheries so that the effort data has very limited influence on 
the total likelihood.   

6.3.5 Tag-reporting rates 

Tag reporting rates for the purse-seine fisheries (combined within a region for the estimation of tag 
recoveries) were fixed in the analysis (Figure 21). For all other fisheries, no information was available 
regarding tag reporting rates and fishery-specific reporting rates were estimated with virtually no constraint. For 
those fisheries with tag recoveries, the estimated reporting rates were generally low (less than 20%), with the 
exception of the artisanal fishery in region 1 (OT 1) and the troll fisheries in regions 2 and 3 (TR 2 & 3).     
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6.4 Stock assessment results 

6.4.1 Recruitment 

 The base-case recruitment estimates (aggregated by year for ease of display) for each region and the 
entire IO are shown in Figure 22. The regional estimates display large interannual variability and variation on 
longer time scales, as well as differences among regions. For the aggregated estimates, recruitment is estimated 
to be highest during the early-mid 1970s. Recruitment remains relatively stable during 1990−2003, at about the 
long term average level, and then declines sharply from 2003 to 2007. There is an increase in recruitment in 
2008; however, the recruitment in the most recent year is poorly estimated.  

There are considerably different temporal trends in recruitment among regions. For regions 1 and 2, 
estimates of recruitment generally increased from 1980 to 2000, while the opposite trend is evident in regions 3 
and 5 and, to a lesser extent in region 4 (Figure 22). The recent decline in the overall level of recruitment is 
largely driven by declines in recruitment in regions 1 and 2.   

For the entire IO, recruitment estimates for early period of the model (1960−1980) are considerably 
more uncertain than the subsequent period (Figure 22).  

A comparison of IO recruitment estimates for the different analyses is provided in Figure 23. The 
model with the higher natural mortality (WCPO-M) had a correspondingly higher overall level of recruitment 
than the base-case (Figure 23). For the longline select model, recruitment was estimated to steadily increase 
over the model period. 

6.4.2 Biomass 

The estimated biomass trajectory for each region and for the entire IO is shown in Figure 24 and Figure 
25 for the base-case analysis. Adult and total biomass is estimated to have declined rapidly since the late 1980s. 
This trend is largely driven by the decline in biomass within regions 2, 3 and 5 — historically these regions 
accounted for the most of the IO biomass.  

There are very narrow confidence intervals around the time-series of estimated biomass for each region 
(Figure 24). These confidence intervals do not accurately reflect the true level of uncertainty as they are 
predicated on the high precision of estimated recruitment time-series and the assumption that natural mortality 
at age is known without error. 

A useful diagnostic is to compare model estimates of exploitable abundance for those longline fisheries 
with assumed constant catchability with the CPUE data from those fisheries. The time series comparison of 
these quantities (Figure 26) shows generally good correspondence between the model estimates and the data.  

The comparison of total biomass trends for the different analyses is shown in Figure 27. The relative 
trends in total biomass are generally comparable among model options, although the overall magnitude of the 
biomass was considerably lower than the base-case model for three of the sensitivities (WCPO-M, longline 
select, and AF growth). These differences are attributable to the differences in the assumed biological 
parameters and, thereby, the productivity of the stock (WCPO-M and AF growth) or, in the case of the longline 
select model, reflect the different assumptions regarding the vulnerability of the older age classes to the longline 
fishery.    

6.4.3 Fishing mortality 

 Average fishing mortality rates for juvenile and adult age-classes increased strongly from the early 
1980s for most model options (Figure 28). For the most recent years (2006−2008), the period for which tag data 
are available, the model that excludes the tag data (no-tag) yields slightly lower estimates of overall fishing 
mortality for adult yellowfin compared to the base-case analysis (including tags). However, the estimates of 
age-specific mortality for region 2 – the region with the most tag data – were remarkably similar between the 
two model options (Figure 29).  

Overall fishing mortality rates for adult fish were substantially higher for the model with a higher 
assumed natural mortality (WCPO-M), while fishing mortality rates on juvenile fish were lower for the model 
with the alternative growth parameterisation (AF-growth) (Figure 28). 

Recent fishing mortality rates, for the period used in the computation of references points (2004−2007), 
were highest in regions 2 and 3, particularly for the younger age classes (1−3), and the older age classes in 
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region 1 (Figure 30). For region 5, fishing mortality rates were moderate, over a wider range of age classes. By 
comparison, exploitation rates in region 4 were very low. 

6.4.4 Fishery impact 

We measure fishery impact at each time step as the ratio of the estimated biomass to the biomass that 
would have occurred in the historical absence of fishing. This is a useful variable to monitor, as it can be 
computed both at the region level and for the IO as a whole. The two trajectories are plotted in Figure 31. 
Impacts are highest in regions 1 and 2, while the strong declines in biomass in regions 3 and 5 are only partly 
attributable to the effect of fishing. The fishery impact in region 2 accounts for a high proportion of the 
reduction in total IO biomass that is attributable to fishing.   

The biomass ratios are plotted in Figure 32. These figures indicate high levels of fishery depletion 
(60−80% reduction) of yellowfin tuna in all regions except region 4. For the entire IO, recent levels of fishing 
have resulted in about a 65% reduction in total biomass. Overall depletion levels were comparable for the 
various model options investigated with the exception of the slightly higher level of depletion derived from the 
longline select model (Figure 33). 

6.4.5 Yield analysis 

Symbols used in the following discussion are defined on Table 6. The yield analysis incorporates the 
SRR into the equilibrium biomass and yield computations with three alternative values of steepness assumed 
for the SRR (0.60, 0.70, and 0.80). There is no strong evidence from the model estimates of spawning biomass 
and recruitment to select a specific value of steepness (Figure 34). On that basis, the three separate sets of MSY-
based reference points are considered to be equally plausible indicators of stock status.   

Equilibrium yield and biomass (spawning and total) are computed as a function of multiples of the 
2004−2007 average fishing mortality-at-age (Figure 35). For the base-case model and steepness fixed at 0.70, a 
maximum yield (MSY) of 356,280 mt per annum is achieved at fmult = 0.78; i.e. at 78% of the current level of 

age-specific fishing mortality. This represents a ratio of MSYcurrent FF
~

 equal to 1.28 (approximately 1/0.78); 
current exploitation rates are higher than the exploitation rates to produce the MSY. The equilibrium biomass at 
MSY is estimated at 2,630,000 mt, approximately 35% of the equilibrium unexploited biomass (Table 7). 

Equilibrium yield at the current level of fishing mortality (
currentFY

~
= 339,520 mt) is considerably lower than the 

peak in total catches from the fishery (averaging about 464,000 mt in 2003−2006) but is comparable to the level 
of catch in the last two years. 

The results of the yield analysis are sensitive to the value of steepness assumed. The lower value of 
steepness (0.60) resulted in lower estimates of yield and lower reference levels of fishing mortality. Conversely, 
the higher value of steepness (0.80) resulted in higher estimates of yield and higher reference levels of fishing 
mortality (Figure 35). Nonetheless, for the three options of steepness, current exploitation rates are higher than 

the exploitation rates to produce the MSY ( MSYcurrent FF
~

> 1).   

For the base-case analysis (and steepness fixed at 0.70), the reference points 
MSYt

FF
~

, 
MSYt

BB
~

and 

MSYt BSSB
~

  were computed for each year (t) included in the model (1960–2008). These computations 

incorporated the overall fishery selectivity in year t. This enables trends in the status of the stock relative to 
these reference points to be followed over the model period (Figure 36 and Figure 37). For the base-case model, 

exploitation rates were low from 1960 to 1990, while total and adult biomass remained well above MSYB
~

and 

MSYBS
~

. Since the early 1990s, 
MSYt

FF
~

 steadily increased while the relative biomass levels (
MSYt

BB
~

and 

MSYt BSSB
~

) declined. Fishing mortality rates exceeded the MSYF  level in the early 2000s and continued to 

increase over recent years. Total biomass and adult biomass have followed this trend and are estimated to have 

declined below MSYB
~

 and MSYBS
~

 in the two most recent years (Figure 36 and Figure 37). 

Equilibrium yield and total biomass, as a function of multiples of the 2004−2007 average fishing 
mortality-at-age, for the various sensitivity analyses are shown in Figure 38. Yield estimates were lower than 
the comparable base-case (steepness of 0.70) for the models with the alternative growth (AF-growth) and full 
longline selectivity (longline select). For all model options, recent (2004−2007) average fishing mortality rates 



 15

were greater than the MSYF  level ( MSYcurrent FF
~

 > 1.0) with the longline select model yielding estimates of 

MSYcurrent FF
~

 considerably higher than the other model options. Recent (2004−2007) average adult and total 

biomass levels were above or approached (LL q incr) the respective biomass based reference point (MSYB
~

 or 

MSYBS
~

) (Table 7).   

For the range of scenarios, the equilibrium total and adult biomass at MSY are estimated to be 33−42% 
and 30−35% of the equilibrium unexploited total and adult biomass, respectively (Table 7). 

7 Discussion and conclusions 
The first application of MULTIFAN-CL to the assessment of the Indian Ocean yellowfin tuna stock 

was presented and further refined at the WPTT meeting in 2008. The 2008 assessment was the first attempt to 
integrate the tag release/recovery data available from the recent IO-RTTP within a statistical framework that 
incorporates the other available sources of data from the fishery (catch, effort and length frequency data). The 
assessment was considerably more complex than previous assessments as it was configured to reflect the spatial 
dynamics of stock and the principal region-specific fisheries.  

The current assessment is a further refinement of the assessment completed by the WPTT in 2008 with 
the adoption of a range of recommendations from WPTT 10 and subsequent discussions. The current model 
also includes considerably more tag data from the additional year of tag recoveries.  

In general, the diagnostics reveal that the model provides a good fit to the main data sets included in the 
assessment. Nevertheless, a range of issues were identified that need further consideration in future 
assessments. These issues are not unique to the current MFCL assessment and, in many cases, are of direct 
relevance to assessments conducted using other methodologies and the assessment of yellowfin tuna in other 
oceans. Key issues most directly relevant to the current assessment are as follow. 

i. Limited or no size frequency data are available for several significant fisheries. Consequently, 
selectivities for these fisheries are poorly determined or unknown and assumed to be equivalent to other 
fisheries using similar methods. More representative sampling is required for key fisheries, for example 
the principal longline fisheries. 

ii.  Where possible, purse-seine tag recoveries should be separated by set type (associated and unassociated 
sets). This would give the analysis more power to estimate fishery-specific exploitation rates, 
particularly given the significant difference in the age-specific selectivity of the two fisheries. 

iii.  There is a conflict between the estimates of growth from MFCL and external estimates of growth. 
Further analysis is required to refine the current estimates of growth, incorporating direct data from 
ageing (otoliths) and tag growth increment data. 

iv. Improvement of tag recovery estimates from the purse-seine fishery. Currently, good estimates of tag 
reporting rates are available for purse-seine caught fish landed in the Seychelles. However, limited 
information is available for the component of the purse-seine catch landed in other ports. 

v. No information is currently available regarding tag reporting rates from other fisheries. Some of these 
fisheries have returned a substantial number of tags and estimates of reporting rates for these fisheries 
would increase the utility of the total tag release/recovery data set. 

 

Key issues of more general nature, of relevance to other yellowfin tuna stocks, are as follow. 

vi. For all oceans, there is limited information available about natural mortality and maturity at age. The 
current assessment has adopted values of natural mortality that are considerably lower than those used 
in the PO assessments of yellowfin tuna. Further research is required to refine the biological parameters 
for the IO stock. 

vii.  The base-case assessment assumes a constant catchability of yellowfin by the longline fisheries, as 
indexed by the Japanese and Taiwanese standardized CPUE indices. However, the CPUE 
standardization is unlikely to account for a range of variables that may have increased (or decreased) 
the efficiency of the longline fleet with respect to yellowfin tuna. A sensitivity analysis (LL q incr) 
indicates that the stock assessment conclusions are sensitive to the assumptions regarding longline 
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catchability. More detailed information regarding gear technology and fishing strategy is necessary to 
investigate changes in longline catchability over the model period.  

viii.  The assessment also assumes that the selectivity of a fishery has remained constant throughout the 
model period. There is no strong evidence to suggest that this assumption is invalid, although it may be 
possible that changes in the composition of the fleet and/or targeting behaviour, for example the 
increased targeting of bigeye tuna by the longline fleet, have resulted in a change in the size selectivity 
of key fisheries.  

ix. The SRR is a key component of the computation of the MSY-based reference points. However, model 
estimates of recruitment and adult biomass are unlikely to be informative in the estimation of 
parameters of the SRR, particularly at low biomass levels. For this reason, WPTT 10 agreed to adopt a 
range of default values of steepness. Consideration should also be given to adopting a range of 
reference points that are less dependent on assumptions relating to SRR.  

 

Many of the issues identified above require the collection of additional biological and fishery related 
data and/or an investigation of the sensitivity to a number of the key structural assumptions. A number of 
sensitivity analyses were included in the current assessment; however, a more thorough examination of the 
model uncertainty should be undertaken.   

Despite the issues identified above, a number of key observations and conclusions are evident from the 
results of the current assessment. These conclusions are generally consistent with the results of the assessment 
conducted by WPTT 10 (WPTT 2008b). 

1. The model estimates that total biomass has declined rapidly since the late 1980s. The decline in 
biomass has been greatest in regions 2, 3 and 5. These trends are generally consistent with the trends in 
the longline CPUE indices.  

2. Exploitation rates and fishery impacts are relatively high (resulting in a 60−80% reduction in biomass) 
in all regions except region 4. 

3. The assessment estimates that there has been a strong decline in recruitment in recent years. As a 
consequence, total biomass has declined and recent (2007−2008) exploitation rates are at historically 
high levels, approximately 20% higher than the “current” (2004−2007 average) level of fishing 
mortality used in the computation of the MSY-based reference points. It is predicted that spawning 
biomass will also decline sharply over the next few years as the weaker cohorts reach the age of 
maturity. 

4. The MSY-based reference points, and the resulting stock status, are influenced by the value of steepness 
assumed for the SRR. The values included in the assessment were considered by WPTT 10 to 
encompass the plausible range of steepness for yellowfin tuna. Model options with lower values of 
steepness yielded more pessimistic stock conclusions. However, regardless of the value of steepness 
assumed, all model options estimated levels of recent average fishing mortality that were in excess of 

the MSYF  level ( MSYcurrent FF
~

> 1). As mentioned in the previous paragraph, fishing mortality rates are 

estimated to have increased during the recent period and adopting the 2004−2007 average level will 
under-estimate fishing mortality rates in the most recent years.  

5. For all model scenarios investigated, recent (2004−2007) average adult and total biomass remained 

above the respective MSY-based reference points (MSYB
~

and MSYBS
~

). However, biomass is estimated to 
have declined rapidly over the last five years and for many of the model options adult and total biomass 

is estimated to either approach or decline below the respective reference point (MSYB
~

and MSYBS
~

) in the 

most recent years (2007−2008). 

6. MSY is estimated to be between 230,000 and 390,000 mt depending on the value of steepness assumed. 
Recent (2007−2008) annual catches are towards the upper end of this range (325,000 mt and 322,000 
mt in 2007 and 2008, respectively) and have occurred following a period of lower than average 
recruitment. Catches of that magnitude may not be sustainable in the short-term if recruitment remains 
low. During 2003−2006, annual catches reached a peak of about 500,000 mt — a level substantially 
higher than the MSY. Catches of this magnitude were not maintained in the most recent years 
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(2007−2008) although the decline in catch may be, at least partly, attributable to the recent operational 
constraints of the purse-seine fleet.    
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Table 1. Definition of fisheries for the five-region MULTIFAN-CL analysis of yellowfin tuna. 

Fishery  Nationality Gear Period Region 

1. GI 1 All  Gillnet 1960–2008 1 

2. HD 1 All  Handline 1960–2008 1 

3. LL 1 post 1972 All  Longline 1972–2008 1 

4. OT 1 All  Other 1960–2008 1 

5. BB 2 All  Baitboat 1960–2008 2 

6. PS FS 2 All  Purse seine, school sets 1960–2008 2 

7. LL 2 post 1972 All  Longline 1972–2008 2 

8. PS LS 2 All  Purse seine, log/FAD sets 1960–2008 2 

9. TR 2 All  Troll 1960–2008 2 

10. LL 3 post 1972 All  Longline 1972–2008 3 

11. LL 4 post 1972 All  Longline 1972–2008 4 

12. GI 5 All  Gillnet 1960–2008 5 

13. LL 5 post 1972 All  Longline 1972–2008 5 

14. OT 5 All  Other 1960–2008 5 

15. TR 5 All  Troll 1960–2008 5 

16. LL 1 pre 1972 All  Longline 1960–1971 1 

17. LL 2 pre 1972 All  Longline 1960–1971 2 

18. LL 3 pre 1972 All  Longline 1960–1971 3 

19. LL 4 pre 1972 All  Longline 1960–1971 4 

20. LL 5 pre 1972 All  Longline 1960–1971 5 

21. PS FS 3 All  Purse seine, school sets 1960–2008 3 

22. PS LS 3 All  Purse seine, log/FAD sets 1960–2008 3 

23. TR 3 All  Troll 1960–2008 3 

24. PS FS 5 All  Purse seine, school sets 1960–2008 5 

25. PS LS 5 All  Purse seine, log/FAD sets 1960–2008 5 
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Table 2. Tag recoveries by year of recovery (box), region of release (vertical), and region of recovery. Region of 
recovery is defined by the definitions of the fisheries included in the model.  

 

Recovery region

2005 1 2 3 4 5

1 0 0 0 0 0

2 0 35 0 0 0

3 0 5 75 0 0
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1 0 0 0 0 0
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2007 1 2 3 4 5

1 38 22 2 0 0

2 27 4128 435 0 3

3 0 14 1 0 0

2008 1 2 3 4 5

1 3 4 0 0 0
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Table 5. Details of objective function components for the stock assessment models.  

 

Objective function 
component 

steep60 steep70 steep80 

Total catch log-likelihood 336.79 368.58 368.43 
Length frequency log-
likelihood 

-370,619.30 -370,697.80 -370,695.90 

Tag log-likelihood 2,785.08 2,741.61 2,739.20 
Penalties 4,212.33 4,317.81 4,318.67 
Total function value -363,285.10 -363,269.80 -363,269.60 
    
Number of parameters 5,212 5,212 5,212 

 

Objective function 
component 

AF-growth LLq-incr ll-select no-tag wcpo-M 

Total catch log-likelihood 413.66 330.41 396.89 271.76 360.00 
Length frequency log-
likelihood 

-369,454.30 -370,611.50 -370,465.00 -370,562.90 -370,600.00 

Tag log-likelihood 3,213.84 2,786.97 2,778.96 - 2,795.80 
Penalties 4,920.10 4,220.02 4,574.65 3,984.44 4,349.40 
Total function value -360,906.70 -363,274.10 -362,714.50 -366,306.70 -363,094.80 
      
Number of parameters 5,200 5,212 5,207  5,212 
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Table 6.  Description of symbols used in the yield analysis. 

Symbol Description 

currentF  Average fishing mortality-at-age for 2004−2007 

MSYF  Fishing mortality-at-age producing the maximum sustainable yield (MSY) 

currentFY
~

 Equilibrium yield at currentF  

MSYFY
~

(or MSY) Equilibrium yield at MSYF , or maximum sustainable yield 

0
~
B  Equilibrium unexploited total biomass 

currentFB
~

 Equilibrium total biomass at currentF  

MSYB
~

 Equilibrium total biomass at MSY 

0
~
BS  Equilibrium unexploited adult biomass 

currentFBS
~

 Equilibrium adult biomass at currentF  

MSYBS
~

 Equilibrium adult biomass at MSY 

currentB  Average current (2004−2007) total biomass 

currentSB  Average current (2004−2007) adult biomass 

1998B  Average total biomass in 1998 

1998SB  Average adult biomass in 1998 

0, =FcurrentB  Average current (2004−2007) total biomass in the absence of fishing. 
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Table 7. Estimates of management quantities for the stock assessment models. The highlighted rows are ratios 
of comparable quantities at the same point in time (black shading) and ratios of comparable equilibrium 
quantities (grey shading). 

 

Management 
quantity 

Units 
h 0.60 h 0.70 h 0.80 

currentFY
~

 mt per year 230,640 339,520 387,520 

MSYFY
~

(or MSY) mt per year 303,760 356,280 389,720 

0
~
B  mt 7,231,000 7,506,000 7,373,000 

currentFB
~

 mt 1,175,000 1,883,000 2,138,000 

MSYB
~

 mt 2,707,000 2,630,000 2,403,000 

0
~
BS  mt 6,435,000 6,672,000 6,549,000 

currentFBS
~

 mt 936,700 1,514,000 1,716,000 

MSYBS
~

 mt 2,268,000 2,172,000 1,952,000 

currentB  mt 2,935,750 3,240,312 3,221,719 

currentSB  mt 2,489,638 2,768,211 2,748,312 

2007SB   2,151,940 2,382,750 2,367,592 

0, =FcurrentB  mt 7,377,236 7,644,931 7,635,348 

0
~
BBcurrent   0.406 0.432 0.437 

currentFcurrent BB
~

  2.499 1.721 1.507 

MSYcurrent BB
~

  1.075 1.221 1.329 

0, =Fcurrentcurrent BB

 

 0.398 0.424 0.422 

0
~
BSSBcurrent   0.387 0.415 0.420 

02007

~
BSSB   0.334 0.357 0.362 

currentFcurrent BSSB
~

  2.658 1.828 1.602 

MSYcurrent BSSB
~

  1.092 1.268 1.401 

0
~~
BB

currentF   0.162 0.251 0.290 

0
~~
BSBS

currentF   0.146 0.227 0.262 

0
~~
BBMSY   0.374 0.350 0.326 

0
~~
BSBS MSY   0.352 0.326 0.298 

MSYcurrent FF
~

  1.627 1.280 1.100 

MSYF BB
current

~~
  0.434 0.716 0.890 

MSYF BSBS
current

~~
  0.413 0.697 0.879 

MSYY
currentF

~
  0.759 0.953 0.994 

1998BBcurrent   0.834 0.827 0.829 

19982007 SBSB   0.719 0.712 0.713 
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Table 7. continued. 

 

Management 
quantity 

Units 
h 0.70 

AF-
growth LLq-incr ll-select no-tag wcpo-M 

currentFY
~

 mt per year 339,520 263,840 345,680 164,840 378,560 314,360 

MSYFY
~

(or MSY) mt per year 356,280 276,360 379,600 231,680 387,920 319,320 

0
~
B  mt 7,506,000 4,931,000 8,039,000 3,894,000 7,860,000 2,330,000 

currentFB
~

 mt 1,883,000 1,265,000 1,739,000 533,600 2,191,000 834,700 

MSYB
~

 mt 2,630,000 1,746,000 2,813,000 1,414,000 2,761,000 972,900 

0
~
BS  mt 6,672,000 4,665,000 7,154,000 3,459,000 6,973,000 1,509,000 

currentFBS
~

 mt 1,514,000 1,100,000 1,384,000 397,700 1,758,000 382,300 

MSYBS
~

 mt 2,172,000 1,556,000 2,326,000 1,152,000 2,261,000 469,900 

currentB  mt 3,240,312 2,364,879 2,949,622 1,618,967 3,344,021 1,173,197 

currentSB  mt 2,768,211 2,184,180 2,514,160 1,331,012 2,839,758 630,946 

2007SB   2,382,750 1,737,405 2,136,165 1,046,216 2,460,403 474,269 

0, =FcurrentB  mt 7,644,931 5,815,365 7,388,709 5,099,210 7,697,751 2,330,946 

0
~
BBcurrent   0.432 0.480 0.367 0.416 0.425 0.504 

currentFcurrent BB
~

  1.721 1.869 1.696 3.034 1.526 1.406 

MSYcurrent BB
~

  1.221 1.335 1.038 1.128 1.201 1.183 

0, =Fcurrentcurrent BB

 

 0.424 0.407 0.399 0.317 0.434 0.503 

0
~
BSSBcurrent   0.415 0.468 0.351 0.385 0.407 0.418 

02007

~
BSSB   0.357 0.372 0.299 0.302 0.353 0.314 

currentFcurrent BSSB
~

  1.828 1.986 1.817 3.347 1.615 1.650 

MSYcurrent BSSB
~

  1.268 1.386 1.074 1.142 1.249 1.331 

0
~~
BB

currentF   0.251 0.257 0.216 0.137 0.279 0.358 

0
~~
BSBS

currentF   0.227 0.236 0.193 0.115 0.252 0.253 

0
~~
BBMSY   0.350 0.354 0.350 0.363 0.351 0.418 

0
~~
BSBS MSY   0.326 0.334 0.325 0.333 0.324 0.311 

MSYcurrent FF
~

  1.280 1.293 1.393 1.829 1.199 1.169 

MSYF BB
current

~~
  0.716 0.725 0.618 0.377 0.794 0.858 

MSYF BSBS
current

~~
  0.697 0.707 0.595 0.345 0.778 0.814 

MSYY
currentF

~
  0.953 0.955 0.911 0.711 0.976 0.984 

1998BBcurrent   0.827 0.848 0.771 0.911 0.814 0.897 

19982007 SBSB   0.712 0.694 0.650 0.747 0.706 0.746 
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Figure 1. Spatial stratification of the Indian Ocean for the MFCL assessment model.   

R1

R2

R3 R4

R5

20E 40E 60E 80E 100E 120E

35S

25S

15S

5S

5N

15N

25N



 28 

 
Figure 2. Total annual catch (1000s mt) of yellowfin tuna by fishing method and MFCL region from 1950 to 
2007 (BB, baitboat; FS, purse-seine, free schools; GI, gillnet; HD, handline; LL, longline; LS, purse-seine, log 
sets; OT, other; TR, troll).  
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Figure 3. Quarterly catches, by fishery. Catches are in number (thousands) of fish. Note the y-axis differs 
among plots. 
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Figure 4. Number of tag releases by region and quarter included in the MFCL data set. No tag releases 
occurred in regions 4 and 5. 
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Figure 5. Quarterly catch-per-unit-effort (CPUE) by fishery. Units are catch (number) per GLM-standardised 
effort (fisheries LL 1−5), catch (number) per day fished/searched (PS fisheries) and catch (number) per trip. 
Note that CPUE for “Other” and troll fisheries is arbitrary and not based on data (see discussion on catchability 
and effort deviation constraints for these fisheries). 
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Figure 6. Annualised GLM standardised catch-per-unit-effort (CPUE) for the principal longline fisheries (LL 
ALL 1−5) scaled by the respective region scalars.  
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Figure 7. Number of fish length measurements by year for each fishery. The height of the bar is proportional to 
the maximum sample size, up to a maximum of 4000 fish per annum. The maximum annual sample size for 
each fishery is given on the right-hand side. The extent of the horizontal lines indicates the period over which 
each fishery occurred. 
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Figure 8. Age-specific natural mortality assumed for the assessment. 
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Figure 9. Residuals of ln (total catch) for each fishery.  
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Figure 10. Observed (points) and predicted (line) length frequencies (in cm) for each fishery aggregated over 
time. 
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Figure 10 continued 

50 100 150 200

0.
00

0.
06

0.
12

15. TR 5

50 100 150 200

0.
00

0.
04

0.
08

16. LL 1 Pre 1972

50 100 150 200

0.
00

0.
02

0.
04

17. LL 2 Pre 1972

50 100 150 200

0.
00

0.
02

0.
04

18. LL 3 Pre 1972

50 100 150 200

0.
00

0.
02

0.
04

19. LL 4 Pre 1972

50 100 150 200

0.
00

0.
02

0.
04

20. LL 5 Pre 1972

50 100 150 200

0.
00

0.
04

0.
08

21. PS FS 3

50 100 150 200

0.
00

0.
10

22. PS LS 3

50 100 150 200

0.
00

0.
04

0.
08

24. PS FS 5

50 100 150 200

0.
00

0.
06

0.
12

25. PS LS 5

Length class FL cm

P
ro

po
rti

on



 38 

 
Figure 11. A comparison of the observed (red points) and predicted (grey line) median fish length (FL, cm) of 
yellowfin tuna by fishery for the main fisheries with length data. The confidence intervals represent the values 
encompassed by the 25% and 75% quantiles. Sampling data are aggregated by year and only length samples 
with a minimum of 30 fish per year are plotted. 
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Figure 11 continued. 
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Figure 12. Number of observed (points) and predicted (line) tag returns by recapture period (quarter). Observed 
tag returns have been corrected for the purse-seine reporting rate (see text for details). 
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Figure 13. Number of observed (points) and predicted (line) tag returns by periods at liberty (quarters). 
Observed tag returns have been corrected for the purse-seine reporting rate (see text for details). 
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Figure 14. Number of observed (points) and predicted (line) tag returns by recapture period (quarter) for 
the various fisheries (or groups of fisheries) defined in the model. Observed tag returns have been 
corrected for the purse-seine reporting rate (see text for details). 
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Figure 15. Effort deviations by time period for each fishery. The solid line represents a lowess fit to the data. 
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Figure 16. Estimated growth of yellowfin derived from the base-case assessment model. The black line 
represents the estimated mean length (FL, cm) at age and the grey area represents the estimated distribution of 
length at age. The alternative growth is also presented. 
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Figure 17. Estimated quarterly movement coefficients at age (1, 7, 15, 25 quarters) from the base-case model. 
The movement coefficient is proportional to the length of the arrow and increased weight of the arrow 
represents increasing age. The maximum movement (quarter 2, region 1 to region 2) represents movement of 
17% of the fish at the start of the quarter. Movement rates are colour coded: black, 0.5–5%; red 5–10%; green 
>10%.  
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Figure 18. Proportional distribution of total biomass (by weight) in each region (Reg 1–5) apportioned by the 
source region of the fish. The colour of the home region is presented below the corresponding label on the x-
axis. The biomass distributions are calculated based on the long-term average distribution of recruitment among 
regions, estimated movement parameters, and natural mortality. Fishing mortality is not taken into account. 

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5

0.
0

0.
2

0
.4

0.
6

0.
8

1.
0

P
ro

p
or

tio
n

 o
f b

io
m

as
s 

by
 s

ou
rc

e 
re

gi
on



 47 

 
Figure 19. Selectivity coefficients, by fishery. 
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Figure 20. Average annual catchability time series, by fishery. 
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Figure 21. Estimated tag-reporting rates by fishery (black circles). The white diamonds indicate the modes of 
the priors for each reporting rate and the grey bars indicate a range of ±1 SD. The reporting rates for the purse-
seine fishery were fixed. 
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Figure 22. Estimated annual recruitment (millions of fish) by region and for the IO. The shaded area for the IO 
indicates the approximate 95% confidence intervals. 
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Figure 23. Estimated annual recruitment (millions of fish) for the IO obtained from the different model options. 
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Figure 24. Estimated annual average total biomass (thousand mt) by region and for the IO for the base-case 
analysis. The shaded areas indicate the approximate 95% confidence intervals. 
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Figure 25. Temporal trend in total and adult biomass (1000s mt) by region and for the entire IO from the base-
case assessment. 
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Figure 26. A comparison of longline exploitable biomass by quarter and region (red line) and the quarterly 
standardised CPUE indices (grey line and points) for the fisheries. For comparison, both series are scaled to the 
average of the series. 
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Figure 27. Estimated annual average total biomass (thousands mt) for the IO obtained from a range of different 
model options. 
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Figure 28. Estimated annual average juvenile and adult fishing mortality for the IO obtained from the separate 
model options. 
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Figure 29. Comparison of the average (quarterly) fishing mortality by age class for region 2 for the 2006-2008 
period for the comparative MFCL models including (base case) and excluding (no-tag) the tag data set. 
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Figure 30. Fishing mortality (quarterly, average) by age class and region for the period used to determine the 
total F-at-age included in the calculation of MSY based reference points (2004–07). Note that the y-axis varies 
between plots. 

 

0 5 10 15 20 25

0.
00

0.
10

0.
20

Region 1

0 5 10 15 20 25

0.
00

0.
10

0.
20

0.
30

Region 2

0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

Region 3

0 5 10 15 20 25

0.
00

0.
01

0.
02

0.
03

0.
04

Region 4

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

Region 5

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

Total

Age class

F
is

hi
ng

 m
or

ta
lit

y



 59 

 

Figure 31. Comparison of the estimated total biomass trajectories (lower heavy lines) with biomass trajectories 
that would have occurred in the absence of fishing (upper thin lines) for the base-case model for each region and 
for the IO. 
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Figure 32. Ratios of exploited to unexploited total biomass (Bt/B0,t) for each region and the IO.  
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Figure 33. Ratios of exploited to unexploited total biomass (Bt/B0,t) for the IO obtained from the separate 
analyses. 

 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1960 1970 1980 1990 2000

P
ro

po
rt

io
n 

of
 to

ta
l u

ne
xp

lo
ite

d 
bi

om
as

s

Base case
WCPO M
AF grow th
LL q incr
no tag
longline select



 62 

 

Figure 34. Relationship between equilibrium recruitment and equilibrium spawning biomass for the base-case 
with steepness of the SRR is fixed at 0.70 (black line). The grey area indicates the 95% confidence region. The 
points represent the estimated recruitment-spawning biomass and the colour of the points denotes the time 
period from which the estimate was obtained (see legend).  
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Figure 35. Yield (top), equilibrium biomass (middle) and equilibrium spawning biomass (bottom) as a function 
of fishing mortality multiplier obtained from the base case model with three different values for steepness. In 
the upper panel, the arrows indicate the value of the fishing mortality multiplier at maximum yield. 
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Figure 36. Temporal trend in annual stock status, relative to BMSY (x-axis) and FMSY (y-axis) reference points, 
for the model period for the base case model with steepness fixed at 0.70. The colour of the points is graduated 
from mauve (1960) to dark purple (2008) and the points are labelled at 5-year intervals. The white cross 
represents the reference points computed for the “current” period (2004–2007). 
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Figure 37. Temporal trend in annual stock status, relative to SBMSY (x-axis) and FMSY (y-axis) reference points, 
for the model period for the base case model with steepness fixed at 0.70. The colour of the points is graduated 
from mauve (1960) to dark purple (2008) and the points are labelled at 5-year intervals. The white cross 
represents the reference points computed for the “current” period (2004–2007). 
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Figure 38. Yield (top), equilibrium biomass (middle) and equilibrium spawning biomass (bottom) as a function 
of fishing mortality multiplier obtained from the separate model options. In the upper panel, the arrows indicate 
the value of the fishing mortality multiplier at maximum yield. 
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