IOTC-2009-WPTT-12

Estimation of Catch-at-Size, Catch-at-Age and Total Catch per Area for tropical tuna species

Miguel Herrera¹, Lucia Pierre²

Summary

This document describes the methods used by the IOTC Secretariat to produce catch-at-size tables for yellowfin tuna, bigeye tuna, and skipjack tuna, for the period 1950-2008 using estimates of total catch and the available catch and effort data and size frequency data in the IOTC database. Estimates of catch-at-size, catch-at-age and total catch per area are provided. The results are affected by the lack of information for some fleets, periods and years, and, in particular, by the lack of catch and size data from most artisanal fleets and some industrial fleets.

Rationale

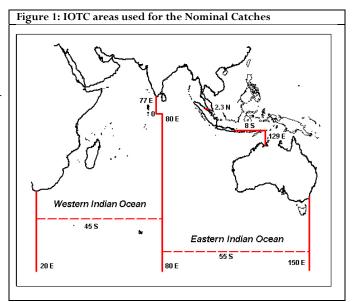
Catch-At-Size (CAS) and Catch-at-Age (CAA) has three main uses:

- Input for stock assessment models being currently used by the Commission's technical groups, in particular Multifan-CL (MFCL), Stock Synthesis III (SS3) and Age-Structured Production Model (ASPM).
 - a. **MF-CL**: Estimates of total catches of **yellowfin tuna**, in number and weight, and the effort and length-frequency samples available by fishery, assessment area, year and quarter.
 - b. **SS3**: Estimates of total catches of **bigeye tuna**, in number and weight and the total number of fish estimated by length class interval (or catch-at-size), by fishery, assessment area, year, and quarter.
 - c. **ASPM**: Estimates of total catches of yellowfin tuna and bigeye tuna, in number and weight, and numbers of yellowfin tuna and bigeye tuna estimated by age interval (or catch-at-age), year, quarter and fishery (which requires the estimation of total numbers of length interval, year, quarter and fishery, or catch-at-size).
- Stock status indicators (e.g. trends in average weight per fishery)
- Production of tables of total catch by fleet, species, gear, year, month and five degrees square areas.

The construction of a catch-at-size table for a particular species requires that length frequency distributions are assigned to the total catch. Thus, the sample weight estimated for each stratum (i.e. the weight resulting from summing up the weights estimated for the specimens within each length class) is used to raise each sample to the nominal catch recorded for the stratum.

Species involved

CAS tables are estimated for yellowfin tuna, bigeye tuna, and skipjack tuna.


¹ IOTC Data Coordinator (Miguel.Herrera@iotc.org; mh@iotc.org)

² IOTC Data Assistant (<u>Data.Assistant@iotc.org</u>)

Basic Data

Four datasets are used for the preparation of stock assessment tables for tropical tuna species:

- <u>Nominal catches</u>: Total catch estimates per Species, Fleet, Year, Gear and IOTC Area (Figure 1). The data in this dataset issues from two different sources:
 - a. Reports from the flag countries or reports from other countries on the catches of foreign vessels operating within its Economic Exclusive Zone or based in ports within its territory.
 - b. Estimates carried out by the IOTC Secretariat: this may involve changes in the catches reported by the above or the estimation of catches for non-reporting fleets (e.g. catches recorded under the NEI³ category).

- <u>Catches per area</u> (derived from the catch-and-effort table): Catches (in tonnes or/and in number) are recorded by Species, Fleet, Year, Gear, Fishing Mode, Time Interval (month or quarter usually) and area (usually 1^o square areas for industrial purse seine fisheries, 5^o square areas for industrial longline fisheries and various regular or irregular areas for artisanal fisheries). Catches per area are not available for all Nominal catches strata. When recorded, the catches in these datasets might represent the total catches of the species in the year for the fleet and gear concerned or represent simply a sample of those.
- <u>Size data</u>: Size frequency data (standard or processed lengths or standard or processed weights) are recorded by Species, Fleet, Year, Gear, Fishing Mode, Time Interval (month or quarter or year usually) and area (usually 5° square areas for purse seine fisheries, 10° latitude by 20° longitude for longline fisheries and various regular or irregular areas for artisanal fisheries). Size data are not available for all Nominal catches strata. When recorded, the size data might represent the total catches of the species in the strata concerned (Catch-at-Size) or simply a sample of those (non-raised or partially raised samples).
- Biological data: includes several types of biological parameters for the tropical tunas, in particular:
 - a. <u>Conversion from non-standard measurements into fork length</u>: Equations (data) used to convert specimens of tropical tunas measured by using non-standard procedures into the standard length measurement used for these species, representing the distance from the tip of the snout to the fork of the tail (fork length).
 - b. <u>Conversion from fork length into live weight</u>: Equations (data) used to estimate sample weights from the available lengths (length-weight relationships).
 - c. <u>Age-Length keys</u>: Data used to estimate numbers of tropical tunas by age (Catch-at-Age), from the numbers by length estimated for each species (Catch-at-Size).

The type of information recorded in each case is summarized in **Table 1** below:

Table 1: Ma	in types of fisheries statistics gathered by the IOTC			
Dataset	Fishery Strata	Time Strata	Area Strata	Represents
Nominal	Fleet-Gear (or gear aggregate)-Species (or species	Year	IOTC Area	Total
Catches	aggregate)			catches
Catches	Fleet-Gear (or gear aggregate)-Fishing Mode	Month	1°square area (purse seine)	Sample
per area	(purse seine only)-Species	(quarter or	5°square area (longline)	
		year)	Other regular or irregular areas	
Size data	Species- Fleet-Gear (or gear aggregate)-Fishing	Month	5°square area (purse seine)	Sample
	Mode (purse seine only)-Type of measurement	(quarter or	10°Lat.*20°Lon. area (longline)	
	(length or weight, standard or processed)-Size	year)	Other regular or irregular areas	
	interval (between size classes)			
Biological	Various, depending on dataset	Various	Various, depending on dataset	Sample
data				

_

³ Not elsewhere identified

Input Tables

The Secretariat prepared the following input tables for tropical tuna species:

- <u>Stock assessments of bigeye tuna</u>: Two sets of tables were prepared, depending on the type of assessment models to be used: **ASPM or assessment models using Catch-at-Age data**
 - a. Total catches of bigeye tuna, in number of specimens and weight, by year, quarter and assessment fishery.
 - b. Total number of specimens of bigeye tuna estimated by age (Catch-at-Age), fishery, year, and quarter

SS3⁴ or assessment models using Catch-at-Size data

- a. Total catches of bigeye tuna, in number of specimens and weight, by year, quarter, assessment fishery, and assessment area.
- b. Total number of bigeye tuna specimens estimated by length interval, year, quarter, assessment fishery, and assessment area
- <u>Stock assessments of yellowfin tuna</u>: Two sets of tables were prepared, depending on the type of assessment models to be used:

ASPM or assessment models using Catch-at-Age data

- a. Total catches of yellowfin tuna, in number of specimens and weight, by year, quarter and assessment fishery.
- b. Total number of specimens of yellowfin tuna estimated by age (Catch-at-Age), fishery, year, and quarter

MF-CL⁵ or assessment models using non-raised length frequency data (samples)

- a. Total catches of yellowfin tuna, in number of specimens and weight, by year, quarter, assessment fishery, and assessment area
- b. Effort data available by year, quarter, assessment fishery, and assessment area.
- c. Number of yellowfin tuna specimens sampled by length interval, year, quarter, assessment fishery, and assessment area.
- <u>Stock status indicators for tropical tuna species</u>: The Secretariat used total catches, catch-and-effort, length frequency samples and Catch-at-Size data in the preparation of sets of stock status indicators for tropical tuna species.
- <u>Total catches by time-area strata</u>: The Secretariat prepared a table containing estimates of total catches of yellowfin tuna, bigeye tuna, and skipjack tuna, in number and weight, by fleet, gear, year, quarter, and 5^o square areas. Examples of the above tables can be found in **Appendix I**.

Data Processing

Estimation procedures used for the preparation of data for the assessments of tropical tuna species

The way in which the Secretariat prepared the information to be used for the assessments of tropical tuna stocks is summarized below. Details about these procedures are provided in the following sections.

Assessment models using estimates of Catch-at-Age (ASPM)

- 1. Standardizing catch and size frequency tables
 - a. Nominal catches (NC): Assigning the catches not reported by species/gear by species/gear (NC→NCst)
 - b. Catch-and-effort (CE): Assigning catches not recorded by 5⁰ grid/quarter by 5⁰ grid/quarter (CE→CEst)
 - c. Size frequency (SF→LFst):
 - i. Converting non-standard measurements into standard measurements
 - Breaking the existing lengths into the standard length class intervals used for the species (e.g. 10-12cm, 12-14cm, etc.)
 - iii. Assigning samples not recorded by area (purse seine and other gears)/quarter by area/quarter
- 2. Breaking the NCst by quarter and 5^0 grid using the CEst (NCst \rightarrow NCds)
- 3. Assigning length frequency samples to all NCds strata (Fleet-Gear-Year-Quarter-PS/Other Area) (NCds→LFcv)
- Deriving Catch-at-Size (CAS) by scaling up length frequency distributions in LFcv from sample weight to total weight for each stratum (LFcv→CAS)
- 5. Adjusting/estimating NCds weights/numbers by using average weights derived from the CAS (NCds→NCad)
- 6. **Yellowfin tuna and bigeye tuna catch input files** (NCad→NC_{ASPM}) Aggregating the catches in NCad by fishery (Fishery-Year-Quarter-Total catch of yellowfin tuna and bigeye tuna (in number and weight))
- 7. Yellowfin tuna and bigeye tuna Catch-at-Age input files (CAS→CAA_{ASPM}): Estimating CAA for yellowfin tuna and bigeye tuna by using the existing CAS (Fishery-Year-Quarter-Age class interval (0-15+)-Total number of YFT/BET specimens) and the existing length-age matrices for each species.

⁴ SS3 can use length samples or catch-at-size data indistinctly; catch-at-size data was used for the assessments of Indian Ocean bigeye tuna.

⁵ The preparation of data for the assessments of yellowfin tuna using MF-CL has been covered in a separate document (IOTC-2009-WPTT-11)

Assessment models using Catch-at-Size (SS3)

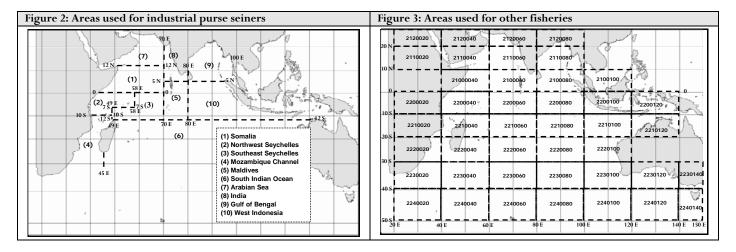
- 1. Standardizing catch and size frequency tables
 - a. Nominal catches (NC): Assigning the catches not reported by species/gear by species/gear (NC→NCst)
 - b. Catch-and-effort (CE): Assigning catches not recorded by 5° grid/quarter by 5° grid/quarter (CE→CEst)
 - c. Size frequency (SF \rightarrow LFst):
 - i. Converting non-standard measurements into standard measurements
 - ii. Breaking the existing lengths into the standard length class intervals used for the species
- 2. Breaking NCst by quarter and 5^0 grid using the CEst (NCst \rightarrow NCds)
- 3. Assigning length frequency samples to all NCds strata (Fleet-Gear-Year-Quarter-PS/Other Area) (NCds→LFcv)
- 4. Deriving Catch-at-Size (CAS) by scaling up/down length frequency distributions (LFcv) from sample weight to total weight for each stratum (LFcv→CAS)
- 5. Adjusting/estimating total weights/numbers by stratum by using average weights derived from the CAS (CAS)
- 6. **Bigeye tuna SS3 input file (CAS/NCL**_{ss3}): Assigning the catch-at-size of bigeye tuna in CAS by assessment area and fishery (Fishery-Year-Quarter-Assessment Area-Total catch of bigeye tuna (in number and weight))

Estimating total catches by species and gear

The catches in the IOTC nominal catches database are not recorded by species and/or per gear in all cases. The Secretariat conducted a review aiming at estimating catches when data were not available by species or gear in the IOTC database. This process was documented in a paper presented to the WPTT in 2004 (IOTC-2004-WPTT-06).

Standardizing the data in the catch and effort table

The catches in the catch and effort table are recorded under different levels of aggregation. All the catches from this record were assigned per Species-Fleet-Gear-Type of School-Year-Month- 5° square grid-Catch in number of fish-(and/or)-Catch in metric tons.


- i. Area allocation: All the catches not recorded per 5° square areas were assigned to 5° square areas as follows:
- a. Allocation of catches recorded under irregular areas to regular grids: The catches recorded under irregular areas (e.g. port of unloading, fishing district, etc.) were assigned to regular grids.
- b. Aggregation of catches recorded under lower resolution areas: all catches recorded under areas smaller than the standard were aggregated under the corresponding 5 ° square areas.
- c. Disaggregation of catches recorded under higher resolution areas: all catches recorded under areas larger than the standard were evenly assigned per 5° square area.
- ii. Time allocation: The catches recorded by time intervals higher than a month were assigned proportionally by month.

Standardizing the available size frequency data

The samples in the size frequency table are recorded under different levels of aggregation. The samples from this record were aggregated depending on the species and type of fishery. The level of aggregation chosen in each case is indicated below:

- Industrial purse seine fisheries: Species-Fleet-Gear-Type of School-Year-Quarter-Purse Seine Statistical Area (Figure 2)-Fork length class (in centimetres)-Number of fish.
- Other fisheries (industrial longline plus all artisanal fisheries): Species-Fleet-Gear-Type of School-Year-Quarter-10° latitude by 20° longitude areas (Figure 3)-Fork length class (in centimetres)-Number of fish.

The areas referred to above are shown in Figures 2 and 3.

Most of the size data in the IOTC database for industrial longline fisheries (Japan, Taiwan, China) is recorded as per the areas shown in **Figure 3** above.

The intervals used between consecutive size classes were assigned depending on the species (Table 2).

Table 2: Standard length, first length, interval and total number of size classes used for	
tropical tuna species	

	C 1 1		Interval	Total	Maximum	
Species	Standard Length	length	between length	number of	interval allowed	
		(cm)	classes (cm)	size classes	(cm)	
Yellowfin tuna	Fork length	10	2	150	4	
Bigeye tuna	Fork length	10	2	150	4	
Skipjack tuna	Fork length	10	1	150	2	

NOTE: All samples in the IOTC database were assigned according to the specifications above; the samples recorded under length intervals higher than the maximum interval specified above were not used *Refers to lower-jaw fork-length

The steps given to put the samples available for each species into standard form are indicated below:

- i. Converting from non-standard measurement types into standard length (Table 3):
- a. Converting from <u>weight into</u> standard-<u>length</u>: The process used to estimate fork length from the gilled and gutted weights recorded for yellowfin tuna and bigeye tuna is documented in a separate document (IOTC-2006-WPTT-INF06).
- b. Converting from non-standard <u>length into</u> standard <u>length</u>: The regression equations indicated in Table 3 are used to estimate fork length from the lengths to the first dorsal fin recorded for yellowfin tuna and bigeye tuna, respectively (deterministic).
- ii. Assigning the existing lengths by standard length class interval:
 - a. Aggregation of lengths recorded under classes lower than the standard class: all lengths recorded under classes lower than the standard were aggregated to the closest lower class (e.g. YFT specimens recorded under the classes 10-11 cm and 11-12 cm were accumulated under the length class 10).
 - b. Disaggregation of lengths recorded under classes higher than the standard class: all the specimens recorded under length classes below the standard classes defined in table 2 above were assigned proportionally to the length classes making the aggregate (e.g. 2/3 of the YFT specimens recorded under the length class 10-13 were assigned to the class 10-12 and 1/3 to the class 12-14). The samples recorded under length intervals over the maximum interval recorded in table 2 were not used.
- iii. Area allocation: All the samples not recorded by area (see figure 2 and figure 3 above) were assigned to the corresponding areas as follows:
 - a. Allocation of samples recorded under irregular areas to regular grids: The samples recorded under irregular areas (e.g. port of unloading, fishing district, etc.) were assigned to regular areas. The areas assigned are shown in Appendix I.
 - b. Aggregation of samples recorded within the standard areas: all samples recorded within the standard areas were aggregated under the corresponding areas.
 - c. Disaggregation of samples recorded under two or more standard areas: the samples recorded under two or more standard areas were assigned proportionally to the areas concerned.

Table 3: Regression equations used to convert from non-standard measurements into standard lengths, per species

Species: Yellowfin tuna

ı b								
Type Measurement	Equation	Parameters	Sample size	Size range	Variance	Covariance ab	Mean Residual	Gradient
Weight gilled and gutted ^A	aW^{b}	a= 44.28699 b= 0.3008591	2,361	Min:14 Max:71	a=0.00752476509 b=2.86244E-07	-4.626246E-05	4.095958	a=3.033852 b=495.6385
Length to the base of the 1 st dorsal fin ^B		a=2.0759 b=1.1513	7,036	Min: 29 Max: 164				
Length base of first dorsal fin to fork of of caudal fin	No equation available							

Species: Bigeye tuna

Type Measurement	Equation	Parameters	Sample size	Size range	Variance	Covariance ab	Mean Residual	Gradient		
Weight gilled and	$\mathbf{T}\mathbf{T}^b$	a= 42.2186	316	Min:12	a=0.0321755341	-0.0002034041	2 00127	a=3.03806		
gutted ^A	$aW^{^{\scriptscriptstyle b}}$	b = 0.3012349	316	Max:107	b=1.299934E-06	-0.000203+0+1	3.90137	b=473.1455		
Length tip of the mouth to the base of the 1st	$(L \mid a)$	a=21.45108 b=5.28756	2,858	Min:13 Max:48						
dorsal fin ^C	υ	0.20.00		111411110						
Length base of first										
dorsal fin to fork of of	No equation available									

A: Data from IPTP Penang Sampling Programme (1992-93)

caudal fin

- B: Data from the Indian Ocean (Marsac, F. et al in IOTC-2006-WPTT-09)
- C: Data from the Atlantic Ocean, Champagnat et Pianet (1974)

Table 4: Eq	uations used to	convert from	standard (fo	ork) lengt	th into round	weight, per species
I abic T. Lu	luations asca to	Convertion	otanuaru jit	JIKIICIIE	m mico i ound	weight, per species

Species	Gear Type/s	From type measurement — To type measurement	Equation	Parameters	Sample size	Length
Yellowfin tuna	Purse seine Pole and Line Gillnet	Fork length – Round Weight(kg) ^A	$w^{live} = aL$	a= 0.00001886 b= 3.0195	6,752	Min: 29 Max: 164
	Longline Line Other Gears	Fork length(cm) – Gilled and gutted weight(kg) $^{\rm B}$ Gilled and gutted weight(kg) - Round Weight(kg) $^{\rm C}$	$w^{GGT} = aL$ $w^{live} = 1.13w^{GGT}$	a= 0.0000094007 b= 3.12684	15,133	Min:72 Max:177
P:	Purse seine Pole and Line Gillnet	Fork length(cm) – Round Weight(kg) ^D	$w^{live} = aL^{b}$	a= 0.000027000 b= 2.95100	n/a	n/a
Bigeye tuna	Longline Line Other Gears	Fork length(cm) – Gilled and gutted weight(kg) $^{\rm B}$ Gilled and gutted weight(kg) - Round Weight(kg) $^{\rm C}$	$w = aL$ $w^{live} = 1.13w^{GGT}$	a= 0.0000159207 b= 3.04154	12,047	Min:70 Max:187
Skipjack tuna	All gears	Fork length(cm) – Round Weight(kg) ^E	$w^{live} = aL^{b}$	a= 0.0000074800 b= 3.25260	14,140	Min:32 Max:78

- A: Data from the Indian Ocean (Marsac, F. et al in IOTC-2006-WPTT-09)
- B: Multilateral catch monitoring Benoa (2002-04)
- C: ICCAT Field Manual (Appendix 4: Population parameters for key ICCAT species. Product Conversion Factors)
- D: Cort (1986)
- E: Data from the Atlantic Ocean, Cayré et Laloë (Fonteneau, A. et J. Marcille (eds), 1988: Ressources, pêche et biologie des thonidés tropicaux de l'Atlantique Centre-Est. FAO Doc.Tech.Pêches, (292), page 262)
 - iv. Time allocation: The catches not recorded per quarter were aggregated or proportionally disaggregated per quarter.
 - v. <u>Estimation of sample weight</u>: The weight for each sample was calculated by adding the weights estimated for all the specimens making it. The equations used to estimate weight from the available lengths are shown in **Table 4**.

Breaking the nominal catches by time-period and area (CTA)

The aim of this process is to break the catches recorded in the nominal catches table by time-period and area. This information is used:

- For the estimation of catch-at-size tables: The length distributions of tuna species may change depending on the area and/or time fished and therefore the estimation of catches-at-size is likely to be improved if this information is used.
- For the estimation of total catches by time-period and area for the Tuna Atlas.

The steps given to assign the catches available for each NC stratum by month and 5° square areas are indicated below:

- i. Nominal catches strata for which time-area catches (CTA) exist:
- a. <u>Deleting strata from the CTA table</u>: The time-area catches available for NEI-(deep)-freezing longliners and NEI-fresh tuna longliners were not used because they refer to very specific areas and times and are not considered to cover all the areas of operation of these fleets. The catches for industrial purse seiners operating under the flag of the Soviet Union and other flags in recent times (NEI-ex-Soviet) were deleted for some years for the same reason.
- b. <u>Breaking the nominal catches by time-period and area</u>: The nominal catches were broken by time-period and area in years for which time-area catches are available for the fleet concerned.
- ii. Nominal catches strata for which time-area catches do not exist:
- a. <u>Catches</u> by area are <u>available</u> for the <u>same fleet</u> in years <u>before</u> or <u>after</u> the year concerned:
- i. <u>Catches for the same species are available:</u> The catches recorded in the five years closest to the year of reference were accumulated and the average values obtained used to break the catches by area for the year concerned. Data extending to up to 25 years above or below the year concerned are used.
- ii. Catches for other species are available:
 - a. The catches recorded for the year of reference were accumulated and the average values obtained were used to break the catches by area for the year concerned
 - b. The catches recorded in the five years closest to the year of reference were accumulated and the average values obtained were used to break the catches by area for the year concerned. Data extending to up to 25 years above or below the year concerned are used.
- b. <u>Catches</u> by area are <u>not available</u> for the <u>same fleet</u> in years <u>before</u> or <u>after</u> the year concerned or they are available but very <u>far in time</u> (more than 25 years before or after the year concerned):

- i. Fleets that are presumed to operate as other fleets for which catches by area exist: This refers mainly to industrial fleets. The catches by area available for other fleets (and years) are used to break the nominal catches by month and 5° square area/s.
 - a. <u>Catches</u> by area for the alternative fleet are <u>available</u> for the <u>same year</u>: This information is used to break the nominal catches by month and 5° square grid.
 - b. <u>Catches</u> by area for the alternative fleet are <u>not available</u> for the <u>same year</u>: The same substitution scheme as the one defined in ii.a. above is used.
- ii. Fleets that are presumed to operate in specific areas: This refers mainly to artisanal and semi-industrial fleets. One or more 5° square areas were assigned to each fleet.
 - c. <u>Time-area catches exist for other fleets in the areas concerned</u>: The nominal catches are broken by month and area according to the proportion that the catches available from other fleets make in the area/s concerned.
 - d. <u>Time-area catches do not exist for other fleets in the areas concerned</u>: The catches for the fleet concerned are broken proportionally by month and area.

Estimating catches-at-size (CAS)

The aim of this process is to estimate length frequency distributions for each species, year and gear type. Thus, the accumulated weight estimated from the specimens making up the length frequency shall be the same than the total weight recorded in the stratum concerned and the weight issuing from all the strata shall be equal to the total catches recorded for the species in the year concerned. These data are used to estimate catch-at-age and other information used for stock assessment.

The time-area resolution used for the estimation of catch-at-size depends on the gear type (see 'Standardizing the available size frequency data' on page 2 for details). The <u>minimum sample size</u> was set to <u>30 specimens</u>. The samples that were made up of less than 30 fish were completed with specimens from other stratum/a until a total of 30 or more specimens were attained. The amount of length frequency data available is scarce for some fisheries and/or periods. The use of length frequency data from

fleets and/or gears other than the one for which nominal catches are recorded was required in many cases. The substitution scheme that was used to assign length frequency data by CTA stratum is explained below:

- i. Length frequency data are available for the stratum concerned:
 - a. <u>Deleting samples from the length frequency table</u>: The samples recorded for South Korea were not used because they are thought to be of poor quality.
 - b. <u>Assigning the available length frequency distributions by stratum</u>: The remaining length frequency distributions were assigned by stratum.
- ii. Length frequency data are not available for the stratum concerned:
 - a. Length frequency data are available within the year before or after the quarter concerned:
 - i. Length frequency data are available for the same fleet and gear. Two substitution schemes are used depending on the gear type:
 - a. <u>Industrial purse seiners</u>: The areas defined in Figure 2 are used. The following latitude and longitude are assigned to each area⁶:

PS Area	Q-Lat-Lon
(1) Somalia	1 00 040
(2) NW Seychelles	2 00 020
(3) SE Seychelles	2 00 060
(4) Moz. Channel	2 10 020
(5) Maldives	2 00 080

PS Area	Q-Lat-Lon
(6) S Indian Ocean	2 20 060
(7) Arabian Sea	1 20 040
(8) India	1 00 080
(9) Gulf of Bengal	1 00 100
(10) W Indonesia	2 00 100

- b. Other gears: The areas defined in Figure 3 are used. Two regions are identified:
 - i. Areas below 10°S
 - ii. Areas above 10 °S

The lengths of specimens of yellowfin tuna and bigeye tuna seem to vary markedly depending on the latitude. The substitution scheme is therefore applied independently to each area (i.e. Length frequency data from areas below 10 °S are not used for strata in the North and *vice versa*).

The substitution process is based on changes in time (quarter) and/or space (latitude and/or longitude). Below is an example of the first substitution steps.

Step	Lat	Long	Qtr	Description
1	0	0	-0.25	Length frequency data from the same area and previous quarter are used for substitution, if any
2	0	0	0.25	Length frequency data from the same area and following quarter are used for substitution, if any
3	0	-20	0	Length frequency data from the first area to the West and same quarter are used for substitution, if any

⁶ Note that the substitution scheme is based on changes in time and/or space (latitude and/or longitude). The areas assigned are used for the substitution.

Step	Lat	Long	Qtr	Description		
4	0	20	0	Length frequency data from the first area to the East and same quarter are used for substitution, if any		
5	0	-20	-0.25	Length frequency data from the first area to the West and previous quarter are used for substitution, if any		
!	!	!	!	!		
764	0	120	1.00	Length frequency data from the area 120 degrees to the East and following year are used for substitution, if any		
Note tha	Note that the latitude and longitude defined above for industrial PS and those from the 10*20 grids for other fisheries are used					

ii. No length frequency data are available for the same fleet and gear: Information from other fleet/s is used. The length frequency data available from other fleets, that are presumed to operate the same areas and/or use the same fishing techniques, are used for substitution. The same substitution scheme in time and area is applied in each case. Three levels of aggregation are established. Below is an example of the substitution scheme:

If no samples of bigeye tuna are recorded for the longline fishery of South Korea in the stratum concerned (or the sample is made up of less than 30 specimens) the samples available for South Korea and/or Japan and/or Thailand are aggregated. The substitution scheme referred to in a.i. above is also used in this case.

If no samples are available for the above fleets the second level of aggregation is used and the third level is used in the case that no samples are found at the second level.

	Level		Level		Level			
CTA Strata			Aggreg	Aggregation 1		Aggregation 2		ation 3
Species	Gear	Fleet	Gear	Fleet	Gear	Fleet	Gear	Fleet
Species	Gear	Tieet	Ag1	Ag1	Ag2	Ag2	Ag3	Ag3
BET	LL	IND	LL	AG3	LL	AG2	LL	AG1
BET	LL	IRN	LL	AG2	LL	AG2	LL	AG1
BET	LL	JPN	LL	AG1	LL	AG1	LL	AG1
BET	LL	KOR	LL	AG1	LL	AG1	LL	AG1
BET	LL	NEI-DFRZ	LL	AG3	LL	AG2	LL	AG1
BET	LL	PHL	LL	AG3	LL	AG2	LL	AG1
BET	LL	SUN	LL	AG2	LL	AG2	LL	AG1
BET	LL	SYC	LL	AG3	LL	AG2	LL	AG1
BET	LL	THA	LL	AG1	LL	AG1	LL	AG1
BET	LL	TWN	LL	AG3	LL	AG2	LL	AG1

- b. Length frequency data are not available within the year before or after the quarter concerned:
- i. Length frequency data are available for the same fleet in other years: The samples for the three years that are closest to the year concerned are used. Only the samples from the 25 years before or after the year concerned are used.
- ii. Length frequency data are not available for the same fleet in other years or they are very far in time (more than 25 years ahead or behind the year concerned). The length data available for other fleets are used. The information from other fleets and/or gears is used, as specified in a.ii. (page 8), following the above substitution scheme (b.i.).
- c. No Length frequency data are available for the gear concerned in the 25 years before or after the year concerned:
- i. Length frequency data are available for the same fleet and gear anytime at all: all available samples are used (i.e. the accumulated length frequency data for the whole time series are used).
- ii. No length frequency data are available for the same fleet and gear anytime at all: The length data available for other fleets are used, following the substitution scheme specified in a.ii. (page 8) and c.i. above.

The average weights estimated from the samples (by using the equations in Table 4) are used to estimate the number of specimens or the weight for each stratum in the CAS table:

- Longline fisheries: The catches are usually recorded in number. The average weights estimated from the sample are multiplied by the numbers of fish recorded (from the CTA table) to obtain the weights by stratum. This method is also used for fisheries for which catches are only available in number of fish.
- Other fisheries: The catches are usually recorded in weight. The average weights estimated from the sample are divided by the weight recorded (from the CTA table) to obtain the numbers by stratum. This method is also used for longline fisheries for which catches are only available in weight.

The weights resulting from the above process are summed-up for each fleet, gear, year, species and IOTC Area stratum. The length frequency distributions from the CAS are subsequently adjusted to match the weights estimated for each stratum in the CAS table (by using the sample weights and the weights corresponding to the catches estimated for each stratum).

Estimating total catches by fleet, gear, 5° square grid and month

The catches and numbers of fish in the CTA table are weighted by following the same approach (as explained in the last paragraph of the previous section).

Estimation of catch-at-age tables

Catch-at-age tables for each species are estimated using the catch-at-size data. Catch-atr-age tables were estimated for the yellowfin tuna and the bigeye tuna. The estimation of Catch-at-Age is covered in a separate document (IOTC-2009-WPTT-??).

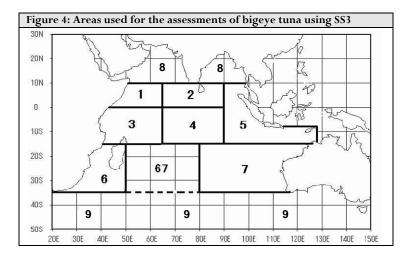
Preparation of data input files for SS3 and ASPM

Assessment models using estimates of Catch-at-Age (ASPM)

Allocation of assessment fishery: Each Fleet-gear stratum was assigned to the corresponding assessment fishery. The
fisheries that are used for the assessments of bigeye tuna and yellowfin tuna are presented in Table 5 and Table 6,
respectively.

Table 5: Fisheries used for the assessments of Indian Ocean bigeye tuna using ASPM or SS3; the total catches accumulated for the period 1950-2008 (Total Catch 50-08) and the relative importance of each fishery over both the entire catch series (%50-08) and in current years (%04-08) is also shown

Fishery	Description	Total Catch	%	%									
1 isiteiy	Description	50-08 (,000 t)	50-08	04-08									
Longline-Japan	Industrial longlines from Japan and other												
zongmie jupan	longline fleets assimilated to the Japanese	1,099	33	13									
Longline-Taiwan	Industrial longlines from Taiwan, China and other												
Longine-Tarwan	longline fleets assimilated to the Taiwanese	1,708	51	64									
Purse seine-FS	Industrial purse seines on free-swimming schools	125	4	6									
Purse seine-LS	Industrial purse seines on associated schools (e.g.												
Turse senie Es	Fish Aggregating Devices)	400	12	15									
Artisanal	Pole-and-lines, Gillnets, Hand lines, Trolling and												
711 Cisarial	other artisanal gears	40	1	2									

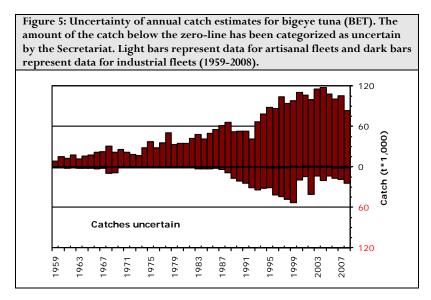

Table 6: Fisheries used for the assessments of Indian Ocean yellowfin tuna using ASPM; the total catches accumulated for the period 1950-2008 (Total Catch 50-08) and the relative importance of each fishery over both the entire catch series (%50-08) and in current years (%04-08) is also shown

F: 1	Description	Total Catch	%	%
Fishery	Description	50-08 (,000 t)	50-08	04-08
Longline-Japan	Industrial longlines from Japan and other longline fleets assimilated to the Japanese	1,282	14	5
Longline-Taiwan	Industrial longlines from Taiwan, China and other longline fleets assimilated to the Taiwanese	2,038	22	20
Purse Seine-FS	Industrial purse seines on free-swimming schools	1,871	20	25
Purse Seine-LS	Industrial purse seines on associated schools (e.g. Fish Aggregating Devices)	1,278	14	14
Baitboat	Pole-and-lines	393	4	4
Gillnet	Gillnets	1,499	16	20
Hand line	Hand lines	629	7	9
Trolling	Trolling	262	3	4
Other	Other artisanal gears	23	0	0

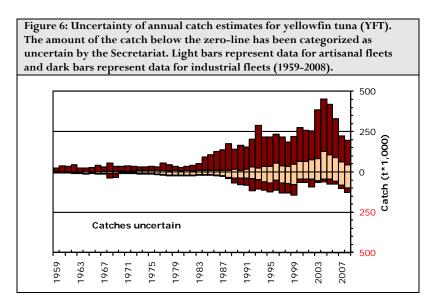
ii. <u>Aggregation of CAA by year, quarter and assessment fishery</u>: The available CAA were assigned by year, quarter and assessment fishery. An example of the Input Table containing the Total Catches table to be used in the ASPM stock assessments can be found in **Appendix I**.

Assessment models using estimates of Catch-at-Size (SS3)

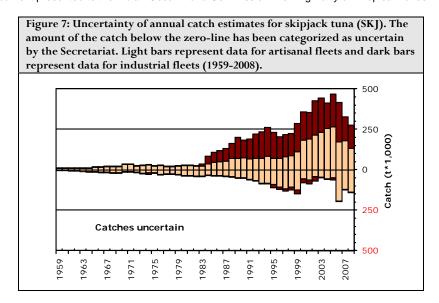
- i. <u>Allocation of assessment fishery</u>: As in i. above. The fisheries that are used for the assessments of bigeye tuna are presented in **Table 5** (page 9).
- ii. <u>Allocation of assessment area</u>: The catches in the CAS table were broken by assessment area. The areas used for the assessment are shown in **Figure 4**.


iii. Aggregation of catches by year, quarter, assessment area, and assessment fishery: The resulting CAS were aggregated by year, quarter, assessment area, and assessment fishery. An example of the Input Table containing the CAS table to be used in the SS3 stock assessments can be found in **Appendix I**.

Results

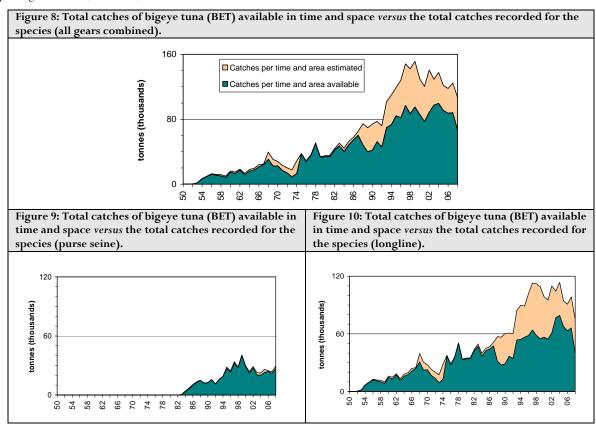

Total catches by species

The total catches by species, gear type and year estimated from the process are shown in **Appendix II**. **The catches estimates for 2008 are preliminary** due to the data being incomplete.


• <u>Bigeye tuna</u>: This species is caught by longliners, purse seiners and, to a lesser extent, bait boats and other artisanal fleets. The catches are likely to be of good quality. **Figure 5** shows the status of the catches of bigeye tuna for 1959-2008.

Yellowfin tuna: This species is caught by several industrial (PS, LL) and artisanal (GILL, BB, LINE) fleets. Figure 6 shows the status of the catches of yellowfin tuna for 1959-2008. The amount of catches of yellowfin tuna that is not reported by gear is of concern, mainly since the early 90's. The majority of these catches is presumed to refer to artisanal gears, mainly gillnets, hand lines and troll lines. The catches recorded under those gears are thought, for this reason, less accurate.

• <u>Skipjack tuna</u>: This species is caught by industrial purse seiners and several artisanal fleets (GILL, BB, LINE and other). Figure 7 shows the status of the catches of skipjack tuna for 1959-2008. The amount of catches of skipjack tuna that is not reported by gear is of concern. The majority of these catches is presumed to refer to artisanal gears, mainly gillnets, hand lines and troll lines. The catches recorded under those gears are thought, for this reason, less accurate.

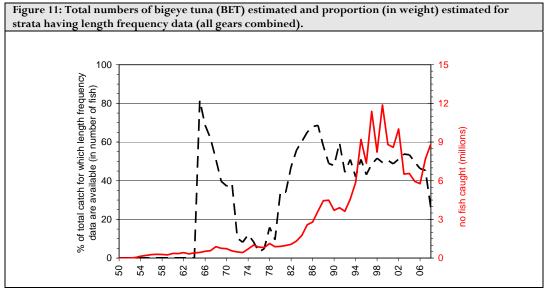


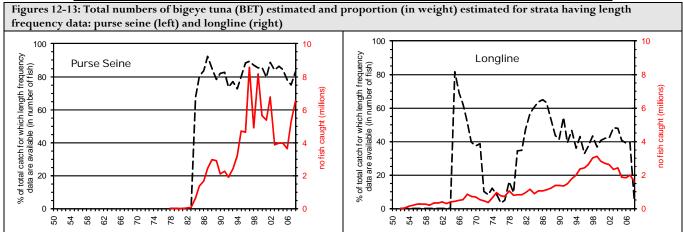
Catch-at-size tables (CAS)

CAS tables are estimated for yellowfin tuna, bigeye tuna and skipjack tuna. The precision of the estimates is likely to vary depending on the quality of the catches (see the above section), the availability of catches in time and space and the amount (coverage) and representativeness of the samples available.

Bigeye tuna:

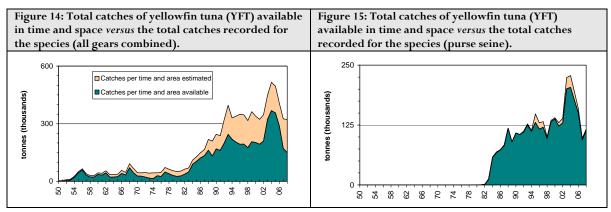
Completeness of time-area catches: The amount of catches that are available in time and space versus the total catches of bigeye tuna estimated are shown in the figures 8 to 10 below. The amount of catches not available in time and space for longline fisheries is of concern making up between the 30-50% in recent years. This refers mainly to fleets operating under the flags of various non-reporting countries (NEI fleets).

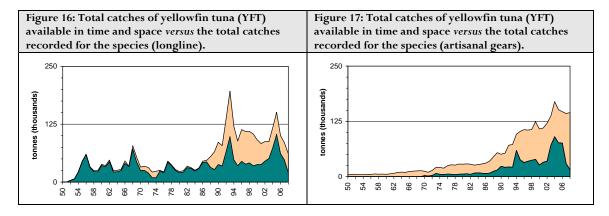



Completeness of length data: The catches estimated for strata having samples available versus the total catches estimated for the species per year is shown in Figures 11-13. The estimation of catches-at-size is thought less accurate:

- 1950-1964: No size data are available for the species.
- 1969-1981 and 2007-08: The amount of samples available is very low.

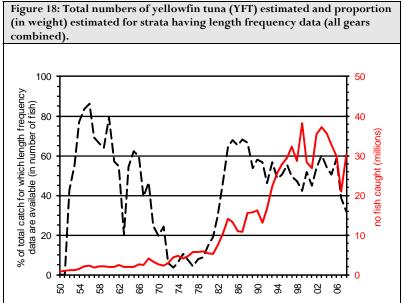
The lack of data is likely to affect in the estimation of CAS for longline fisheries during the referred periods.

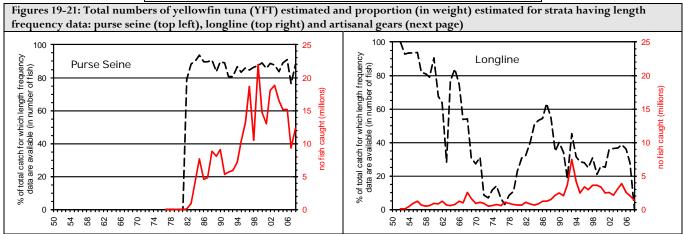

The numbers of fish measured per strata over the total numbers caught by several longline fisheries, mainly Japan, has been declining in recent years. The representativeness of the samples might be also compromised for this reason.

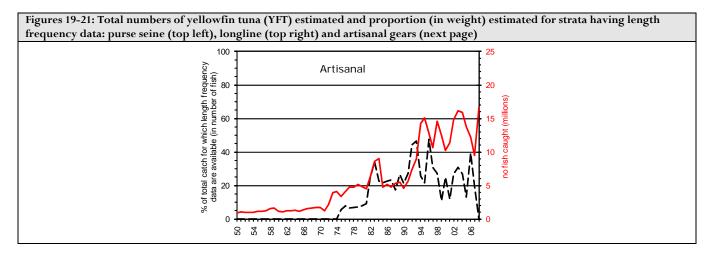


Yellowfin tuna:

Completeness of time-area catches: The amount of catches that are available in time and space versus the total catches of yellowfin tuna estimated are shown in the figures 14 to 17 below. The amount of catches not available in time and space since the mid 80's for longline fisheries is of concern making up between 30-60% of the total catches estimated. The coverage in time and space is also very low for most artisanal fisheries, notably gillnet, hand line and troll line. The lack of spatial coverage is likely to be important for fleets operating in island countries or in countries having a large coastline, notably Indonesia and Sri Lanka. The lack of coverage in time is likely to be important for fleets operating in regions with a marked seasonality, notably the countries in the Arabian Peninsula (Yemen, Oman, Iran, and Pakistan) and Indonesia.

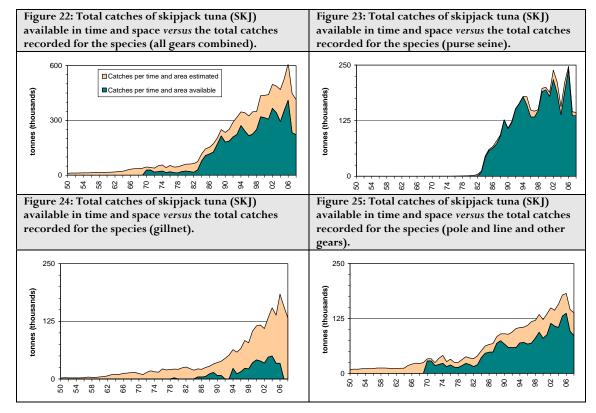





Completeness of length data: The catches estimated for strata having samples available versus the total catches estimated for the species per year is shown in Figure 18-21. The estimation of catches-at-size is thought less accurate for 1970-1982 and 2007-08 due to the paucity of the samples available.

 $This \ lack \ of \ data \ is \ likely \ to \ affect \ in \ the \ estimation \ of \ CAS \ for \ long line \ fisheries \ during \ the \ referred \ periods.$

The numbers of fish measured per strata in relation with the total numbers caught by several longline fisheries, mainly Japan, has been declining in recent years. The representativeness of the samples might be also compromised for this reason.

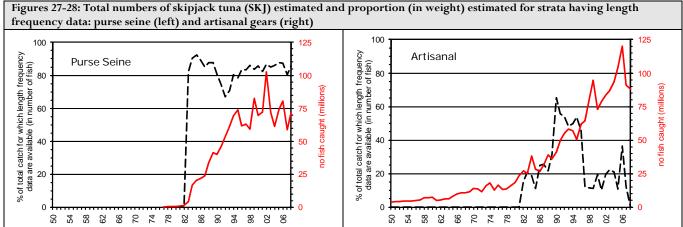

The lack of length data for artisanal fisheries is of concern:

- Gillnet: No size data are available for 1950-1975. The amount of samples available is very low for other years or periods (1976-82, 1994-95, 2000-01).
- Pole and line: No size data are available for 1950-1980. Size data not available by gear type since 1998.
- Hand lines and troll lines: there is an almost complete lack of samples for both gears.

In light of the above, the quality of the CAS estimated for the artisanal gears is likely to be highly compromised.

Skipjack tuna

Completeness of time-area catches: The amount of catches that are available in time and space versus the total catches of skipjack tuna estimated are shown in the figures 22 to 25 below. The amount of catches not available in time and space since the early 90's (notably gillness) is of concern. The coverage in time and space is also very low for most artisanal fisheries, notably gillness.

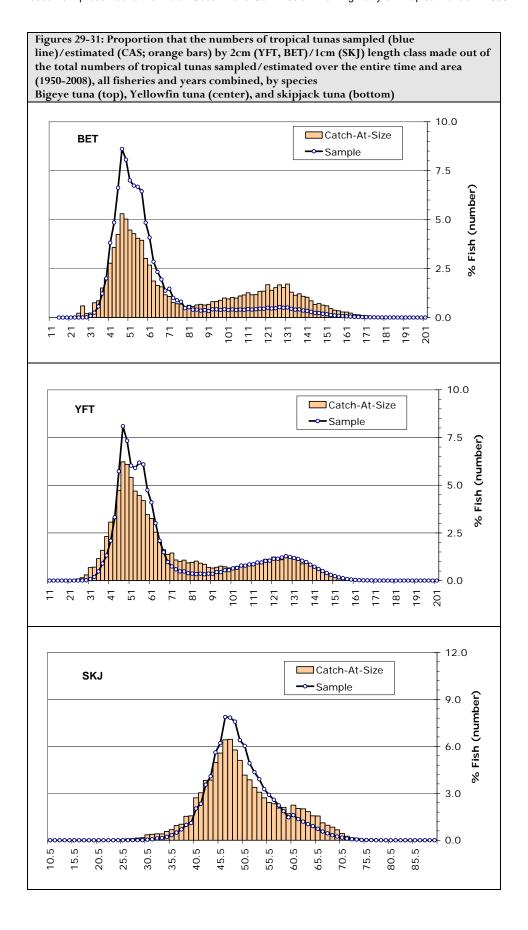

Completeness of length data: The catches estimated for strata having samples available versus the total catches estimated for the species per year is shown in Figure 26-28. The estimation of catches-at-size is thought less accurate for 1950-1982 due to the paucity of the samples available.

This lack of data is likely to affect in the estimation of CAS for all artisanal fisheries during the referred periods.

The representativeness of the samples is unknown for most artisanal fisheries.

The quality of the CAS estimated for the artisanal gears is likely to be highly compromised due to the above.

Figures 29-31 (page 17) show length frequency distributions for original samples (blue line) and catch-at- size estimated (orange bars) for the entire catch-series, all fisheries combined,


Figures 32-97 (Appendix III) show the same by decade and type of fishery, including for decades for which no samples were available.

The length frequency distributions for some fisheries and periods differ significantly from the length frequency samples; this is especially the case with:

- Longline fisheries since the early 1990's
- Handline, trolling and other small artisanal fisheries over the entire time-series

The following reasons may explain the referred discrepancies:

- The length distributions used for the estimation of CAS represent CAS instead of samples for some fisheries, especially industrial purse seiners: The EC and the Seychelles have always reported CAS for their industrial purse seine fisheries instead of samples.
- No weighting applied in the aggregation of samples under the strata selected for the assessment: No weighting procedure is used in the allocation of the individual samples available to the fishery, area and period concerned. The samples available for each assessment area, fishery, year and quarter are aggregated by summing up all the specimens sampled by length class from all the fleets and gears concerned and over the entire area and period. However, the sample weights derived from the samples may represent various levels of coverage, depending on the strata involved.
- Catches at size derived from samples containing a low number of specimens: The shape of some CAS distributions tends to suggest that the number of specimens from which the catches at size were derived is too low. The minimum number of specimens needed for a sample to be raised to total catches, 30 specimens, is the same for all species. This number may be insufficient for species having a wide length frequency distribution, as it is the case with the yellowfin tuna and the bigeye tuna.

$\begin{array}{c} \text{APPENDIX I} \\ \text{ASPM and SS3 Input Tables} \end{array}$

a/ ASPM

	Fishery	Year	Quarter	FirstClassLow	SizeInterval	TimeStamp	tno	tmt	T001	•••	T150
Ī	Baitboat	1950	1	10	2	2009-09-14	154,649	378	0		0

Where:

Field	Description
Fishery	Type of fishery (Table 5 (BET), Table 6 (YFT))
Year	Year
Quarter	Quarter
FirstClassLow	First length class
SizeInterval	Interval between length classes
TimeStamp	The data the file was created
tno	Total number of fish caught
tmt	Total weight caught (metric tons)
T001	Number of fish measured (1st length class)
	Number of fish measured (2 nd length class to 149 th length class)
T150	Number of fish measured (150 th length class)

b/ SS3

Species	Fishery	Year	Quarter	Area	FirstClassLow	Sizeinterval	TimeStamp	tno	tmt	T001	•••	T150
BET	ART	1950	1	5	10	2	21/09/2009	72	1	0		0

Where:

Field	Description
Species	Species code
Fishery	Type of fishery (Table 5)
Year	Year
Quarter	Quarter
Area	Area used for the assessment (Figure 4)
FirstClassLow	First length class
SizeInterval	Interval between length classes
TimeStamp	The data the file was created
tno	Total number of fish caught
tmt	Total weight caught (metric tons)
T001	Number of fish measured (1st length class)
	Number of fish measured (2 nd length class to 149 th length class)
T150	Number of fish measured (150 th length class)

APPENDIX II

Total catches and total number of fish estimated by species, gear and year

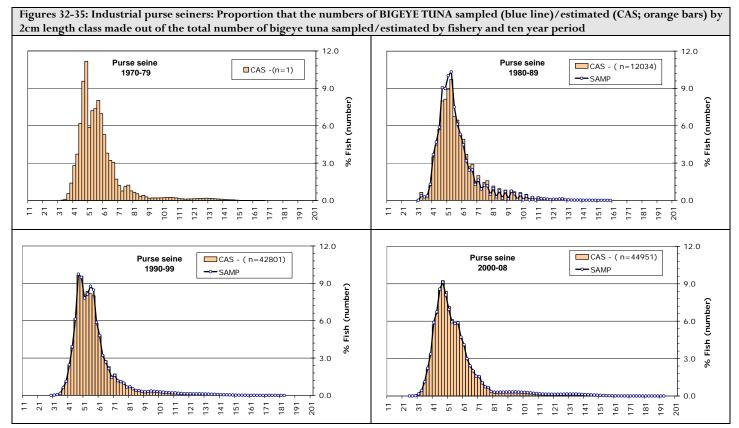
a/Bigeye tuna

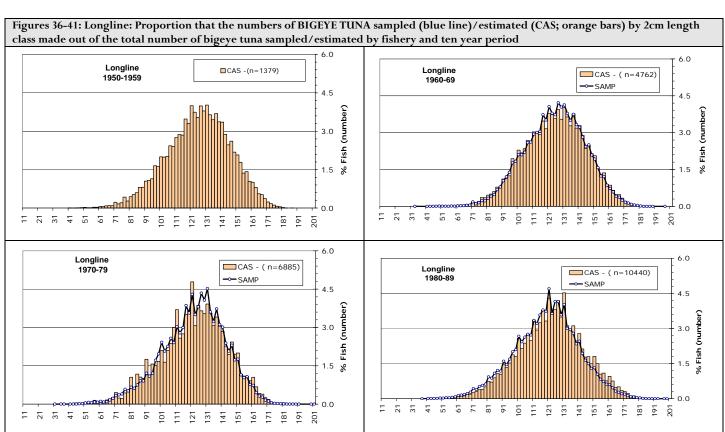
		Bigeye T	una catches in nu	mber of fish			Bigeye Tuna catches in weight (tonnes)						
Year	Purse Seine-FS P	urse Seine-LS	Longline-Japan	Longline-Taiwan	Artisanal	Total	Year	Purse Seine-FS	Purse Seine-LS	Longline-Japan	Longline-Taiwan	Artisanal	Total
1950					287	287	1950					2	2
1951					1,719	1,719	1951					13	
1952			6,433		2,006	8,438	1952			280		15	
1953			36,776		2,005	38,782	1953			1,653		15	1,668
1954			142,620	2,251	2,196	147,068	1954			6,750		17	
1955			199,862	5,169	2,196	207,227	1955			9,539		17	
1956 1957			252,975 236,355	14,955 22,665	2,550 37,247	270,480 296,267	1956 1957			12,245 11,090		20 86	12,866 12,077
1958			209,537	37,830	37,247	284,519	1958			10,153		85	11,740
1959			173,816	37,426	37,131	248,489	1959			8,366		86	9,954
1960			309,472	34,668	19,674	363,814	1960			14,813		51	16,166
1961			271,306	49,162	28,413	348,881	1961			13,048		68	15,019
1962			368,091	30,951	29,081	428,123	1962			17,279		73	18,555
1963			250,224	43,973	29,191	323,389	1963			11,600		74	13,377
1964			335,134	42,932	29,254	407,320	1964			16,009		75	18,107
1965			375,048	38,274	20,708	434,031	1965			17,731	1,819	59	19,610
1966			441,170	57,730	29,827	528,727	1966			21,546	2,595	79	24,220
1967			485,254	54,217	33,608	573,079	1967			22,353	2,415	88	24,856
1968			651,071	198,802	33,678	883,551	1968			30,391	9,173	87	39,651
1969			521,545	202,489	35,630	759,663	1969			21,966	8,497	92	30,554
1970			389,202	290,250	52,145	731,597	1970			16,241	11,576	116	27,933
1971			377,264	145,057	30,417	552,738	1971			16,061	6,954	72	23,087
1972			287,770	162,367	34,763	484,899	1972			13,279	6,762	83	20,123
1973			245,965	110,012	73,528	429,505	1973			12,506		165	17,625
1974			474,783	158,173	71,840	704,797	1974			21,576		164	28,562
1975			802,866	139,103	62,778	1,004,746	1975			31,733			37,871
1976			633,295	126,244	92,638	852,177	1976			23,960		265	28,828
1977	0.4		575,220	138,347	106,397	819,965	1977			29,284			36,260
1978	94	803	906,193	132,024	88,774	1,127,888	1978	1	4	45,015		308	50,888
1979	29	171	593,875	196,677	90,385	881,136	1979	0	1	25,670		270	33,753
1980 1981	734 104	2,919 2,319	557,091 615,824	270,828	77,758	909,329 977,736	1980 1981	6	15 12	25,212 27,207		260	35,156 35,316
1981	3,907	15,431	654,728	204,650 305,385	154,840 90,817	1,070,267	1981	34	82	30,938			43,890
1983	10,967	46,678	783,548	348,511	132,941	1,322,646	1983	125	462	35,717			50,549
1984	126,854	515,628	536,810	343,250	233,775	1,756,318	1984	1,620	2,400	25,777			44,386
1985	212,090	1,138,015	657,082	393,331	189,703	2,590,220	1985	1,719	5,439	30,089			52,640
1986	276,449	1,388,932	575,819	482,289	71,243	2,794,732	1986	2,516	8,114	27,623		527	57,779
1987	728,783	1,698,374	605,405	502,524	99,027	3,634,113	1987	4,608	8,792	29,901		719	65,308
1988	946,323	2,016,460	574,209	654,957	258,902	4,450,850	1988	6,578	8,489	29,371	27,607	2,550	74,595
1989	699,140	2,204,066	386,064	988,126	211,872	4,489,269	1989	3,612	8,384	19,885	36,689	1,051	69,621
1990	466,214	1,623,452	399,507	986,777	227,531	3,703,480	1990	5,883	6,785	18,931	41,519	959	74,077
1991	253,642	2,007,183	222,486	1,117,453	309,214	3,909,977	1991	5,349	10,276	10,048	50,756	978	77,407
1992	182,248	1,726,802	227,372	1,247,035	246,658	3,630,115	1992	2,340	8,922	10,420		743	72,132
1993	325,467	2,063,984	252,210	1,516,628	403,047	4,561,336	1993	7,464	8,551	13,594		994	101,540
1994	137,654	3,057,849	455,001	1,533,308	676,431	5,860,243	1994	4,791	14,090	26,364		1,194	109,940
1995	242,667	4,460,652	607,174	1,740,993	2,151,038	9,202,524	1995	4,869	23,513	23,781	65,136	1,754	119,053
1996	348,716	4,280,617	549,002	1,873,761	308,703	7,360,799	1996	3,823	20,706	28,308		1,458	128,049
1997	203,059	8,347,536	581,670	2,053,445	196,074	11,381,784	1997	2,446	31,519	29,861	82,993	1,495	
1998	660,166	4,239,482	474,421	2,534,533	307,754	8,216,356	1998	6,353	21,981	20,726		1,482	
1999 2000	692,905	7,480,889	362,709	2,744,336	599,491 347,760	11,880,330 8,810,191	1999 2000	5,619	35,040	15,472			
2000	385,548 237,505	5,247,775 5,115,791	414,145 420,323	2,414,962 2,283,860	347,760 539,211	8,596,690	2000	5,691 4,267	24,167 19,451	17,366 14,693		1,269	129,766
2001	145,967	6,609,700	245,246	2,283,860	651,821	10,015,714	2001	4,267	24,943	14,693		1,760	140,685
2002	255,224	3,612,687	255,305	2,056,804	343,561	6,523,582	2002	7,172	15,662	11,217		1,885	
2003	133,015	3,825,197	334,552	2,092,666	178,942	6,564,372	2003	3,658	18,749	13,288		1,794	137,711
2005	307,025	3,660,943	351,772	1,500,838	131,758	5,952,336	2005	8,577	17,492	15,299		1,154	121,586
2006	229,818	3,389,964	361,892	1,463,652	321,411	5,766,738	2006	6,406	18,249	17,261		2,398	117,883
2007	390,535	4,880,999	411,307	1,593,567	413,024	7,689,432	2007	5,734	18,002	19,630			124,523
2008	352,797	6,170,041	321,281	1,270,310	738,175	8,852,605	2008	9,753	19,726	14,791			

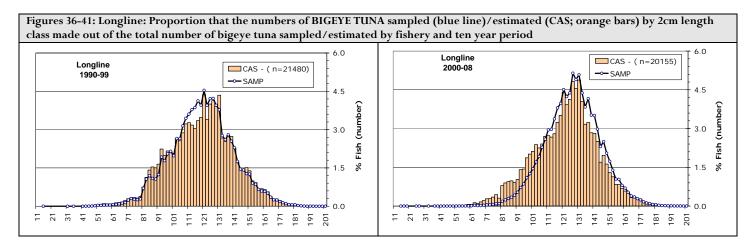
$b/Yellow fin\ tuna (i)$

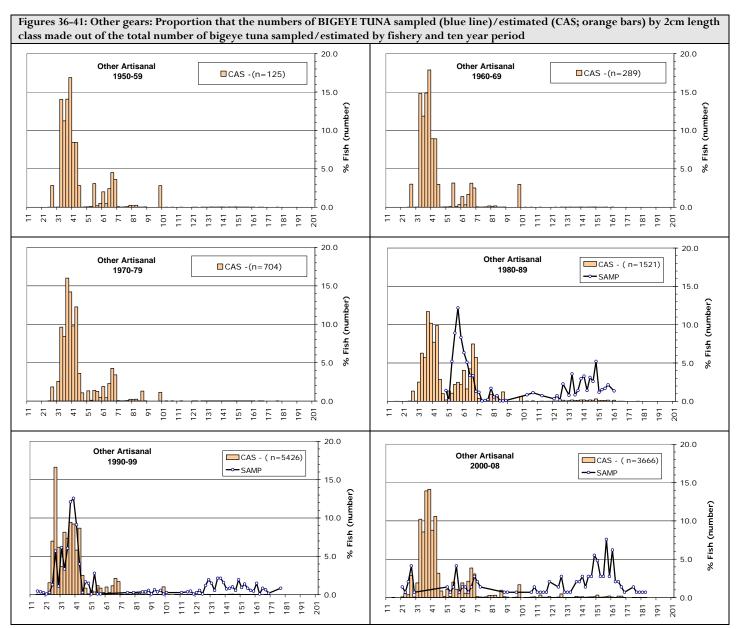
			Ye	llowfin Tuna catche	s in number o	of fish				
Year	Purse Seine-FS	Purse Seine-LS	Longline-Japan	Longline-Taiwan	Baitboat	Gillnet	Hand line	Trolling	Other	Total
1950		·		-	618,595	158,668	43,808	44,697	2,890	868,659
1951					623,033	229,990	58,779	104,689	8,670	1,025,161
1952			62,801		625,252	190,225	56,358	134,728	11,561	1,080,925
1953			120,749		625,467	152,794	48,068	124,075	11,561	1,082,714
1954			424,884	5,768	627,619	147,118	47,274	143,156	11,561	1,407,379
1955			858,334	19,924	834,225	141,020	37,986	150,122	11,561	2,053,172
1956			1,160,668	31,999	834,656	154,571	32,825	150,417	11,561	2,376,696
1957			613,497	34,581	805,453	208,740	32,903	146,391	11,561	1,853,126
1958			482,358	50,286	1,166,903	188,666	33,730	141,002	12,258	2,075,203
1959			518,828	64,540	1,236,627	202,612	38,261	139,385	12,258	2,212,511
1960			850,041	63,897	674,650	253,261	37,589	148,647	13,177	2,041,262
1961			717,467	80,270	541,782	306,456	40,675	181,729	17,300	1,885,677
1962			1,093,626	98,080	522,965	423,204	41,805	189,421	24,465	2,393,565
1963			530,280	97,281	521,707	475,642	50,356	197,234 190,185	23,006	1,895,506
1964			508,551	89,393	520,218	537,338	54,062		25,356	1,925,103
1965 1966			680,916 1,079,081	76,030 136,761	355,540 522,037	526,026 614,512	50,028 52,992	200,203 200,840	27,960 26,305	1,916,703 2,632,527
1966			852,482	97,898	591,227	669,927	52,992	211,192	26,305	2,508,015
1968			1,849,258	675,362	591,227	721,676	63,809	211,192	26,305	4,147,064
1969			980,779	621,952	625,820	758,041	118,602	219,350	29,514	3,354,058
1970			408,201	473,278	822,927	620,983	90,349	166,389	22,402	2,604,530
1971			681,857	408,600	464,522	476,716	78,185	212,606	21,284	2,343,770
1972			491,069	371,731	956,990	693,436	100,548	308,637	36,025	2,958,435
1973			316,282	198,181	2,539,273	809,222	157,556	423,268	34,976	4,478,757
1974			413,111	154,449	1,929,784	1,652,271	176,589	331,407	27,186	4,684,797
1975			598,682	157,646	1,702,874	1,234,360	170,668	215,323	13,656	4,093,211
1976			449,142	155,181	1,822,632	1,707,583	243,471	327,052	25,605	4,730,665
1977	162	6,278	766,340	290,311	1,792,437	1,521,470	245,911	1,120,719	70,463	5,814,092
1978	3,305	22,095	757,274	162,055	1,419,815	1,485,831	326,575	1,389,393	136,211	5,702,554
1979	3,373	7,516	562,005	178,874	1,690,028	1,708,282	192,940	1,435,981	144,559	5,923,558
1980	3,884	10,113	413,963	214,810	1,766,799	1,716,712	127,790	1,100,744	100,137	5,454,952
1981	10,131	14,497	464,464	220,630	2,145,139	1,925,625	144,656	296,038	9,295	5,230,474
1982	28,888	61,567	827,433	207,775	2,767,871	2,641,178	131,864	590,760	74,750	7,332,086
1983	523,251	394,570	616,503	204,473	5,741,403	2,211,307	126,889	470,882	60,635	10,349,913
1984	2,590,580	1,931,656	431,694	185,171	6,721,230	1,599,848	148,682	485,582	56,695	14,151,137
1985	1,966,807	5,686,006	536,643	254,361	2,201,291	1,244,617	259,530	941,896	130,671	13,221,821
1986	2,209,018	2,392,554	644,458	565,969	1,455,641	1,480,226	271,146	1,805,725	146,724	10,971,461
1987	1,589,147	3,225,287	510,800	679,697	1,795,339	1,175,727	328,547	1,388,213	82,062	10,774,820
1988	2,869,062	5,934,887	540,413	925,916	1,488,052	1,869,831	562,614	1,304,348	80,004	15,575,127
1989	3,053,601	5,068,266	310,057	1,849,986	1,740,584	2,366,924	631,717	697,244	18,707	15,737,086
1990	3,892,842	5,170,058	335,418	2,157,885	1,151,938	2,202,758	563,411	673,423	25,846	16,173,580
1991	2,034,282	3,314,050	174,404	1,839,244	2,244,534		497,185	843,624	73,280	13,048,683
1992 1993	1,943,996	3,702,213	223,869	3,434,420 7,214,390	2,111,533	3,232,751	616,679	1,335,659	42,409	16,643,528 22,335,593
1993	2,136,720	3,807,893 5,327,820	215,517		2,839,156	3,317,189	2,023,643 2,830,371	760,086 1,032,111	21,000	, , , , , , , , , , , , , , , , , , ,
1994	1,840,920 2,292,628	5,327,820 8,041,736	283,010 232,881	3,921,805 2,248,090	5,961,664 5,566,720	4,427,442 5,705,377	2,479,006	1,032,111	39,867 48,354	25,665,010 27,860,574
1996	2,254,599	11,012,066	338,655	3,053,985	4,270,251	4,952,121	2,245,394	1,243,762	52,110	29,440,591
1996	1,468,030	17,230,788	425,720			4,434,648		1,175,358	41,686	32,323,408
1998	2,736,716	7,791,606	550,786			4,740,533		1,418,572	59,555	
1999	2,509,986	19,525,771	443,105				2,003,710		37,929	
2000	2,155,426	12,594,542	443,324			4,701,870	1,383,041	1,166,836	36,323	
2001	2,345,294	10,692,215	430,901			4,819,729	1,638,823		56,408	26,854,559
2002	2,137,023	15,984,578	264,450			5,034,559		1,253,230	134,190	
2003	3,731,738	15,106,490	413,288			7,162,533			75,323	37,165,011
2004	4,018,748	12,473,547	585,898				3,578,500		39,419	35,528,672
2005	3,307,081	11,831,315	649,863			5,284,874		3,080,459	304,782	32,733,041
2006	2,223,358	12,928,096	571,760			7,128,940		2,233,494	121,510	29,908,029
2007	1,759,859	7,607,683	473,749	1,555,376	1,365,665	4,324,171		2,676,133	235,949	20,917,795
2008	1,939,122	10,364,296	268,206	1,165,981		5,811,393		2,379,765	526,773	30,380,404

b/Yellowfin tuna(ii)

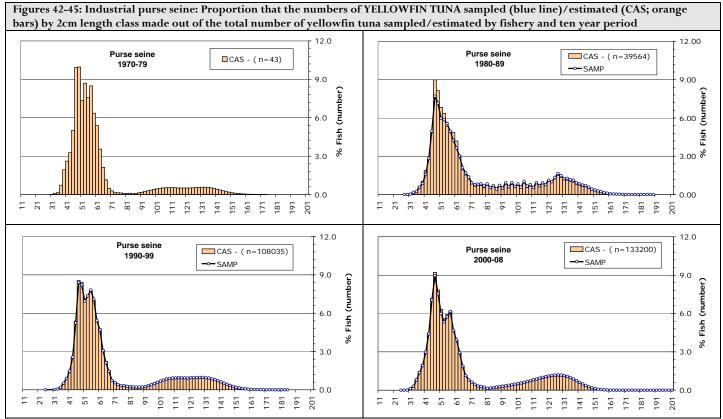

			Yellowfin 7	una catches in weigh	t (tonnes)					
Year	Purse Seine-FS	Purse Seine-LS	Longline-Japan	Longline-Taiwan	Baitboat	Gillnet	Hand line	Trolling	Other	Total
1950		1 4100 00410 20	g Japan		1,512	1,806	659	167	19	4,164
1951					1,528	2,430	802	307	58	5,124
1952			3,683		1,536	2,124	816	374	77	8,610
1953			6,757		1,537	1,912	730	305	77	11,318
1954			21,666	210	1,545	1,875	731	426	77	26,531
1955			44,163	690	2,051	1,834	730	470	77	50,015
1956			59,485	1,090	2,053	1,885	679	473	77	65,742
1957			31,864	1,253	1,980	2,900	710	448	77	39,232
1958			22,644	1,827	1,982	2,282	730	446	77	29,988
1959			22,182	2,382	1,980	2,452	844	436	77	30,354
1960			36,055	2,243	1,029	2,882	884	503	77	43,674
1961			32,730	2,880	1,532	3,160	1,005	630	97	42,034
1962			44,191	3,471	1,510	4,376	1,069	551	116	55,284
1963			21,981	3,405	1,522	5,916	1,333	596	121	34,875
1964			22,163	3,128	1,515	6,516	1,426	694	138	35,579
1965			25,004	2,686	1,041	6,528	1,291	658	148	37,356
1966			40,901	4,845	1,520	7,847	1,383	659	136	57,290
1967			30,519	3,518	1,722	8,269	1,546	734	136	46,443
1968			53,586	25,029	1,722	8,748	1,613	789	136	91,623
1969			32,258	21,689	1,822	8,889	1,726	865	155	67,405
1970			15,575	16,809	2,386	7,454	1,543	816	118	44,700
1971			20,810	13,567	1,474	5,860	1,377	1,053	116	44,256
1972			18,181	13,338	2,680	8,075	1,699	1,395	198	45,566
1973			14,746	6,979	7,666	8,852	2,386	1,761	191	42,582
1974			18,121	5,373	6,322	10,063	2,946	1,446	152	44,424
1975			19,792	5,562	4,873	9,893	3,005	1,188	77	44,390
1976			16,510	5,378	5,410	13,578	3,977	1,605	142	46,601
1977	6	28	35,184	10,245		12,315	3,968	5,082	388	72,364
1978	111	104	31,173	5,821	4,235	12,062	4,278	4,779	710	63,273
1979	63	40	21,323	5,553	4,887	13,860	4,256	4,763	794	55,539
1980	71	59	16,421	6,408	4,888	13,896	4,774	4,148	550	51,215
1981	182	82	17,335	7,103	6,145	15,515	4,941	2,185	51	53,539
1982	698	468	26,640	7,882	4,994	15,435	5,122	2,327	332	63,898
1983	8,379	4,246	24,005	7,153	7,910	11,441	4,467	2,009	276	69,888
1984	46,789	11,451	18,123	7,380	8,487	11,081	5,924	1,769	210	111,214
1985	44,964	23,791	21,978	8,511	7,571	11,095	6,817	2,644	592	127,964
1986	47,209	26,237	26,155	19,039	6,754	12,043	6,944	4,055	945	149,382
1987	46,944	36,852	21,516	25,390	7,914	14,883	8,796	2,970	540	165,806
1988	87,399	31,223	23,404	31,460	6,314	23,171	12,070	2,900	519	218,459
1989	52,868	36,881	13,273	51,943	5,802	30,213	15,539	2,618	113	209,251
1990	78,980	29,719	13,273	72,213	5,300	26,413	16,120	2,770	126	245,456
1991	78,753	26,651	7,542	71,214	7,586	23,547	18,343	3,422	310	237,367
1992	74,782	37,506	10,126	126,535	8,620	38,339	16,420	7,426	235	319,991
1993	85,468	41,936	10,029	186,386	9,933	39,583	15,032	7,669	452	396,488
1994	77,542	36,022	13,593	106,777	12,999	50,153	22,497	10,046	444	330,072
1995	68,869	79,282	10,618	77,958	12,370	56,744	22,909	10,095	433	339,276
1996	68,453	61,218	16,573	96,991	12,149	62,660	19,988	10,889	458	349,378
1997	49,431	82,720	19,576	89,560	12,882		22,084	11,688	512	346,454
1998	43,220	57,160	19,376	89,929	13,626	58,821	23,961	9,709	475	316,259
1999	47,973	86,793	15,679	88,029		75,535	25,486	9,600	492	362,890
2000	61,469	78,786	17,616	73,692	10,851	57,431	28,162	10,799	534	339,339
2000	79,067	50,899	15,747	67,526	11,819	56,876	29,942	10,799	440	323,184
2001	77,058	61,934	14,350	73,229	17,068	58,905	34,186	9,993	464	347,188
	137,492	86,584	19,387	67,699	16,863	79,625		9,393	475	448,653
2003							31,136			
2004	168,799	59,595 69.759	20,358	97,245 125,810	15,061	96,650	40,571	16,882	483	515,645
2005	124,137	69,759	25,028		17,644	74,949	39,473	16,970	2,148	495,919
2006	85,020	74,454	25,860	74,425	17,339	83,272	32,395	13,088	715	406,568
2007	53,576	43,795	22,292	62,734	15,474	76,688	33,664	15,322	1,517	325,061
2008	75,035	41,411	12,210	48,937	17,216	79,667	31,067	13,302	3,624	322,469

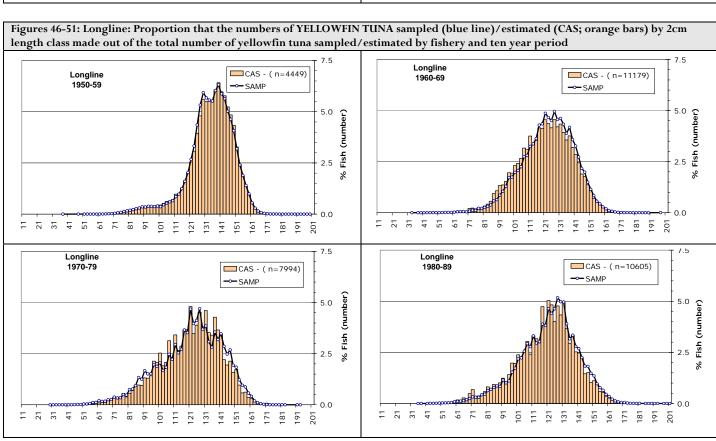

c/Skipjack tuna

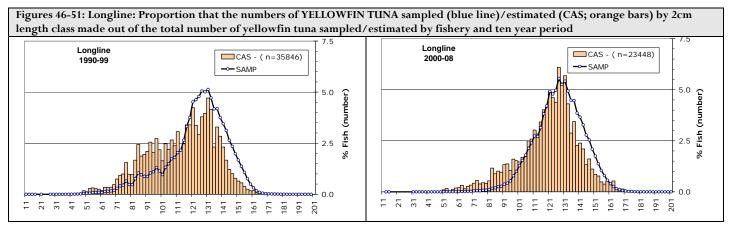

			Skiniack Tun	a catches in nu	mber of fish			1			Skinjack T	Гuna catche	oe in woigh	t (tonnes)			
Year	Purse Seine-FS P	urse Seine-LS	Baitboat	Gillnet	Handline	Trolling	Other	Total	Year	Purse Seine-FS Pur	se Seine-LS	Baitboat	Gillnet	Handline	Trolling	Other	Total
1950	ruise seme 15	arse senie Es	3,042,183	453,483	113,976	30,634	17,518	3,657,795	1950	Turse senie 15	se seme Ls	8,113	2,019	431	74	48	10,686
1951			3,155,456	699,748	140,413	158,675	110,610	4,264,901	1951			8,414	2,990	526	341	301	12,572
1952			3,165,753	598,262	99,034	169,706	119,046	4,151,802	1952			8,441	2,561	367	363	324	12,056
1953			3,555,403	543,677	82,201	176,207	127,805	4,485,294	1953			9,480	2,400	307	372	348	12,907
1954			3,609,811	567,177	79,819	194,599	137,317	4,588,723	1954			9,625	2,500	299	419	374	13,217
1955			3,640,688	573,841	101,953	196,446	138,192	4,651,119	1955			9,707	2,534	390	427	377	13,436
1956			3,659,807	650,687	117,440	208,666	147,196	4,783,796	1956			9,758	2,837	446	454	402	13,896
1957			4,002,396	1,026,377	107,814	196,413	152,981	5,485,981	1957			10,672	4,189	399	427	644	16,331
1958			5,377,035	929,128	116,417	208,174	154,596	6,785,350	1958			10,723	3,451	430	451	619	15,674
1959			5,822,539	873,360	124,932	196,353	145,761	7,162,944	1959			10,672	3,553	460	426	595	15,706
1960			5,792,087	1,121,081	155,196	199,393	147,887	7,415,644	1960			9,884	4,548	569	443	755	16,199
1961			3,074,225	1,358,789	184,982	260,156	184,819	5,062,971	1961			9,197	5,304	676	578	851	16,606
1962			3,014,921	1,737,282	259,122	257,040	184,259	5,452,624	1962			8,762	6,918	937	561	928	18,107
1963			3,085,498	2,178,867	344,482	300,066	198,479	6,107,392	1963			8,965	9,491	1,245	640	813	21,155
1964			3,061,162	2,270,899	339,350	310,202	271,964	6,253,577	1964			8,887	10,140	1,229	669	1,046	21,972
1965			5,185,010	2,282,506	320,170	329,828	222,657	8,340,170	1965			15,081	10,243	1,156	698	938	28,116
1966			6,149,095	2,703,907	372,591	355,089	245,580	9,826,262	1966			17,888	12,216	1,349	751	1,168	33,372
1967			6,862,308	2,935,496	412,680	349,445	231,253	10,791,182	1967			19,979	12,942	1,491	748	1,029	36,190
1968			6,403,414	3,163,642	470,004	379,734	258,693	10,675,488	1968			18,633	13,884	1,701	815	1,285	36,319
1969			7,128,100	3,290,478	490,374	384,127	255,685	11,548,764	1969			20,729	14,287	1,876	894	1,042	38,829
1970			9,884,483	2,715,882	639,196	394,786	194,034	13,828,381	1970			28,775	11,835	2,404	1,262	720	44,995
1971			9,986,841	2,194,795	564,672	411,301	215,490	13,373,099	1971			29,321	9,562	2,156	1,214	699	42,952
1972			6,739,670	3,334,514	664,570	549,797	347,714	11,636,264	1972			19,412	14,377	2,510	1,455	1,117	38,872
1973			9,845,147	4,154,263	839,752	654,900	352,789	15,846,851	1973			28,317	17,758	3,003	1,706	978	51,762
1974			12,451,599	3,598,272	762,099	725,746	398,700	17,936,416	1974			35,348	15,574	2,740	1,811	1,109	56,582
1975			6,995,698	3,432,367	696,611	1,162,404	612,269	12,899,350	1975			19,901	14,794	2,533	2,628	1,680	41,537
1976			7,963,085	5,201,109	1,006,081	1,451,071	795,642	16,416,987	1976			23,042	21,937	3,529	3,405	2,151	54,064
1977	827	57,547	6,110,270	4,656,000	958,498	963,847	595,744	13,342,733	1977	3	129	17,417	19,677	3,527	2,312	1,607	44,672
1978	49,355	318,261	6,115,118	4,969,749	939,773	957,436	576,644	13,926,336	1978	201	717	17,472	20,753	3,493	2,313	1,565	46,514
1979	71,742	168,513	7,872,099	5,060,155	607,089	1,653,462	864,314	16,297,373	1979	207	400	22,681	21,512	2,205	4,051	2,331	53,388
1980	146,610	389,918	9,696,910	5,166,862	777,683	1,837,551	942,726	18,958,261	1980	406	1,014	27,935	21,106	2,795	4,587	2,536	60,378
1981	210,257	529,928	8,591,585	11,263,467	853,447	1,878,257	965,535	24,292,476	1981	586	1,416	24,573	24,253	3,064	4,702	2,600	61,194
1982	360,685	1,061,987	12,429,433	10,606,020	464,936	2,400,755	1,272,931	28,596,747	1982	1,219	2,976	22,658	26,148	1,703	5,535	3,796	64,036
1983	862,079	3,250,798	14,131,237	6,186,537		2,795,449	1,375,688	29,036,255	1983	2,363	9,487	27,583	22,717	1,597	6,457	4,435	74,639
1984	4,733,051	11,987,307	28,944,525	5,512,393		2,394,390	1,057,500	55,034,918	1984	13,956	31,771	40,441	19,182	1,529	5,846	3,823	116,546
1985	3,898,196	16,717,780	17,436,629	6,765,840		2,550,562	1,184,849	48,910,863	1985	12,337	48,029	50,620	22,002	1,479	6,045	4,193	144,705
1986	6,246,980	15,233,376	16,389,035	5,702,054		2,605,329	1,440,563	47,958,890	1986	20,844	45,808	54,261	21,022	1,470	6,017	3,992	153,415
1987	8,336,314	15,433,511	20,013,370	6,175,694		3,571,147	1,321,963	55,226,105	1987	31,794	47,422	54,524	25,033	1,468	7,016	4,916	172,173
1988	9,591,328	24,106,439		6,302,798		3,723,473	1,855,270	72,844,350	1988	26,849	66,045	69,520	27,692	1,439	7,379	5,178	204,102
1989	16,262,478	24,929,050		7,692,688		4,461,824	2,315,673	77,415,172	1989	50,686	76,145	71,317	32,742	2,351	10,157	6,099	249,497
1990	9,590,633	30,565,301	26,282,573	8,170,680		4,019,862	1,994,826	81,239,651	1990	27,462	80,789	72,935	35,646	2,357	9,492	5,347	234,029
1991	6,976,646	39,453,611	32,730,642	10,245,350	643,821	4,258,163	1,847,035	96,155,268	1991	18,174	104,613	71,168	38,595	2,463	9,777	5,630	250,418
1992	10,652,665	42,769,283	34,997,908	11,444,483		5,560,660	2,244,094	108,662,992	1992	29,993	121,331	71,181	44,705	4,069	12,831	5,995	290,105
1993	13,604,394	47,554,479	36,650,065	13,179,755		4,707,597	3,059,758	119,254,564	1993	40,274	123,654	79,737	51,748	2,143	13,011	7,260	317,825
1994	15,332,576	53,714,643	34,796,833	15,118,478		3,309,159	3,315,353	125,895,919	1994	50,947	128,229	84,492	63,689	1,294	10,993	7,450	347,093
1995 1996	11,896,327	61,861,174 50,392,566	28,606,866 35,690,292	15,748,891 19,534,484		2,919,771 3,649,657	2,652,150 2,692,345	124,160,355 123,727,837	1995 1996	35,136 35,414	143,801 113,749	85,708 85,042	58,208 66,067	1,437 1,405	10,742 13,239	7,181 9,750	342,212
1996	11,404,568 6,939,718	, ,	35,882,662			4,122,022	4,130,071	127,518,306	1996	21,198	125,068	89,449	83,473	1,310	15,566	11,491	324,666 347,555
												,	78,434	,			
1998 1999	9,104,842 15,583,107		49,558,576 59,193,911			4,975,331 4,165,485	4,105,970	140,102,510 177,231,724		22,655 37,011	127,385	94,258 108,092		1,166 752	14,442 14,232		
2000	9,381,460		36,379,795			3,359,432	3,613,645		2000	28,937	170,945		115,282	620			437,485
2000	8,122,274		39,636,484			3,940,905	4,819,636		2000	29,012		104,895		607	17,038		
2001	7,063,064		48,168,305			3,833,110	4,171,982		2001	22,794	215,789	127,066		733	12,976	8,459	
2002	7,994,219		45,594,289			3,812,952	4,121,192	158,792,009	2002	30,992		121,040		481	12,728	9,457	
2003	5,203,707		46,329,573			5,812,952	4,679,450	155,014,025	2003	18,565	137,882	122,859		616		12,498	
2004	13,598,113		57,960,024			5,815,208		178,338,212	2004	43,308		152,859		878	15,440	9,279	
2005	9,475,998		55,304,538				12,166,821		2005	45,308 34,954		147,759		1,213		13,320	
2006	8,393,029		43,571,322			6,675,592	9,418,270		2006	24,369		115,786		1,488	15,979		
2007	5,904,981		40,827,683			6,765,660	4,119,365		2007	15,559		107,644		1,488			413,567
2000	3,704,701	03,732,003	10,047,003	JJ,00 J ,070	±37,2 1 9	0,703,000	т,117,305	132,023,313	2008	13,337	147,045	107,044	132,208	1,000	10,300	12,209	T13,30/

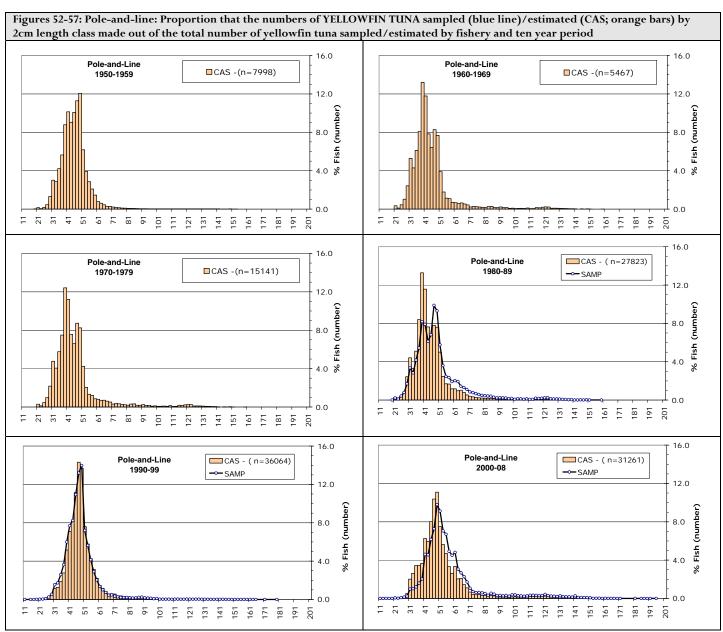

APPENDIX III

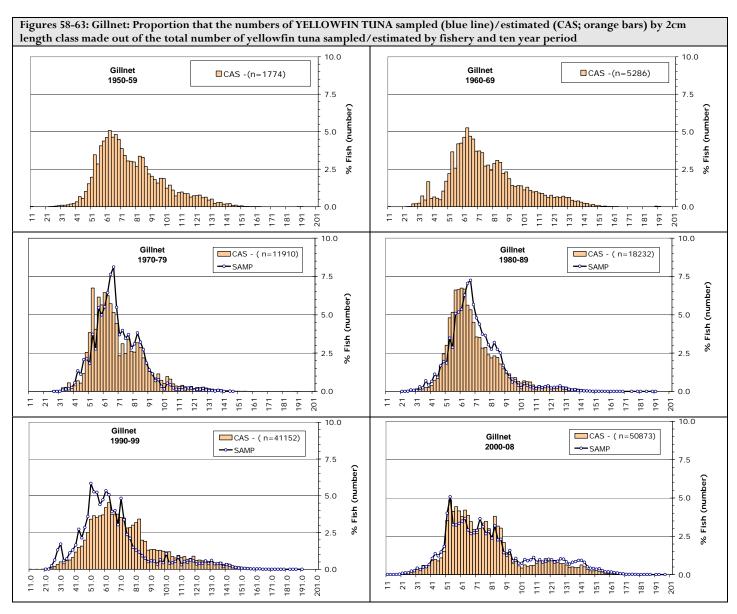
Length frequency distributions derived from samples and estimated as CAS, by fishery and decade A/ Bigeye tuna (BET)

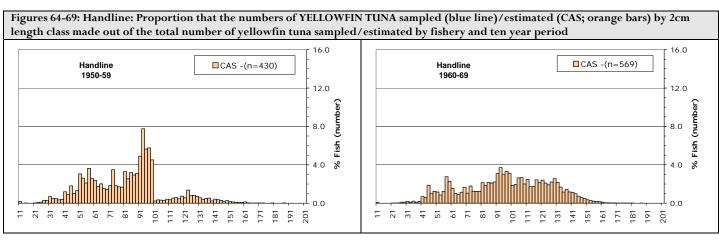


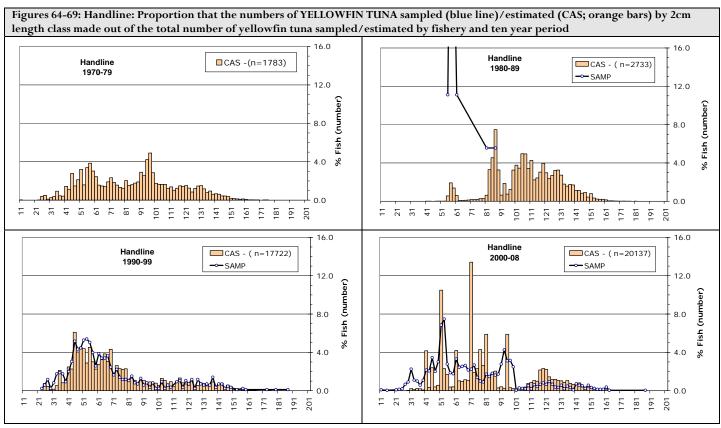


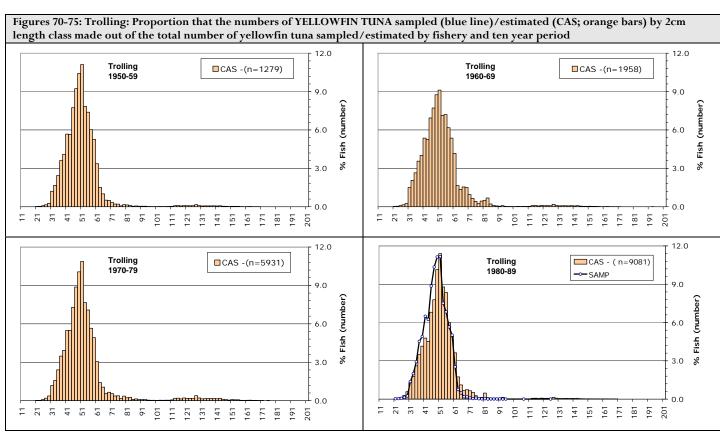


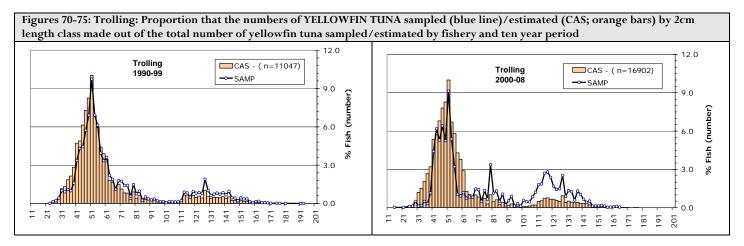


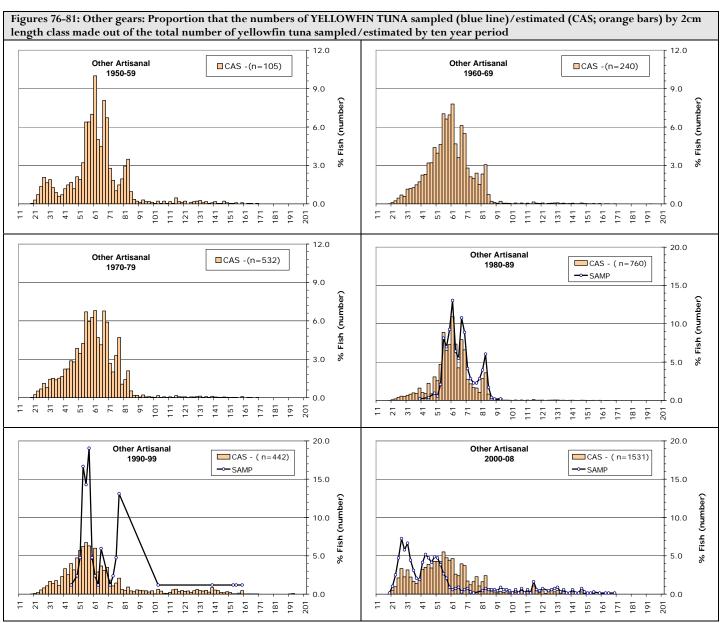

Length frequency distributions derived from samples and estimated as CAS, by fishery and decade B/ Yellowfin tuna (YFT)

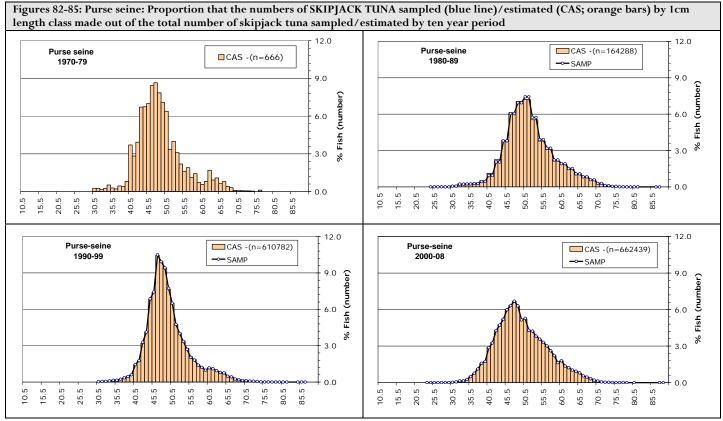


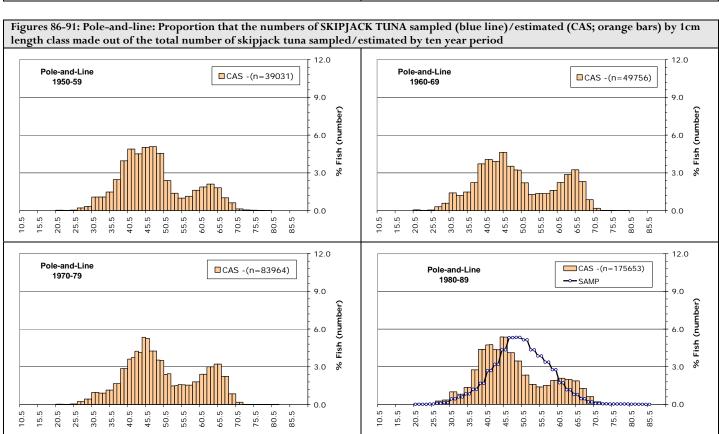


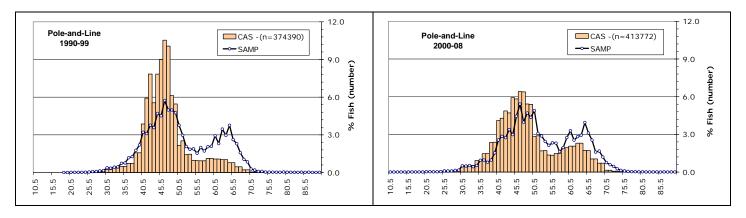


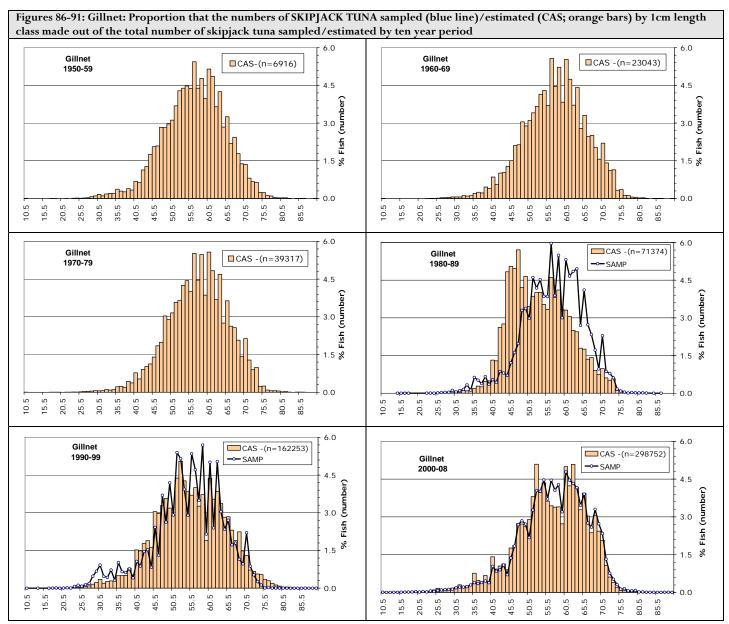


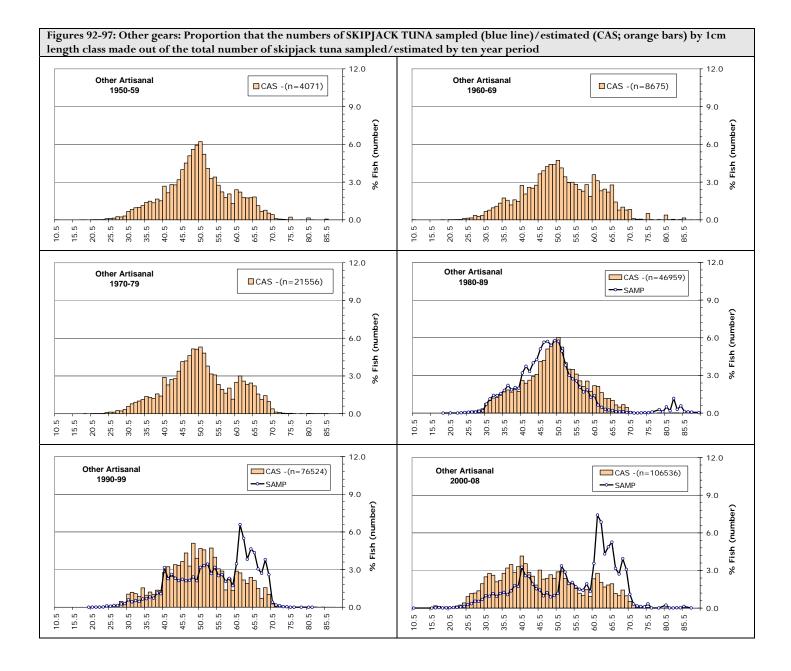











Length frequency distributions derived from samples and estimated as CAS, by fishery and decade C/ Skipjack tuna (YFT)

