# Standardized CPUE of bigeye tuna (*Thunnus obesus*) based on the fine scale catch and effort data of the Japanese tuna longline fisheries operated in the Indian Ocean (1980- 2008)

Keisuke Satoh, Tom Nishida, Hiroaki Okamoto and Hiroshi Shono

National Research Institute of Far Seas Fisheries (NRIFSF) Fisheries Research Agency (FRA), Shimizu, Shizuoka, Japan

October, 2009

## Abstract

We re-attempted to estimate of annual changes of abundance index of bigeye tuna in the Indian Ocean based on the fine scale catch and effort data in reference to the recent study for swordfish. The time series for 21 years (1980-2008) is corresponding with the available duration of the fine scale environmental data, which are combination of moon phase, Indian Ocean Index, temperature, salinity, thermocline depth, shear current and its amplitudes assigned to 1 by 1 degree and/or month. We found that the strongest effects were the factors related to temperature, salinity and thermocline depth, which explained 30.3 % of variance in the final model. The next and third dominant factors were the shear current associated factors (22.5 %) and main effects (19.5%; year, area and quarter), respectively. The large effects of environmental factors on nominal CPUE rather than the main factors are not observed in the CPUE standardization based on 5 by 5 degrees, which are similar to the results of swordfish.

# Introduction

For the standardization of the longline CPUE, the advantage to use the fine scale catch and effort data incorporated with environmental information has been suggested in case of swordfish in recent study (Nishida and Wan 2009). Therefore, the same investigation was applied to BET this time around.

## Materials and methods

# Data

The data source and the compiling methods are almost same in the case of swordfish except for two points 1) the drop of environmental factors of TG and SG (Oceanic front of temperature and salinity, respectively) according to a lot of missing values in specific area especially in areas 5 and 6 (Figure 1), and 2) the changing sampled depth of temperature and salinity from the 45 m depth to the 205 m depth in accordance with the difference of the habitat depth of the two species (Table 1).

#### GLM analysis

The effects main (year, area and quarter) and environmental factors on bigeye catch were assessed using GLM procedure of SAS software (vers. 9.1, SAS Inst., Inc.). We intended to select the final model after variable selection with backward stepwise F test with a criterion of P-value = 0.05, however there was no drop of variable, therefore the full model was the final model. The details of this model are as follows;

Log (CPUE + c) = mean + yr + qua + area + main\_line + branch + CNHBF + environmental factors + interaction + error

where,

| c:                                   | constant (10 % of the nominal CPUE (number 1000 hooks <sup>-1</sup> ) |  |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| yr:                                  | year effect                                                           |  |  |  |  |
| qua:                                 | quarter effect                                                        |  |  |  |  |
| area:                                | sub area effect (see Figure 1)                                        |  |  |  |  |
| main_line:                           | effect of material of main line (nylon or others)                     |  |  |  |  |
| branch:                              | effect of material of branch line (nylon or others)                   |  |  |  |  |
| CNHBF:                               | categorized number of hooks between floats (NHBF)                     |  |  |  |  |
|                                      | 7>=NHBF>=5 as CNHBF=1, 10>=NHBF>=8 as CNHBF=2,                        |  |  |  |  |
|                                      | 13>=NHBF>=11 as CNHBF=3, 16>=NHBF>=14 as CNHBF=4,                     |  |  |  |  |
|                                      | 19>=NHBF>=17 as CNHBF=5, 21>=NHBF>=20 as CNHBF=6 and                  |  |  |  |  |
|                                      | otherwise CNHBF=7.                                                    |  |  |  |  |
| environmental factors: (see Table 1) |                                                                       |  |  |  |  |
| Interaction:                         | yr*qua, yr*area, qua*area, qua*main_line, area*main_line,             |  |  |  |  |
|                                      | area*branch, main_line*branch, qua*CNHBF, area*CNHBF,                 |  |  |  |  |
|                                      | T205*qua, S205*qua, TD*qua, T205*area, S205*area, TD*area,            |  |  |  |  |
|                                      | SC*qua, AM*qua, SC*area, AM*area, qua*branch, mp*qua, mp*area,        |  |  |  |  |

ioi\*qua and ioi\*area

## Abundance Index

The annual nominal and standardized CPUE were calculated from the weighted average of the area indices. The weighting factors from area 1 to 7 are 0.0699, 0.0973, 0.1478, 0.1506, 0.1666, 0.1033, and 0.2645, respectively.

#### Results

The summary of the final model was shown in Table 2. Distribution of the standard residual was shown in Figure 2. In terms of composition of F value by the "category" in Table 2 represented the level of affecting nominal bigeye CPUE by categories (Figure 3). The strongest effects were found in the factors related to temperature, salinity and thermocline depth (env\_at\_catch), which explained 30.3 % of variance in the final model. The next and third dominant factors were shear current associated factors (22.5 %) and main effects (19.5%; year, area and quarter), respectively. The large effects of environmental factors on nominal CPUE rather than the main factors are not observed in the CPUE standardization based on 5 by 5 degrees, which are similar to the results of swordfish.

The annual changes of three abundance indices of the nominal and the standardized CPUE based on 1 by 1 degree (this study) and the standardized CPUE based on 5 by 5 degrees (Okamoto et al 2009) were compared (Table 3, Figure 4). The general trends of three indices were similar, which were downward from 1980 to 2001 and then became slightly upward. However, the large fluctuation during 1980's and early 1990's in the nominal CPUE was smoothed in two standardized indices. The standardized CPUE series by area and by quarter (but area weighting was not applied) were shown in Figure 5.

# Acknowledgments

We thank Dr Marsac (IRD, France) providing the IOI data.

## Literature cited

- Nishida T, Wan Sheng-Ping. 2009 Estimation of the Abundance Index (AI) of swordfish (*Xiphias gladius*) in the Indian Ocean based on the fine scale catch and effort data in the Japanese tuna longline fisheries (1980-2007). IOTC-2009-WPB7-08. 1 -14.
- Okamoto H, Satoh K, Shono H. 2009. Japanese longline CPUE for bigeye tuna in the Indian Ocean up to 2008 standardized by GLM. IOTC-2009-WPTT11-05. 1- 21.

| Table 1 Summary of the input data (catch, effort and environmental data) |                                                                                                 |                        |                                                        |                                 |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------|---------------------------------|--|
| Code                                                                     | Meaning                                                                                         | Resolution             | Unit                                                   | Sources                         |  |
| catch and effort                                                         | catch and effort                                                                                | day<br>1 by 1 degree   | catch; number<br>of fish<br>effort; number of<br>hooks | NRIFSF, Japan                   |  |
| MP                                                                       | moon phase                                                                                      | Day                    | 0 (new moon) to<br>29.7(full of the<br>moon)           | Japan<br>Metrological<br>Agency |  |
| IOI                                                                      | Indian Ocean Index<br>(difference of the<br>atmospheric pressure<br>between Mahe and<br>Darwin) | Month                  | hPa<br>( hectopascal )                                 | Marsac (IRD,<br>France)         |  |
| T205                                                                     | temperature at 205 m                                                                            |                        | °C                                                     |                                 |  |
| S205                                                                     | salinity at 205 m                                                                               |                        | PSU<br>(Practical<br>Salinity Unit)                    | NOAA, USA<br>(NCEP)             |  |
| TD                                                                       | thermocline depth                                                                               |                        | °C                                                     | compiled from<br>NCEP           |  |
| SC                                                                       | shear current<br>(current integrated<br>from 5 to 205 m)                                        | month<br>1 by 1 degree | cm s <sup>-1</sup>                                     |                                 |  |
| AM                                                                       | Amplitudes of the SC<br>(different between<br>minimum and<br>maximum water<br>column sampled)   |                        | cm s <sup>-1</sup>                                     | NOAA, USA<br>(NCEP)             |  |

| Table 2 Results of the final model. The abbreviation of "env_at _catch" means the environmental |        |           |        |        |        |  |
|-------------------------------------------------------------------------------------------------|--------|-----------|--------|--------|--------|--|
| at catch.                                                                                       |        |           |        |        |        |  |
| Source                                                                                          | DF     | Adj SS    | Adj MS | F      | Р      |  |
| Model                                                                                           | 458    | 179246.96 | 391.37 | 574.37 | <.0001 |  |
| Error                                                                                           | 462956 | 315453.80 | 0.68   |        |        |  |
| Corrected Total                                                                                 | 463414 | 494700.75 |        |        |        |  |

| R-Square | Coeff Var | Root MSE | Icpue Mean |
|----------|-----------|----------|------------|
| 0.362    | 59.256    | 0.825    | 1.393      |

| Table 2 Continued |     |         |        |        |        |                |
|-------------------|-----|---------|--------|--------|--------|----------------|
| Source            | DF  | Adj SS  | Adj MS | F      | Р      | category       |
| yr                | 28  | 4986.16 | 178.08 | 261.34 | <.0001 | main_factors   |
| qua               | 3   | 45.48   | 15.16  | 22.25  | <.0001 | main_factors   |
| area              | 6   | 1486.83 | 247.80 | 363.67 | <.0001 | main_factors   |
| yr*qua            | 84  | 2829.36 | 33.68  | 49.43  | <.0001 | main_factors   |
| yr*area           | 168 | 8512.05 | 50.67  | 74.36  | <.0001 | main_factors   |
| qua*area          | 18  | 3192.88 | 177.38 | 260.32 | <.0001 | main_factors   |
| T205              | 1   | 348.05  | 348.05 | 510.79 | <.0001 | env_at_catch   |
| S205              | 1   | 45.28   | 45.28  | 66.46  | <.0001 | env_at_catch   |
| TD                | 1   | 35.03   | 35.03  | 51.42  | <.0001 | env_at_catch   |
| T205*qua          | 3   | 81.76   | 27.25  | 40.00  | <.0001 | env_at_catch   |
| S205*qua          | 3   | 45.30   | 15.10  | 22.16  | <.0001 | env_at_catch   |
| TD*qua            | 3   | 401.06  | 133.69 | 196.20 | <.0001 | env_at_catch   |
| T205*area         | 6   | 384.26  | 64.04  | 93.99  | <.0001 | env_at_catch   |
| S205*area         | 6   | 1514.58 | 252.43 | 370.46 | <.0001 | env_at_catch   |
| TD*area           | 6   | 1020.48 | 170.08 | 249.61 | <.0001 | env_at_catch   |
| SC                | 1   | 51.53   | 51.53  | 75.62  | <.0001 | shear_current  |
| AM                | 1   | 540.29  | 540.29 | 792.92 | <.0001 | shear_current  |
| SC*qua            | 3   | 52.83   | 17.61  | 25.84  | <.0001 | shear_current  |
| AM*qua            | 3   | 20.68   | 6.89   | 10.11  | <.0001 | shear_current  |
| SC*area           | 6   | 591.50  | 98.58  | 144.68 | <.0001 | shear_current  |
| AM*area           | 6   | 582.91  | 97.15  | 142.58 | <.0001 | shear_current  |
| mp                | 1   | 371.56  | 371.56 | 545.29 | <.0001 | moon_phase     |
| mp*qua            | 3   | 9.57    | 3.19   | 4.68   | 0.0028 | moon_phase     |
| mp*area           | 6   | 80.94   | 13.49  | 19.80  | <.0001 | moon_phase     |
| main_line         | 1   | 138.20  | 138.20 | 202.82 | <.0001 | line_materials |
| branch            | 1   | 60.50   | 60.50  | 88.79  | <.0001 | line_materials |
| main_line*branch  | 1   | 86.26   | 86.26  | 126.59 | <.0001 | line_materials |
| qua*main_line     | 3   | 76.16   | 25.39  | 37.26  | <.0001 | line_materials |
| area*main_line    | 6   | 160.16  | 26.69  | 39.18  | <.0001 | line_materials |
| qua*branch        | 3   | 31.17   | 10.39  | 15.25  | <.0001 | line_materials |
| area*branch       | 6   | 102.50  | 17.08  | 25.07  | <.0001 | line_materials |
| CNHBF             | 6   | 651.59  | 108.60 | 159.38 | <.0001 | targeting      |
| qua*CNHBF         | 18  | 988.51  | 54.92  | 80.60  | <.0001 | targeting      |
| area*CNHBF        | 36  | 1508.83 | 41.91  | 61.51  | <.0001 | targeting      |
| ioi               | 1   | 19.49   | 19.49  | 28.61  | <.0001 | ioi            |
| ioi*qua           | 3   | 17.10   | 5.70   | 8.37   | <.0001 | ioi            |
| ioi*area          | 6   | 94.63   | 15.77  | 23.15  | <.0001 | ioi            |

| Table 3 Annual changes of abundance indices of<br>Japanese longline in the Indian Ocean |          |              |              |  |  |  |
|-----------------------------------------------------------------------------------------|----------|--------------|--------------|--|--|--|
| Vr                                                                                      | nominal  | standardized | standardized |  |  |  |
| yr                                                                                      | (1 by 1) | (1 by 1)     | (5 by 5)     |  |  |  |
| 1980                                                                                    | 1.481    | 1.446        | 1.270        |  |  |  |
| 1981                                                                                    | 1.269    | 1.284        | 1.126        |  |  |  |
| 1982                                                                                    | 1.641    | 1.321        | 1.279        |  |  |  |
| 1983                                                                                    | 1.679    | 1.348        | 1.349        |  |  |  |
| 1984                                                                                    | 1.379    | 1.243        | 1.060        |  |  |  |
| 1985                                                                                    | 1.386    | 1.144        | 0.964        |  |  |  |
| 1986                                                                                    | 1.440    | 1.316        | 1.107        |  |  |  |
| 1987                                                                                    | 1.588    | 1.363        | 1.379        |  |  |  |
| 1988                                                                                    | 1.404    | 1.265        | 1.159        |  |  |  |
| 1989                                                                                    | 1.261    | 1.233        | 1.055        |  |  |  |
| 1990                                                                                    | 1.785    | 1.231        | 1.000        |  |  |  |
| 1991                                                                                    | 0.932    | 1.074        | 0.971        |  |  |  |
| 1992                                                                                    | 0.702    | 0.951        | 0.932        |  |  |  |
| 1993                                                                                    | 0.883    | 1.026        | 0.950        |  |  |  |
| 1994                                                                                    | 0.877    | 1.006        | 0.883        |  |  |  |
| 1995                                                                                    | 0.810    | 1.032        | 0.847        |  |  |  |
| 1996                                                                                    | 0.755    | 1.010        | 0.832        |  |  |  |
| 1997                                                                                    | 0.715    | 0.786        | 0.718        |  |  |  |
| 1998                                                                                    | 0.711    | 0.920        | 0.822        |  |  |  |
| 1999                                                                                    | 0.744    | 0.915        | 0.773        |  |  |  |
| 2000                                                                                    | 0.692    | 0.884        | 0.703        |  |  |  |
| 2001                                                                                    | 0.640    | 0.714        | 0.640        |  |  |  |
| 2002                                                                                    | 0.583    | 0.608        | 0.556        |  |  |  |
| 2003                                                                                    | 0.589    | 0.582        | 0.626        |  |  |  |
| 2004                                                                                    | 0.605    | 0.650        | 0.719        |  |  |  |
| 2005                                                                                    | 0.535    | 0.673        | 0.676        |  |  |  |
| 2006                                                                                    | 0.541    | 0.657        | 0.628        |  |  |  |
| 2007                                                                                    | 0.698    | 0.712        | 0.634        |  |  |  |
| 2008                                                                                    | 0.673    | 0.606        | 0.633        |  |  |  |

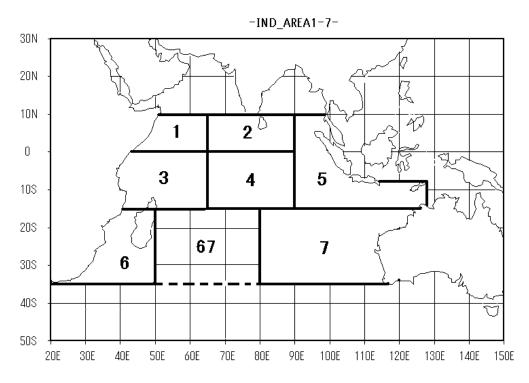



Figure 1 Area definition for the standarzation of Japanese longline CPUE in the Indian Ocean

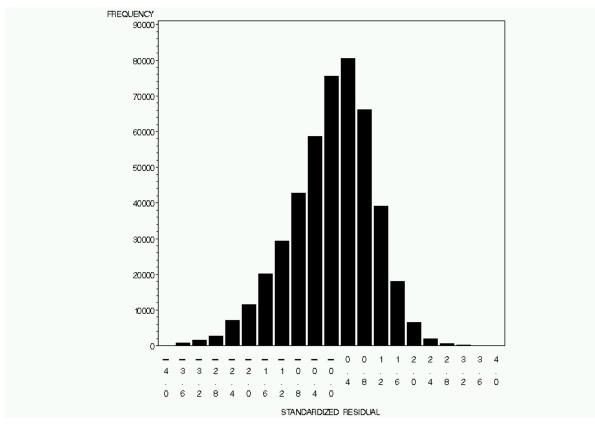



Figure 2 Standardized residuals of year based standardization expressed as histograms

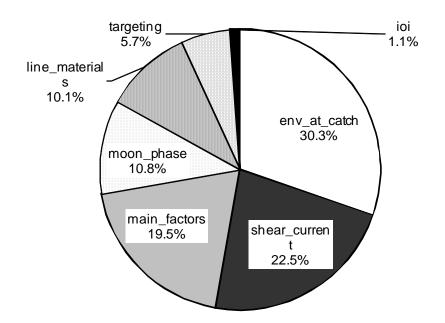



Figure 3 Factors affecting the bigeye nominal CPUE in terms of compositions of standardized F statistics



Figure 4 Comparison of three CPUE series of bigeye. Standardized CPUE based on 1 by 1 (open square), nominal CPUE 1 by 1 (solid line without marker), and standardized CPUE 5 by 5 (solid triangle) of Japanese longline in the Indian Ocean

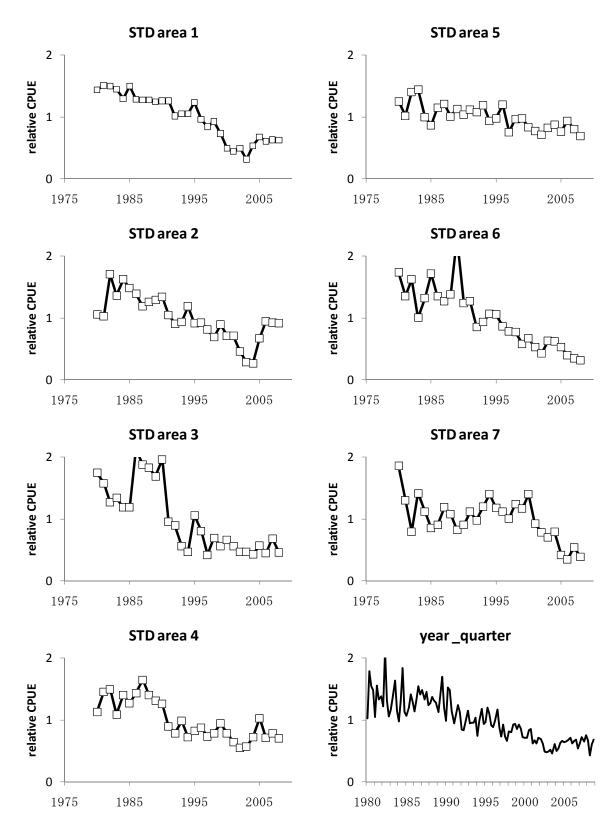



Figure 5 Standardized series by area of bigeye of Japanese longline in the Indian Ocean. Quarter based time series (lower right panel).