
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Fisheries Research 100 (2009) 200–209

Contents lists available at ScienceDirect

Fisheries Research

journa l homepage: www.e lsev ier .com/ locate / f i shres

Comparing three indices of catch per unit effort using Bayesian geostatistics

Júlio César Pereiraa,b,∗, Roseli Aparecida Leandroa, Miguel Petrere Jr. c, Tom Nishidad

a UFSCAR, Campus Sorocaba, Rodovia João Leme dos Santos, km 110, CEP 18052-780, Sorocaba (SP), Brazil
b ESALQ/USP, Departamento de Ciências Exatas, CP 9, 13418-900 Piracicaba (SP), Brazil
c UNESP, Departamento de Ecologia, CP 199, 13506-900 Rio Claro (SP), Brazil
d National Research Institute of Far Seas Fisheries, Fisheries Research Agency, 5-7-1, Orido, Shimizu-Ward, Shizuoka, 424-8633, Japan

a r t i c l e i n f o

Article history:
Received 10 February 2009
Received in revised form 26 July 2009
Accepted 28 July 2009

Keywords:
Simulation
Geostatistics
CPUE
Estimation
Linear coregionalization

a b s t r a c t

In assessing a fish stock, indices based on catch per unit effort (CPUE) are frequently used. Estimates
of three indices of catch per unit effort were compared here (CPUE1, CPUE2 and CPUE3), considering
the fitting of two models: (i) a bivariate geostatistical model for catch and effort; (ii) a bivariate model
where catch and effort were considered spatially independent. For comparing the estimates of the three
indices after the fitting of the two models, catch and effort data were simulated in different scenarios.
The simulation study showed that, in general, the estimates of CPUE1 expressed by the ratio of the means
of catch and effort, present better results for different scenarios and that the estimates from (i) are better
than (ii), mainly when there is a correlation between catch and effort and an additional spatial correlation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

To evaluate a fish stock, data of catch and effort resulting from
commercial fishing are usually used in heuristic relationships.
Based on catch and effort data, indices of relative abundance are
calculated in order to supply information about the stock. In a
given inhabited area by a given stock, if the density (or concen-
tration) of fish (biomass/volume) is constant for the whole area the
CPUE is proportional to stock abundance (strict proportionality)
(Clark, 1985). In some cases this relationship might not be linear.
The examination of this relationship is not the main theme of this
paper. However, in the light of this paper for any supposed model
the relationship CPUE × abundance, it is necessary to estimate the
CPUE in order to evaluate the abundance.

Detailed records, with information on the geographic coordi-
nates where fishing occurred allow a spatial analysis of fishing.
Normally a point of reference is given for each quadrat (sub-regions
delimited by parallels and meridians) where fishing occurred
(ICCAT, 2007).
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Based on catch × effort data, three CPUE indices may be defined
for a whole area:

CPUE1 = 1
n

n∑
i=1

Ci

Ei
; mean of the ratios catch by effort;

CPUE2 =
∑n

i=1Ci∑n
i=1Ei

; ratio of total catch by total effort;

CPUE3 =
∑n

i=1CiEi∑n
i=1E2

i

; ratio estimator

as proposed by Snedecor and Cochran (1967),where Ci, i = 1, 2, . . ., n,
represents the catch in the ith quadrat and Ei the respective effort,
n is the total number of quadrats superposed as an artificial grid in
the fishing area.

The three indices may be described as Ci/Ei averages distin-
guished by the weighing criteria, that is

∑n
i=1(Ci/Ei)wi. In CPUE1

the weighing factor is wi = 1/n; in CPUE2 it is wi = Ei/(
∑n

j=1Ej)

and in CPUE3 we have wi = E2
i
/(

∑n
j=1E2

j
).

Whenever C (Capture) be proportional to E (Effort), the regres-
sion line between them statistically goes through the origin, and
can be fitted by the simple model Ci = ˇEi + εi. CPUE3, together with
CPUE1 and CPUE2, are all unbiased estimates of the population
ratio ˇ in normally distributed populations. The choice among the
three is a matter of precision: the most precise among the three
is CPUE3, CPUE2 and CPUE1 if the variance of ε (error term) is
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constant, proportional to E or to E2, respectively. If the variance
of ε increases moderately with E, CPUE2 is still expected to per-
form well (Petrere Jr. et al., 2008). Data on catch and effort are
usually not available for all quadrats to establish these indices,
in other words, not all quadrats are fished. In this situation, a
possibility of estimation is simply to use the observed data. This
might not be the best option. According to Walters (2003), if a
spatial correlation structure between catch rates is found, spatial
statistics can be used for extrapolation to grid squares where no
fishing took place, before calculating any abundance index. More-
over, this author claims that covariates such as water temperature
can be used to provide estimates of the spatial trend. The oceanic
surface temperature is an important covariate, as several studies
show that it is correlated with CPUE (Dow et al., 1975; Dow, 1980;
Evans et al., 1995; Fonteneau, 1995; Lima et al., 2000; Goodyear,
2003).

In this work a model was utilized for the variables catch and
effort, whose covariance structure is described by a model of linear
coregionalization (Gelfand et al., 2004), from now on this model
will be called special bivariate model (SBM). This was one of the
models investigated in the spatial analysis of catch and effort data.
The choice was based on observations of Walters (2003) on the
use of spatial statistical techniques and covariates and also taking
into consideration that in practice the observed data are bivariate
(catch and effort) (ICCAT, 2007), besides other characteristics that
are inherent to certain fishing data sets, e.g., the existence of spatial
correlation (Swain and Wade, 2004; Walters, 2003), relationship
between catch and effort and that the effort can be considered ran-
dom since it may depend, for example, on the commercial value
of the target species, time of year, climate conditions, sea surface
temperature, perception of fishermen of a fish stock (observation
or non-observation), information from other fishermen (Sanchéz et
al., 2004; Walters and Martell, 2004; Hilborn and Walters, 1992).
Besides describing the structure of covariance between variables
catch and effort and the spatial correlation, the model SBM shapes
the structure of the cross covariance, i.e., the covariance between
the effort at any location si and catch at location sj, and vice versa.
In other words, the observations (Ei, Ci) are treated as a sample of a
bivariate spatial process. A fitting of the proposed model makes the
extrapolation of catch and effort possible to quadrats that were not
observed. Besides the linear coregionalization model, it was fitted a
bivariate model was fitted in which catch and effort are considered
spatially independent, from now on called bivariate model without
spatial component (BMWSC).

Since the CPUE indices are used in the assessment of fish stocks it
is important to assess the performance of the three indices (CPUE1,
CPUE2 or CPUE3) in different scenarios. Above all, it is essential to
use methods that estimate each index accurately. Petrere Jr. et al.
(2008) conducted a simulation study to compare CPUE1, CPUE2 and
CPUE3. However, these indices were not studied in the presence of
spatial correlation.

We suggest that the indices CPUE1, CPUE2 and CPUE3 be esti-
mated as follows: by extrapolation of catch and effort to unfished
quadrats; for this purpose one of the above models was adjusted,
according to the Bayesian approach; after the extrapolation the
indices CPUE1, CPUE2 and CPUE3 were estimated based on the data
set consisting of observed and predicted values.

The objectives of this study were:

(i) to compare the statistical behavior of the estimates of three
indices (CPUE1, CPUE2 and CPUE3), estimated when using the
SBM model, based on simulated data sets of different scenarios;

(ii) to compare the estimates calculated through the interpolation
of catch and effort in those not observed quadrats using the
SBM and BMWSC models.

2. Materials and methods

The geostatistical techniques used here assume that the vari-
ables to be modelled follow normal distribution. The distributions
of variables catch and effort are generally asymmetrical and in
many cases the logarithmic transformation is sufficient to correct
the lack of normality (Abuabara, 1996; Sanchéz et al., 2004). To per-
form the simulation study it was therefore assumed that catch and
effort follow normal distribution in the logarithmic scale. In the fol-
lowing we describe the utilized models in the simulation studies
and the inference procedures.

2.1. Spacial bivariate model (SBM)

When using Gelfand et al. (2004) model, the catch and effort
observations across a region are treated as a sample from a bivariate
spatial process. The proposed model, easily interpretable and com-
puter processable, creates a structure of flexible covariance, where
the ranges (i.e., the distance beyond which there is practically no
spatial correlation between data points) associated with the vari-
ate are not necessarily the same. The authors show that there is an
equivalence, based on reparametrization of the conditional speci-
fication given by Eq. (1) and the unconditional specification of the
model.

Clearly there is a cause/effect between effort /catch. So when
conditioning the model effort comes first, then capture. So, the
logarithm of the fishing effort (Y1) is modelled first and then the
logarithm of catch, given by the logarithm of effort:

Y1(s) = ˇ01 + ˇ11temp(s) + �1w1(s)
Y2(s)

∣∣Y1(s) = ˇ02 + ˇ12temp(s) + ˛Y1(s) + �2w2(s) + �2u2(s),
(1)

where temp(s) represents the temperature at location s, w1(s) and
w2(s) are Gaussian spatial processes with mean zero and variance
1, independent, but not identically distributed, and u2(s) has dis-
tribution N(0,1). The term ˇ01 + ˇ11temp(s) in Eq. (1) determines
the expected value of the logarithm of effort for a location s and
ˇ02 + ˇ12temp(s) + ˛(ˇ01 + ˇ11temp(s)), determines the expected
value of the logarithm of capture. �1w1(s) and ˛�1w1(s) + �2w2(s)
accounts for spatial correlation in these quantities (effort and catch,
respectively). The term �2u2(s) is responsible for microescale vari-
ation (nugget effect).The adopted correlation function was the
exponential �(d)=exp(−�d), with parameter �1 for Y1 and �2 for Y2,
where d is the distance between any two points s, s′. The parameter
�, expresses how quickly the correlation drops to zero.

The use of conditional specification; the model for Y1(s) must not
have a white noise component to ensure equivalence. The model
written in its conditional form may have a pure nugget effect in the
first equation. This occurs when spatial correlation is practically
null, albeit in its presence, that is, when the correlation function
parameter of the first equation (effort equation) is positive, we
have for this equation a pure spatial effect. The remaining varia-
tion is inherited from the second equation, as in this equation Y2(s)
is written in function of Y1(s).

Considering the model in its conditional form we have a
large computational advantage, since instead of dealing with one
covariance matrix 2n × 2n, two covariance matrices n × n are used
(Gelfand et al., 2004).

Given any location s, it may be shown that the correlation
between Y1(s) (logarithm of effort) and Y2(s) (logarithm of catch) is
given by

�Y1,Y2 = ˛�2
1√

�2
1 (˛2�2

1 + �2
2 )

(2)

in which ˛�2
1 is the covariance between Y1(s) and Y2(s), �2

1 is the
variance of Y1(s) and ˛2�2

1 + �2
2 is the variance of Y2(s).
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2.2. Bivariate model without spatial component (BMWSC)

In the simulation study besides SBM the BMWSC described in Eq.
(3), which considers catch and effort as correlated with each other,
but independent in space. This model was adjusted to determine
the effect on the index estimates of CPUE1, CPUE2 and CPUE3, when
the spatial correlation is not considered.

Y1(s) = ˇ′
01 + ˇ′

11temp(s) + �
′
1u1(s)

Y2(s)|Y1(s) = ˇ′
02 + ˇ′

12temp(s) + ˛′Y1(s) + � ′
2u2(s)

(3)

where u1(s) and u2(s) are independent and follow distribution
N(0,1).

Model of Eq. (3) is a particular case of model of Eq. (1), i.e., taking

the correlation function �(s − s′) =
{

0 if s /= s′

1 if s = s′ for process Y1(s) in

model of Eq. (1) with �2 = 0 leads to model of Eq. (3).

2.3. Inference procedure

The inference procedure which will be presented was utilized
in both models (SBM and BMWSC). But it shall be pointed out that
the correlation function parameters is ignored for BMWSC.

2.3.1. Prior distributions for the parameters
When using the Bayesian approach the incertainty of the

unknown quantities in the model must be specified, this can be
done by choosing a prior distribution for vector � of parame-
ters of the model must be specified. These distributions possibly
depend of other parameters, but as they are not the main model
parameters they are called hyper-parameters. Banerjee et al. (2004)
suggested the use of informative priors for the parameters �2

and �. As it is usual in the literature, to the parameters �2
1 , �2

2
and �2

1 , inverted gamma a prior densities are attributed, that is,
�2

1∼IG(a�1 , b�1 ), �2
2∼IG(a�2 , b�2 ) and �2

2∼IG(a�2 , b�2 ). For param-
eters �1 and �2, of the exponential correlation function, for
the variables effort and catch, the same a prior gamma density
was assumed, �1∼G(a�1

, b�1
), �2∼G(a�2

, b�2
) and, the hyper-

parameters were obtained by resolving the equations E(�j) =
6/ max .dist = 0.05 and var(�j) = 20, j = 1, 2 (large variance), where
max.dist is the maximum distance between the observed loca-
tions, whose value is about 12. This prior reflects the fact that, as
expected, for distances greater than max .dist/2 the spatial corre-
lation is approximately zero (Schmidt and Gelfand, 2003; Banerjee
et al., 2004; Paez et al., 2005). To the parameter vectors �1 and �2 a
normal prior density with covariance matrix of �2

ˇ
I was attributed

where the �2
ˇ

value was fixed at 100 (flat prior). The parametriza-
tion of the prior distributions used is this work is in agreement with
Gelman et al. (2003).

2.3.2. Likelihood function
Considering the model in Eq. (1) the likelihood function can be

written as the likelihood product for Y1 and of likelihood for Y2. The
likelihood for Y1 is given by

L(ˇ1, �1, �2
1 |y1) = (2�)−n/2|�2

1 R1|−1/2

exp
{

−1
2

[y1 − X1�1]T [�2
1 R1]

−1
[y1 − X1�1]

}
(4)

where X1 is the design matrix for Y1, X1 is an n × 2 matrix whose first
column is composed by 1s and the second by temp(si), i = 1, 2, . . ., n,
i.e., by the temperature readings in each quadrat. ˇ1 = [ˇ01 ˇ11]T

is the vector of coefficients of the covariates. R1 is a correlation
matrix for the variate Y1, and its elements are as (R1)ii′ = �1(si −
si′ ) = exp(−�1|si − si′ |).

The likelihood function for Y2 is given by

L(ˇ2, �2, �2
2 , �2

2 |y2, y1) = (2�)−n/2|�2
2 R2 + �2

2 I|−1/2

exp
{

−1
2

[y2 − X2ˇ2]T [�2
2 R2 + �2

2 I]
−1

[y2 − X2ˇ2]
}

(5)

where X2, n × 2, is the design matrix for Y2, identifies the X1,
matrix and ˇ2 = [ˇ02 ˇ12]T is the vector of coefficients of the
covariates. R2 is the correlation matrix for the variable Y2, where
(R2)ii′ = �2(si − si′ ) = exp(−�2|si − si′ |).

2.3.3. Posterior distributions for the parameters
In the Bayesian context inferences are based on the posterior

distribution of the parameters. Due to the independence of the like-
lihoods given in Eqs. (4) and (5) and the prior parameters, the joint
a posterior distribution for the parameters of model Eq. (1) is given
by the product of the distributions

�(ˇ1, �1, �2
1 |y1) ∝ L(ˇ1, �1, �2

1 |y1)p(ˇ1)p(�1)p(�2
1 ) (6)

and

�(ˇ2, �2, �2
2 , �2

2 |y2, y1)

= L(ˇ2, �2, �2
2 , �2

2 |y2, y1)p(ˇ2)p(�2)p(�2
2 )p(�2

2 ) (7)

where the likelihood functions are given by Eqs. (4) and (5) and the
prior distributions as described above.

Since the posterior distributions (6) and (7) do not have a defini-
tive analytical form, methods MCMC (Gamerman and Lopes, 2006)
were used to obtain a sample of the joint a posterior distribution of
the parameters. More specifically, in these cases the Gibbs sampler
with steps of Metropolis–Hastings can be used, since the complete
conditional posterior distribution of some parameters is known and
of others not. In Appendix A, the complete conditional a poste-
rior distributions are shown for the parameters of model Eq. (1),
required for the computational implementation of the algorithms
MCMC.

Samples of the joint distribution were obtained using the com-
puter program WinBugs (Spiegelhater et al., 2002). Chains (size
55,000) were used and the 5000 first samples were discarded (burn-
in). Thereafter, the observations were stored 50 by 50 (thinning)
to minimize problems of autocorrelation between samples. The
convergence of the chains was verified by graphic trace analysis.

2.3.4. Predictive distribution
The prediction of future observations, based in the already

observed values is done through the predictive distribution. Supos-
ing that we want to make a prediction for a set of K places, Su = {su1,
su2, . . ., suK}, one may form a vector of the variable in the predicted
points Yu = (Y(su1), Y(su2), ...,Y(suK))′ and so obtaining the predictive
distribution (Yu|Y) given by:

p(Yu|Y ) =
∫

�

p(Yu|Y, �)p(�|Y )d� (8)

in which p(Yu|Y,�) is the conditional Yu distribution given Y and
�, p(�|Y) is the a posterior distribution of �, being � the parame-
ters vector of the model associated to the variable which we want
predict. In this context the integral of Eq. (8) has no analytic solu-
tion. So Monte Carlo methods (Gamerman and Lopes, 2006) may be
employed in order to obtain samples from the predictive distribu-
tion. In this way effort and catch samples were obtained from their
predictive distributions and the CPUE1, CPUE2 and CPUE3 predic-
tive distributions were obtained.
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Fig. 1. Surface of temperature simulated values.

2.4. Simulation study

The three indices (CPUE1, CPUE2 and CPUE3) were evaluated
and the obtained estimates after the fitting of each model were
compared in a simulation study. A grid was created with 100 reg-
ular points (10 × 10) to represent a (hypothetical) ocean region. At
these points values for sea surface temperature (covariate) were
simulated, considering that there is a gradient in the north–south
direction. A gradient was assumed along which the temperature
values increase according to the shift from south to north. Thus, we
simulated temperature data in a range from 10 to 25 ◦C. In Fig. 1
it is shown the chart of the simulated temperature in the 10 × 10
grid.

The logarithm values of fishing effort (Y1) and catch, given the
logarithm of effort (Y2|Y1), were associated with the regular grid
points. These values were directly simulated by the model SBM.
When data of model SBM are simulated they generate data of catch
and effort on a logarithmic scale, since here it is assumed that the
data distribution of effort and catch is normal after a logarithmic
transformation. To obtain simulated data of catch and effort it is
therefore enough to apply the exponential function to the simu-
lated data of model SBM. The software package geoR (Ribeiro and
Diggle, 2001) of the statistical environment R (R Development Core
Team, 2007) was used for data simulation.

When catch and effort data are collected, these variables may
present different correlation intensities, and may also being or not
being spatially correlated. So, depending on the intensity of the
correlation between the two variables and of presence/absence of
spatial correlation, we may have different sceneries for a data set.
So the catch and fishing effort data were simulated in the following
scenarios:

(a) considering a low correlation between the logarithm of catch
and effort �Y1,Y2 = 0.3, reflecting a high uncertainty of the

Table 1
Parameters of the model SBM used to generate the data set in each scenario.

Scenario Parameters

ˇ01 ˇ11 ˇ02 ˇ12 ˛ �2
1 �2

2 �2
2 �1 �2

(a) 2 0.25 0 0.35 0.28 2.3 1.8 0.1 6 5.5
(b) 2 0.25 0 0.35 1.2 2.3 1.8 0.1 6 5.5
(c) 2 0.25 0 0.15 0.28 2.3 1.8 0.1 0.45 0.5
(d) 2 0.25 0 0.15 1.2 2.3 1.8 0.1 0.45 0.5

fisherman, and considering a low spatial correlation of the
data, resulting in an effective range of 0.5 units of distance for
effort (value solving the equation �(d) = exp(−�1d) = 0.05) and
0.54 for catch (obtained by Newton’s method, the equation of
weighted correlation described by Gelfand et al. (2004)).

(b) considering a high correlation between catch and effort of
�Y1,Y2 = 0.8, which reflects a less uncertainty of the fisherman,
and considering the low spatial correlation of the data, which
leads to an effective range of 0.5 units of distance for the effort
and 0.52 for catch.

(c) considering a low correlation between catch and effort �Y1,Y2 =
0.3, and considering a strong spatial correlation of the data,
which leads to an effective range of 6.67 units of distance for
effort and 6.05 for catch.

(d) considering a high correlation between catch and effort of
�Y1,Y2 = 0.8 and considering a strong spatial correlation of the
data, which leads to an effective range of 6.67 units of distance
for effort and 6.43 for catch.

In Table 1 the parameters used for simulating the data in each
scenario are presented. Fig. 2 the graphs of the exponential correla-
tion function are presented in two situations, considering a strong
space correlation (� = 0.5) and a low spatial correlation (� = 6). In the
first case (Fig. 2(a)) the correlation falls slowly with the increasing
of the distance that is, the range of the spatial correlation is higher,
while in the second case (Fig. 2(b)) the correction falls quickly.

In Fig. 3 are shown the relationships between the logarithm of
effort and the logarithm of the catch for each simulated scenario.

A Thomas process (Reis, 1998) was then generated for the region
under study (100-point grid), resulting in an aggregate spatial
pattern, to represent the spatial distribution of locations of occur-
rence of fishing (Anganuzzi, 2004). For this purpose, the function
rThomas() of the software package spatstat (Baddeley and Turner,
2005) of the statistical environment R (R Development Core Team,
2007) was used. The points generated by this process dropped in
85 quadrats whose central points were represented by “•” in Fig. 4.
These 85 locations with temperature, catch and effort data were
considered as observed data, which were used to adjust the model.
In the 15 numbered locations the simulated data were omitted
when fitting the models, in order to later on to predict the catch
and effort values in these and so obtaining the estimates of the
three indices CPUE1, CPUE2 and CPUE3 using the predict values.

Fig. 2. Exponencial correlation function with para meters � = 0.5 (a) and � = 6 (b).
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Fig. 3. Relationship between capture and effort for one realization of scenarios (a), (b), (c) and (d).

The values of CPUE1, CPUE2 and CPUE3, where obtained from
the simulated data set (E(si),C(si)), i = 1, 2, . . ., 100. For each sce-
nario (a)–(d) 50 data sets were simulated. In this way, 50 true values
were obtained of CPUE1, CPUE2 and CPUE3, for each scenario; that
is, in the iı̌th simulation it was obtained for the region of Fig. 4,
CPUE1l, CPUE2l e CPUE3l, l = 1,2, . . ., 50. For each of these sets, as
previously described, 85 locations (Fig. 4) in the region were consid-
ered observed locations (measured locations as denominated in the
geostatistical literature), and 15 locations were considered unob-
served (unmeasured). For each of the data sets SBM and BMWSC
models were adjusted. The program WinBUGS 1.4.3 was used to
obtain the samples of the joint posterior parameters distribution of
these models.

2.4.1. Estimation of the CPUE indices and the comparison criteria
After the adjustment of each model, the predictive distribution

values of catch and effort were obtained for unobserved locations.
Thereafter, the rates CPUE1, CPUE2 and CPUE3 were estimated for
each simulated data set. For obtaining the estimates it were con-
sidered the data set of “observed values” and values predicted at
“unobserved locations”.

Fig. 4. Observed locations “•” and unobserved locations (numbered).

In the Bayesian approach, there is an a posterior sample for the
indices, i.e, for each iteration of the MCMC method, an estimate is
obtained for each of the indices CPUE1, CPUE2 and CPUE3. To com-
pare the estimates, a punctual estimative was considered, given by
the median of the posterior sample.

To obtain an estimate for each index, a data set was com-
posed of m pairs of catch and effort, derived from an observed
sample and by K pairs of predicted catch and effort (for unob-
served locations) by the adjusted model. The result was a set of
m + K = n pairs of catch and effort. Replacing this set in the formula
of each index generates an estimate for each index. For example,
CPUE1est = (1/(m + K))

∑m+K
i=1 Ci/Ei is a predictor of index CPUE1. As

we adjusted two models (SBM and BMWSC) to each simulated data
set, it was obtained for each index two different estimates: CPUE1

SBMl, CPUE2 SBMl, CPUE3 SBMl and CPUE1 BMWSCl, CPUE2 BMWSCl, CPUE3

BMWSCl, in which the subscript SBM and BMWSC indicate the model
in which the data were interpolated and l = 1, . . ., 50, represents the
lth simulation.

The measure used to compare the indices estimates was the
mean square error (MSE). Denoting the values of CPUE1, CPUE2,
CPUE3 of the lth set of simulated data were as CPUE1l, CPUE2l,
CPUE3l, l = 1, . . ., 50; the MSEs are given by:

MSESBMj = (1/50)
∑50

l=1(CPUEjSBMl − CPUEjl)
2, j = 1, 2, 3, for the

obtained estimates after the fitting of SBM model.
MSEBMWSCj = (1/50)

∑50
l=1(CPUEjBMWSCl − CPUEjl)

2, j = 1, 2, 3, for
the obtained estimates after the fitting of BMWSC model. The
method with lowest MSEs is considered the best. Just the cor-
responding estimates for the same index were compared, that is
MSESBMj was confronted with MSEBMWSCj for the same j.

To compare the obtained estimates after the SBM model fitting
of the three indices CPUE1, CPUE2 and CPUE3, among each other,
the mean absolute relative deviation (MARD) was used, given by

MARDj = 1
50

50∑
l=1

|CPUEjSBMl
− CPUEjl

|
CPUEjl

, j = 1, 2, 3 (9)

where CPUEjSBMl
is the estimate of index CPUEjl

in simulation l and
CPUEjl

the true value of the index in simulation l. Each portion of the
sum given in Eq. (9) represents the deviation of the estimate from
the true value of the index that is being estimated. This criterion is
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Table 2
Mean absolute relative deviation (MARD) from the estimates using SBM model from
CPUE1, CPUE2 and CPUE3 for each scenario.

Scenario CPUE1 CPUE2 CPUE3

(a) 0.1161 0.1355 0.6928
(b) 0.0808 0.0791 0.1268
(c) 0.0796 0.0783 0.1689
(d) 0.0492 0.0606 0.1088

therefore not affected by the possible scale difference between the
indices.

3. Results and discussion

This section discusses the results of the simulation study. How-
ever, before drawing conclusions, the convergence of the posterior
distributions obtained by the MCMC methods must be checked. The
convergence of the posterior chain of the SBM and BMWSC param-
eters models were verified by a graphical analysis of their trace.
Indications of convergence were obtained when, starting from a
certain number of interactions of the algorithm MCMC, the traces
of the two chains, which were generated from different initial val-
ues, overlapped and started to oscillate around a constant. It was
also verified, the capacity of the estimation process in locating
the parameters of the SBM model, used in the simulation (Pereira,
2009).

Table 2 shows the results of the mean absolute relative deviation
(MARD) of the estimates considering the SBM model, a criterion

given by Eq. (9). These results allow a comparison in the estimation
of the three abundance indices CPUE1, CPUE2 and CPUE3, consider-
ing SBM model.

In all scenarios CPUE3 was the estimated index with the highest
MARD values. If a researcher chooses to work with CPUE3 as the
CPUE index, the values will not be as well estimated as by CPUE1 or
CPUE2 if they are chosen for any of the scenarios (a), (b), (c) or (d).

Comparing CPUE1 with CPUE2, the MARD values by CPUE1 are
lower than CPUE2 in (a) and (d). In (b) and (c) the MARD values
by CPUE2 are lower, although the values are very close to those by
CPUE1. If one wants to use one of the two indices CPUE1 or CPUE2
by the SARD criterion, it is advisable to use CPUE1 for the scenarios
(a) and (d) and CPUE2 for (b) and (c), although the loss is not great
if CPUE1 is used for these two scenarios also.

In simulation studies conducted by Petrere et al. (2007), the
authors stated that the performance of the indices (CPUE1, CPUE2
and CPUE3) depends on the variance and not on the error distri-
bution. These authors did however not analyze the indices in the
presence of spatial correlation. Here no association was observed
between the covariance structure (the scenarios) and the indices
CPUE1, CPUE2 and CPUE3. In general the mean absolute relative
deviation (MARD) was lowest for CPUE1 followed by CPUE2.

In Fig. 5 some histograms of estimates are individually pre-
sented, considering model SBM in scenario (d), together with their
respective medians. This figure illustrates the fact that the esti-
mation method proposed here establishes a sample of estimates
for each of the indices, i.e., the histograms give a description of
the associated uncertainty. Besides, summaries of interest, such
as of credibility intervals can be obtained. An analysis of the his-

Fig. 5. Histograms of estimates, considering model SBM, corresponding to 5 of 50 samples of CPUE1, CPUE2, CPUE3, with the respective median (in black) and true value (in
gray). Scenario (d).
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Table 3
Mean square error of adjusted estimates by the models SBM and BMWSC of the
indices CPUE1, CPUE2 and CPUE3 for each scenario.

Scenario

(a) (b) (c) (d)

CPUE1 SBM 35.1504 473.4891 5.2285 242.7253
BMWSC 35.4609 475.3316 7.7926 397.1175

CPUE2 SBM 2.4261 2095.0472 1.8794 2070.7258
BMWSC 2.4108 2068.0036 2.7029 2962.4262

CPUE3 SBM 2.0064 11038.7357 5.6303 18994.0142
BMWSC 2.0086 11079.3396 6.6656 19993.4331

tograms of adjusted index estimates, shows that their amplitudes
are relatively small. However, all 1000 estimates that compose each
histogram are calculated by the data sets consisting of 85 pairs of
observed catch and effort and 15 predicted pairs. The 85 pairs of
observed catch and effort are common to all estimates, only the
15 predicted pairs change from one estimate to the other (at each
iteration of MCMC). That is, all estimates that compose each his-
togram, have a part in common. This means that the estimates are
not very distant from each other, resulting in histograms with small
amplitude.

The MSEs resulting from estimates using the models SBM and
BMWSC in a simulation study are presented in Table 3.

A comparison of the estimates after adjusting the models SBM
and BMWSC shows that the MSE of the adjusted estimate by model
BMWSC is greater than the MSE of the adjusted estimate using
model SBM for CPUE1 (scenario (a)). The opposite is true for the
estimates of CPUE2 and CPUE3. However, the MSE values of the
estimates obtained after adjusting model BMWSC for this scenario
were similar to the MSE values of the adjusted estimates by model
SBM for the same scenario. The results obtained were as expected.
In scenario a) there is practically no spatial correlation, so it was
expected that the neighboring quadrats would contribute very little
to explain what happens in the unobserved quadrats. Furthermore,
the correlation catch – effort is low, that is, one variable con-
tributes very little to explain the other (the information available
for extrapolation consists in practically the covariate only). It was
not expected an expressive gain when using the SBM model in rela-
tion to the BMWSC in the estimate of the indexes, once the space
correlation is very low for this scenery.

In scenario (b) the spatial correlation i low, but the correlation
between catch and effort i strong. The two models take into account
the correlation between the variables, for that it was expected to
be little differences in the estimates obtained after the adjustment
of the two models. That is, it was expected that the MSE of the
estimates obtained after the adjustment of the two models were
similar. And it was not expected that one of the models was better
than the other for this scenario, the in fact occurred, that is, the SBM
model just presented a smaller EQM than the BMWSC model just
for CPUE1 and CPUE3.

In scenario (c) on the other hand, the correlation between
catch and effort is low, but the spatial correlation is strong.
For this scenario the MSEs of the adjusted estimates consider-
ing model BMWSC are higher than the MSEs from the adjusted
model SBM (Table 3). This result had been expected, because model
BMWSC does not consider the spatial correlation observed in this
scenario.

For scenario (d), the MSEs of the estimates obtained after adjust-
ing model SBM were always lower (Table 3). In this scenario the
spatial correlation is strong, so a great contribution of neighbor-
ing quadrats was expected to explain what happens in unobserved
quadrats. A considerable gain was expected by the extrapolation to
unobserved quadrats using model SBM. In fact, when model SBM
is used, there is more information to predict catch and effort at
unobserved locations than by model BMWSC. In addition to the
correlation between catch and effort, model SBM takes the spatial
correlation and the relationship between effort at observed and
catch at unobserved locations into account.

Finally, model SBM was better than model BMWSC, where catch
and effort are considered spatially independent in the estimation
by CPUE1, CPUE2 and CPUE3 for the scenarios (c) and (d) with spatial
correlation, which is neglected when model BMWSC is adjusted.

Nishida and Chen (2004) verified, with real data of the yel-
lowfin tuna, that the model in which the spatial correlation is
considered it produced a better adjustment to the data giving more
realists parameters’ estimates. In the present article, we also ver-
ified, through the simulation study, that the bivariate model with
spatial components, gives better estimates CPUE indices, in those
sceneries with spatial correlation in the data.

The main difference of our approach is that with SBM, before
estimating the CPUE indices, we modelled effort and capture
jointly, so that the crossed spatial covariances are modelled, what
is not modelled when it is used other spatial models for the ratio

Fig. 6. Definition of the coordinate system for computing the distances between two 5◦ × 5◦ areas (the distance of 5◦ latitudes on the Equator is set to 1). Five subareas
adopted by the IOTC (2002) for standardizing yellowfin tuna longline CPUE data in the Indian Ocean (figure from Nishida and Chen (2004)).
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between catch and effort as, for instance, spatial-GLM (Nishida and
Chen, 2004). On the other hand, when using spatial-GLM it is not
necessary to suppose normality, we assume any distribution we
judge to be the most appropriate to our data.

As well as in other space approaches, using SBM, it is also
possible to do the interpolation (kriging) for no sampled places.
Following the Bayesian approach, kriging is carried out using
the predictive distribution. Differently from other approaches as
(Nishida and Chen (2004) and Stelzenmüller et al. (2007)), that
model the ratio between capture and effort, after the adjustment of
the SBM model interpolations are calculated catch and effort, being
taken into account the correlation between them, the autocorrela-
tion and the crossed covariance. If one wants to get a map of the
catch and effort ratio, while other models carry out a kriging for
this ratio after the adjustment of SBM a kriging for the pair (E, C)
is carried out and it can be obtained, then, any function of those
variates, even the ratio catch/effort, with the advantage that more
information is used for the kriging.

3.1. Application

An application of the theory was made using data of the Japanese
longline yellowfin tuna (Thunnus albacores) fishing in the Indian
Ocean. The data refer to the year of 2001. The data set composed by
the variates fishing effort, expressed in number of hooks, and the
capture in number of individuals per year for a 5◦ × 5◦ quadrat. A
total of 118 pair of fishing effort and capture data was considered.
For each pair there is a reference point in the quadrat where the
fishery took place. The subareas adopted by the IOTC Working Party
Tropical of Tuna (WPTT) (IOTC, 2002) were also incorporated in
the data. Subareas 1, 2, 3, 4 and 5 indicated in Fig. 6 were used
as covariates, for ecological reasons (habitat). It is expected that
the subareas will help to explain the variates effort and capture.
Fig. 6 presents the studied area divided in quadrats of 5◦ × 5◦ where
the fisheries took place. A system of coordinates was fastened in
the area in study in that the point (20thE, 40thS) it was treated
as origin. It was defined in this system of coordinates that 5th of
latitude on the line of Ecuador represents a unit of distance. In this
way, coordinates (x, y) were obtained for the central points of each
quadratim (more details can be found in Nishida and Chen (2004)).

The point (20◦E, 40◦S) was taken as the origin in the study area,
in a fixed system where 5◦ of latitude over the Equator represents
the distance unit. So the (x, y) coordinates in the center of each
quadrat were calculated according to Nishida and Chen (2004).

A descriptive analysis of the data showed that the statistical dis-
tributions of the variates effort and capture are quite asymmetrical
and data were taken in log scale. The log(capture) × log (effort) pre-
sented a linear correlation of r = 0.7. It was observed that the capture
and effort data here presented spatial dependency. In this way, the
data set is in agreement with scenario (d) of the simulation study,
in which the variates are strongly correlated and also with spatial
correlation.

The data were adjusted to the models used in the simulation
study (SBM and BMWSC), considering as covariate the subareas
Ai, i = 1, 2, 3, 4 and 5, shown in Fig. 6. The models were adjusted
accordingly to the Bayesian approach, as in the simulation study.
As a comparison criteria of fitting it was adopted the Deviance Infor-
mation Criterion (DIC) (Spiegelhalter et al., 2002). Smaller values of

Table 4
Deviance Information Criterion (DIC) for each of
the models.

Model DIC

SBM 614.785
BMWSC 765.280

Fig. 7. Reference points of the quadrats where occurred fisheries of yellowfin tuna
in 2001. The numbered points were left apart from the inference process in order of
being predicted.

DIC indicate a better fit. In Table 4 the DIC values are presented for
each fitted model, where we see that the better model is SBM.

During model fitting from the 118 data set, 10 pairs were left out
of the inference process in order to evaluate the predictive capacity
of the models. In Fig. 7 the enumerated points represent the quadrat
centers where effort and catch were kept apart in order to assess
their predicted values.

After fitting the models utilizing the predictive distribution
estimates of effort and catch, the estimated effort and capture
data from the left out observations were calculated. For assess-
ing the model with higher prediction capacity the MSE of each

model was calculated. MSE = 1
10

∑10
i=1(

ˆ
Y1(sui) − Y1(sui))

2 and MSE =
1

10

∑10
i=1(

ˆ
Y2(sui) − Y2(sui))

2

in which Y1(sui) represents the logarithm of the ith location left
for prediction and Ŷ1(sui) is its respective predicted value, and Y2
represents the logarithm of the capture. In Table 5 are shown the
MSE values for the two adjusted models. Smaller values indicate
better predictions. In Table 5 it is seen that SBM model presented
the smaller MSE values for the logarithm of the fishing effort and
the logarithm of the captures.

For this data set model SBM presented the best fit and the best
predictive capacity of those variates for no observed sites. These
results are in agreement with the simulation study. Once the data
present spatial correlation and strong correlation between the vari-
ates, SBM model seems to be the most appropriate. Consequently,
point estimates of the indexes CPUE1, CPUE2 and CPUE3 obtained
after the adjustment of SBM model and credibility intervals are
more realistic.

In Table 6 the values of the three obtained indices are presented
for the complete data set tuna fishery. The estimates obtained after
the adjustment of the models SBM and BMWSC are also presented.
It is verified that model SBM presents point estimates closer to the
indices values and that, while the interval of credibility 95% con-

Table 5
Mean square error (MSE) of the predicted values of Y1 = log(effort) and
Y2 = log(capture).

Model Variate

Y1 Y2

SBM 0.4389 0.7334
BMWSC 1.1951 4.8701
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Table 6
Value of each index and its respective estimates considering models SBM and BMWSC.

Index Index value SBM model BMWSC model

Point estimate 95% credibility interval Point estimate 95% credibility interval %

CPUE1 0.00534 0.00517 (0.00512, 0.00524) 0,00508 (0.00497, 0.00526)
CPUE2 0.00483 0.00476 (0.00467, 0.00491) 0,00462 (0.00454, 0.00474)
CPUE3 0.00294 0.00298 (0.00289, 0.00319) 0,00287 (0.00285, 0.00290)

sidering model SBM contains the values of the indices CPUE2 and
CPUE3, only the interval for CPUE1, considering the model BMWSC
contain the value of the index.

3.2. Final observations

The simulation study showed that of the three compared abun-
dance indices, relative deviations were generally lowest for CPUE1
estimates in the scenarios analyzed.

A comparison between models SBM and BMWSC was performed
in terms of index estimation. It was found that the estimates of
CPUE1, CPUE2 and CPUE3, obtained after adjustment of model SBM,
are better than the estimates obtained after adjusting the model
BMWSC, for the scenarios (c) and (d) where there is presence of
spatial correlation.

If an index of CPUE is applied that does not have ideal properties
and/or, if the utilized CPUE is erroneously estimated, wrong deci-
sions may be taken for the fish stock management. Consequently,
this study shows that CPUE1, in general is the most appropri-
ate index in the different scenarios discussed and that the model
SBM give better estimates of CPUE in some scenarios and can
therefore help to avoid mistakes when utilized in fish stock man-
agement.
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Appendix A. Complete conditional a posterior distributions
for the parameters of Eq. (1) model

1. ˇ1|�1, �2
1 , y1∼N(Bb, B), where B = [XT

1(�2
1 R1)

−1
X1 + ˙−1

ˇ1
]
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