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Summary 
 

Note: the main text of this document describes preliminary work that was distributed prior to the 
IOTC WPTT 2010.  Attachment 1 and 2 describe work that was undertaken and presented during 
the WPTT 2010.  Methods are essentially the same, but the attachment results supersede the main 
text. 

 

A stock assessment of the Indian Ocean bigeye tuna (Thunnus obesus, BET) population 1952-2008 is 

presented using Stock Synthesis (SS3) software.  BET was judged to be the lowest priority of the 

main species of the IOTC Working Party on Tropical Tunas (WPTT) for 2010, and due to overlapping 

time commitments, this analysis was conducted prior to the usual data exchange process, and does 

not include the most recent data.  This work extends the analysis described in Shono et al. 2009 

(IOTC-2009-WPTT-20) in three substantial ways: i) the non-longline fisheries have been 

disaggregated into 3 fleets, ii) the Regional Tuna Tagging Programme – Indian Ocean (RTTP-IO) data 

are included, and iii) there is a fairly extensive exploration of alternative model assumptions.  The 

model is presented primarily as an exploratory tool with which the WPTT can debate the best 

approach for future BET assessments and priorities among species.  Core assumptions in all models 

included: 

 Spatially-aggregated, age-structured, sex-aggregated population, iterated on a quarterly 

time-step 1952-2008 

 Four fishing fleets: 

o LL - combined longline (primarily Japan and Taiwan)  

o PSFS - unassociated Purse Seine (PS) sets in the western equatorial region  

o PSLS - FAD/log associated PS sets in the western equatorial  

o Other - includes PS outside the core area plus all other non-longline fleets. 
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 Beverton-Holt stock-recruitment dynamics, with fixed steepness and spawning biomass 

proportional to the total mass of mature fish.  Annual recruitment deviates were estimated 

from 1985-2007 (in some cases). 

 Mean length-at-age and weight-at-age relationships weres adopted from IOTC-2009-WPTT-

20 (constant over time) 

 Maturity was adopted from IOTC-2009-WPTT-20 (constant over time with 50% mature at 

~age 2). 

 Age-based selectivity was estimated for each fleet independently, with independent 

parameters for each age (or group of consecutive ages) to admit the possibility of logistic, 

dome-shaped or polymodal functions. 

 The RTTP-IO data have been included, with recaptures up to the end of 2008, including point 

estimates for the reporting rates derived from a tag seeding experiment on-board the 

European/Seychelles purse-seine fleet.  A number of shortcuts were taken with the initial 

treatment of the tagging data.  These shortcuts were expected to have a trivial effect, and to 

be resolved when adopting the new data.  However, it is apparent that the errors are not 

trivial and are biased toward an underestimation of fishing mortality.  (These issues are 

addressed in the revised document attachment 1).  

 Objective function terms included the likelihoods for the fit to the standardized CPUE from 

the Japanese LL fleet (1960-2008), Catch-at-Length from all fleets, tag recoveries from the 

PSLS fleet, and priors on all estimated parameters.  Estimated parameters included: virgin 

recruitment, CPUE catchability, independent selectivity by fleet (with temporal variability in 

some cases), and recruitment deviates (in some cases). 

Additional important assumptions are listed in the model grid definitions below.  Initial modelling 

efforts indicated that the size composition in the non-longline fleets could not be well fit, and there 

were potentially important stock status implications associated with different, somewhat arbitrary, 

assumptions.  To better understand these sensitivities, a systematic exploration of the interactions 

among 8 different sets of assumptions was undertaken.  Grid B included 54 models to look at the 

interactions among length-at-age, selectivity, size composition sampling and the influence of the tag 

data:  

 2 Length-at-age variance options (CV low, high) 

 3 Tag recovery negative binomial overdispersion options (τ = 2, 20, 200) 

 3 PSLS selectivity assumptions (stationary, annual deviates for tagging years 2005-9, or 

annual deviates 1985-2008) 

 1 recruitment deviate option, sd(log(devs)) = 0.6  

 1 CPUE series option (no catchability trend) 

 1 steepness option (h = 0.75) 

 1 M vector M(age 2y+) = 0.4) 

 3 Catch-at-Length likelihood weights (LL high+PSLS high, LL high+PSLS low, LL low+PSLS low)  

Most of these options could be dismissed as either i) not making much difference to the stock status 

inferences, or ii) representing a strong and influential assumption that could not be justified from 

the available data.  Only multiple levels of the tag recovery overdispersion options were carried into 
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the next level of the analysis.  Grid C, with 108 models, examined the interactions among a number 

of other fundamental life history and data assumptions: 

 1 Length-at-age option (CV high) 

 3 Tag recovery negative binomial overdispersion options (2, 20, 200) 

 1 PSLS selectivity assumptions (stationary) 

 2 recruitment deviate option (sd(log(devs)) = 0.6, 0)  

 2 CPUE options (no catchability trend, catchability trend of 0.47%/y) 

 3 steepness option (h = 0.55, 0.75, 0.95) 

 3 M vectors: M(age 2y+) = 0.32, 0.4, 0.48 

 1 Catch-at-Length likelihood weight (LL low+PSLS low)  

The maximum posterior Density (MPD) estimates from these models indicate a broad range of 

uncertainty, including many plausible scenarios in which the BMSY and FMSY reference points were 

exceeded.  The more pessimistic interpretations were generally associated with deterministic 

recruitment, effort creep, lower stock-recruit steepness, and reduced influence of the tagging data.  

In this case, the data were not expected to be very informative with respect to the key model 

selection decisions required to reduce the uncertainty among models.  A somewhat subjective (but 

transparent) scheme was devised with which to weight the 108 models and provide stock status 

summaries based on the aggregate results.  It is recognized that other members of the WPTT may 

have additional insight into the plausibility of the different scenarios, and this decision matrix can be 

easily updated at the discretion of the WPTT. For 2008, B/BMSY = 1.05 (weighted mean of MPD 

estimates), with a range of 0.64 - 1.69 (most extreme MPD estimates).  Similarly F2008/FMSY = 0.91 

(0.40, 1.78).  The central tendency of these results is similar to those presented in the WPTT 2009 

report.  The weighting scheme was also applied to deterministic constant catch projection results 

(catches at 60%, 80%, 100%, 120% and 140% of 2008 levels) in the format of a Kobe-2 Strategy 

Matrix (for the projected stock status in years 2011 and 2018).  A number of recommendations for 

future assessments are discussed.  
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1. Introduction 
Recent Indian Ocean bigeye tuna (Thunnus obesus, BET) assessments have suggested that the stock 

is not likely to be in an overfished state (B>BMSY), and overfishing is probably not occurring (F<FMSY) at 

this time (WPTT 2009).  However, in 2009, the two assessments which provided confidence intervals 

recognized that there was some probability that the stock could be in an overfished state, and 

overfishing could be occurring.  Having been assessed last year, and in the absence of strong stock 

status concerns,the Working Party on Tropical Tuna (WPTT) considered BET to be a lower priority 

than YFT and SKJ for stock assessment in 2010.  Accordingly, this assessment was conducted in 

advance of the normal data exchange process, and the most recent data were not included.  

However, this analysis does extend the 2009 analysis in a number of directions: 

 The WPTT tagging data was included (this was reportedly attempted previously, but the 

specific problems encountered were not described in Shono et al., 2009), 

 The effects of potentially increasing efficiency in Japanese longliners was considered, based 

on estimates from the operational data in the Pacific fleet (Hoyle, 2009), 

 Sensitivity to uncertainty in several poorly quantified assumptions (and interactions among 

assumptions) is illustrated. 

While the results can be interpreted as a stock assessment, the analysis is presented primarily to 

help the WPTT prioritize future research and assessment needs for the BET stock relative to the 

other species.  The stock status inferences are broadly consistent with those described in the WPTT 

2009.  However, a key feature of this work is the illustration that the stock status inferences are 

sensitive to several subjective model assumptions and it is expected that the broader experience of 

the WPTT might help to constrain this uncertainty.  However, the more important result might be 

the initiation of a discussion about how best to i) reduce the uncertainty in future assessments, and 

ii) provide useful management advice given that a large degree of uncertainty is probably inevitable.   

Fishery History 

Figure 1 illustrates the spatial structure that has been discussed in relation to BET fisheries in recent 

years.  The catch histories are broken up by area and gear in Figure 2 to Figure 5.  Artisanal fisheries 

(e.g. Maldives) have caught small numbers of BET for centuries, while large catches have only been 

recorded since the industrial Japanese longline fishery began operating in the Indian Ocean in the 

early 1950s.  The Japanese catches have fluctuated considerably, though recent catches are similar 

to those observed in the 1950s.  Longliners have consistently represented the dominant gear, with 

the Taiwanese fleet taking the largest catches (in mass) since greatly expanding operations in the 

1980s and 1990s.  The bulk of the catches have been taken from the western equatorial region, 

though the longline fishery has a broad distribution throughout most of the Indian Ocean.  Purse 

Seiners started operating in the 1980s (primarily in the western equatorial region), however, the 

reported catches from this fleet, combined with the artisanal fleets, represent less than 20% of the 

total catch in mass.  Total catch has declined by 30-40% since the peak observed in the late 1990s.  

2. Methods 
Fisheries data, research data, and model assumptions are described under the following headings.  

For continuity of the arguments, related data and model assumptions are described together.  The 

SS3 control file for the reference case model is appended to resolve any incomplete or ambiguous 

descriptions.  
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Note: the original Control.SS file was replaced by attachment 3, which applies to the updated 

analysis in attachment 2. 

Temporal units  

Data were disaggregated by quarter (quarter 1 = Jan-Mar), and the model was iterated on quarterly 

time-steps, to represent potentially important seasonal dynamics, over the period 1952-2008 (plus 

10 years of projections).  However, the model may not have been configured to most appropriately 

describe seasonal processes.  The fish population was given a plus-group accumulator age of 15 

years.   

As implemented in these models, SS3 has limited freedom to resolve variable recruitment by quarter 

(i.e. seasonal recruitment is possible, but year|quarter interactions cannot be estimated).  This 

limitation could be overcome by restructuring the model (and various time-dependent functions) 

with quarters defined as years.   

The importance of seasonally variable selectivity has not been examined.  

Spatial Structure 

The population dynamics are spatially aggregated, however, the 10 areas shown in Figure 1, have 

been used to define fisheries with consistent operational characteristics (e.g. as discussed further in 

relation to fleet definitions, CPUE, selectivity assumptions and tag releases/recaptures). 

There remains an open question of the appropriate spatial structure to use for this tuna population 

(and most others).  Qualitatively, the tagging data suggest that BET migrate reasonably quickly, and 

indicate at least some basin-scale movements (e.g. Figure 7).  Unfortunately, the limited distribution 

of tag releases, and small number of returns (and absence of tag reporting rate estimates) outside of 

the European/Seychelles purse seine fleets, mainly operating in the western equatorial Indian 

Ocean, makes it difficult to quantify large-scale movements at this time.  While there may be some 

relatively discreet sub-populations, or slow mixing rates among sub-regions, there is no evidence 

that this is the case in the core area where most of the catch is taken, and presumably where the 

bulk of the population is located.   

It is noted that recent yellowfin (YFT) tuna assessments in the Indian Ocean have adopted a 5 region 

spatial structure (Langley et al., 2009).  It is not clear that this has resulted in an improved 

understanding of the YFT stock dynamics, as the estimated movement rates show some 

counterintuitive patterns that likely reflect the unbalanced distribution of tag releases and 

recoveries (and inability of the software to resolve inter-annual movement variability).  Comparison 

of the disaggregated YFT model with a similarly parameterized aggregated model did not reveal 

substantive differences in the overall stock status estimates (WPTT 2009). 

The BET spatial structure should be revisited in the future, in relation to more detailed analyses of 

the tagging data, and space/time patterns in the size composition and CPUE data. 

Fleet definitions 

Four fleets were defined on the basis of gear type and area, with data from all nationalities 

combined: 

1) LL –longline fleets (primarily Japanese and Taiwanese) aggregated across all areas 
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2) PSFS – Purse Seine Free School sets (not associated with drifting objects), only in area 3. 

3) PSLS – PS sets associated with FADs or logs, only in areas 1+3. 

4) Other – all other gear (i.e. artisanal gear and PS sets of unknown type or location outside the 

areas defined for PSFS and PSLS). 

Shono et al. (2009) used 2 fleets, with 2-4 above aggregated into a single fleet.  We opted to split the 

non-longline fleets in an attempt to identify purse seine fisheries with homogeneous characteristics. 

The a priori expectation was that this would improve the validity of the stationary selectivity 

assumption (for the PSFS and PSLS fleets), which would in turn improve the estimation of relative 

year class strength, improve the consistency between the catch-at-size and tag recoveries, and allow 

the external tag reporting rate estimates to be applied directly to these fleets.  It was expected that 

fishery 4 would represent a relatively small heterogeneous mix of fisheries, such that the size 

composition data could be considered uninformative and greatly down-weighted.  As discussed 

subsequently, these efforts have not fully achieved the desired results. 

Total catch data  

The total catches were calculated by the Secretariat (Herrera, 2009).  This is a complicated process 

that requires a number of approximations and substitutions for fleets with poor data (including 

those discussed below under size composition data).  The catch time series for the 4 fleet structure 

is shown in Figure 6. 

Catch in mass was used in the model for all fleets, and was assumed to be known essentially without 

error (SD(log(catch in mass error) = 0.01; this is not actually used in the SS3 likelihood, but might 

reflect a tolerance in the iterative solving of the catch equations). 

Japanese CPUE as a relative abundance index and catchability assumptions 

Okamoto et al. (2009) describe the standardized Japanese CPUE series adopted as the relative 

abundance index for the period 1960-2008.  Several differences from Shono et al. (2009) were 

applied here: 

 A single annual CPUE index based on the mean of the 4 quarters was used (assigned to 

quarter 1 in the model dynamics).  This was done purely to simplify the data handling and 

interpretation of graphical results (qualitatively, the 4 quarters appeared to be consistently 

proportional throughout the time series) 

 A constant CV of 5% was adopted.  Shono et al. (2009) used a unique CV for each data point 

derived from the CPUE analyses.  These estimates were generally less than a CV of 5%, and 

considering that there were 4 (very similar) CPUE series, this effectively corresponds to a 

much higher CPUE weighting than this analysis.   

 An additional CPUE scenario was admitted in which it was assumed that catchability 

increases by 0.47% / year (arithmetically, i.e. this corresponds to a total efficiency increase 

from 1952-2008 of 26.3%).  This value is adopted from Hoyle et al. (2009), which estimated a 

vessel-technology effect using operational level data from the Pacific, which could not be 

identified using the 5°x5° aggregated CPUE data.  It is noted that this increasing efficiency 

trend only accounts for one possible source of increasing efficiency, and it would not be 

surprising if the real effort creep was higher (e.g. sensitivity analyses in the Pacific regularly 

include catchability trends of 2%/year). 
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The two CPUE series are compared in Figure 10.  These two catchability assumptions are referred to 

in the model grids as: 

 EC0 = constant catchability 

 EC47 = increasing catchability. 

We do not actually believe that the CV of 5% is realistic.  We are essentially saying that the model is 

conditioned to the relative abundance index.  Preliminary exploration with a relaxed CPUE CV (10-

20%) resulted in temporal trends in abundance that were dubious if one believes the CPUE series 

(i.e. the model often estimated a very steep CPUE decline over the last few years, while the 

observations are stable). Examining the way in which the other data sources conflict with the CPUE 

series is useful for understanding the model, however, in general, we would not have much 

confidence in any stock status inferences from models that fail to fit the core features of the relative 

abundance index.   

Catchability for the LL CPUE was assumed to be stationary in the models.  Note that, in general, it is 

not possible to meaningfully compare likelihood terms for models that use different sources of data.  

However, in this case, one might consider the two CPUE time series to be the same data, with an 

additional effort creep parameter imposed, and the likelihood does potentially provide a means for 

considering which CPUE option is more consistent with the model assumptions and other data 

sources.  However, as discussed elsewhere, there are still reasons why this comparison is probably 

not a good idea. 

Size Composition Data 

The catch-at-length data were compiled by the secretariat (Herrera, 2009).  This process involves a 

number of approximations, substitutions and unit conversions because some fleets have very poor 

data, some fleets do not report data at the appropriate resolution, and different measurement 

procedures are often used (e.g. mass vs: length).  These data were generated as a ‘best guess’ to 

produce a complete time series for all fleets (e.g. which might be a requirement for data intensive 

VPA-type assessments).  There are many extrapolations in time and space (i.e. assuming that 

unsampled strata are the same as the nearest strata in space or time that was sampled).  Actual 

sample sizes are unknown in many cases, and the representativeness of sampling across vast areas is 

often questionable.  The secretariat produced another type of size composition file for BET in 2010, 

which provides an estimate of the sample sizes (and omits strata without samples), but this was not 

available in time for this analysis. 

Catch-at-length distributions aggregated over time, and time series of mean length are shown by 

fleet in Figure 11.  The PSFS and Other fleets have bimodal distributions.  In the PSFS fleet in 

particular, the mode shifts between consecutive quarters, in a pattern which is not obviously 

seasonal, nor evident in the other fleets.  This is believed to be largely due to limitations in the 

definition and recording of the set-type, as there are reportedly two very different types of free 

school sets (mixed schools with small BET, YFT and SKJ, and mixed schools of large YFT, BET and 

ALB).  At this time, it is not possible to further partition the fisheries by free-school set-type, but the 

model can attempt to accommodate this bimodality as either a sampling problem (i.e. down-weight 

the size data) or temporally variable selectivity.  
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The model is potentially sensitive to the size composition data assumptions.  In this assessment, all 

length composition strata from all fleets were assigned a default sample size of 200.  It is not a good 

idea to place too much confidence in these data because of the problems mentioned above 

(sampling problems and non-stationary selectivity), and also because the model does not resolve 

seasonal recruitment variability, so length-at-age of younger cohorts can be poorly represented.  The 

sample size assumption was further reduced via a downweighting co-efficient (λ) of 0.1 in the 

objective function at all times for PSFS and Other fleets, and in some cases for LL and PSLS.  The 

downweighting is similar to assuming a sample size of 20.  Different input sample size assumptions 

are examined in the model grids: 

 CL1010 : λLL = 1.0, λPSLS = 1.0, λPSFS = 0.1, λOther = 0.1 

 CL1001 : λLL = 1.0, λPSLS = 0.1, λPSFS = 0.1, λOther = 0.1 

 CL1010 : λLL = 0.1, λPSLS = 0.1, λPSFS = 0.1, λOther = 0.1 

The catch-at-size distributions are represented in 103 bins of length 2cm.  The multinomial likelihood 

was used in the model, with an additional 0.1% added to each length bin (predicted and observed) 

to make the term more robust to outliers. 

Selectivity 

A number of different approaches were investigated to address the problems with the PS selectivity 

stationarity and size composition sampling assumptions.  Initially, a double-normal pseudo-length-

based function was estimated for each non-longline fleet. The estimated fishing mortality (i.e. 

quarterly value of the most highly selected age classes) in the non-longline fisheries was 

unbelievably high for all of the models that used the pseudo-length-based selectivity (this problem is 

also evident in Shono et al. 2009).  This likely happened because either i) the model attempts to 

remove a large number of weakly selected cohorts or ii) the model attempts to remove a very large 

number of small fish while the size composition data suggests that the actual catch consisted of a 

much smaller number of larger fish.  Despite reasonable convergence (as defined by the maximum 

gradient criteria), it also appeared the length-based selectivity models were prone to identify local 

minima (in the cases examined). 

Age-based selectivity resolved the high F and convergence problems (though did not resolve the 

poor fit to the non-longline size composition data).  One parameter for each age (or group of 

consecutive ages) was estimated as a free parameter (7 for the LL fleet and 6 for the others).   

Different options for temporal variability in selectivity were also explored and there were 

convergence problems with this approach unless informative priors were used. 

Three age-based selectivity options were considered in the model uncertainty grids: 

 sc: stationary selectivity for all fleets 

 st3: annual selectivity deviates estimated for PSLS years 2005-2008, the years with tagging 

data (normal prior, mode 0, CV 0.6)  

 st23: annual selectivity deviates estimated for PSLS 1985-2008 (normal prior, mode 0, CV 

0.6) . 
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Stock Recruitment  

A Beverton-Holt stock recruitment relationship was assumed, with fixed steepness (0.55, 0.75 or 

0.95).  It was assumed that spawning biomass is equal to the mass of the mature females (i.e. no 

disproportionate adjustment for size-dependent fecundity).  The different steepness assumptions 

are defined in the model grids: 

 h55: h = 0.55 

 h75: h = 0.75 

 h95: h = 0.95 

Deviations from the stock-recruitment relationship were assumed to follow a lognormal distribution, 

and were only estimated from 1985-2007 (the period in which there may be informative PS size 

composition data). Deviations prior to 1985 could be used to explain CPUE variability, but there was 

no strong requirement for additional freedom to explain the data during the early period of 

relatively light exploitation.  The only exception might be the few extreme CPUE observations in the 

late 1970s, but, assuming that they are credible, these reflect a transient event that should not have 

much influence on the long term dynamics.   

There was a declining trend in the recruitment deviations over time for all models examined, such 

that the models interpret declining CPUE as a mix of depletion and recruitment trends (also 

illustrated in Shono et al. 2009).  If the recruitment trend is actually an artefact, then the model will 

be over-optimistic with respect to MSY-related reference points.  Given the problems with the fit to 

the size composition data, it would be difficult to have much confidence in the relative cohort 

strength estimates derived from these data.  However, down-weighting the size composition data, 

and replacing all of the non-longline size composition data by the long-term mean size distributions 

also resulted in recruitment deviation trends.  This suggests that at least part of the problem is 

derived from the conflict between the stock recruitment relationship and the CPUE series.  The 

alternative approach was explored in which models were run without the estimation of any 

recruitment deviations.  This is obviously unrealistic, but may provide a more robust estimator of 

productivity in this case (i.e. this formulation resembles a surplus production model that ignores the 

potentially misleading vagaries of the size composition data).  The recruitment deviation CV 

assumptions are defined in the model grids as: 

 r0 : SD(log(dev)) = 0 

 r6 : SD(log(dev)) = 0.6 

The -0.5σ2 ‘bias correction’ to the stock recruitment relationship was differentially applied, such that 

two time periods, one with estimated deviations and one without, have the same expected mean 

recruitment.  This was not ideal in this case, because the majority of models with estimated 

recruitment had a RMSE lower than the assumed value of 0.6.  Hence the mean recruitment during 

the estimation period was always lower than expectation.  To remove this effect, one can estimate 

σ, however, in the cases in which this was done, σ approached 0 (due to the low weighting on the 

size composition data), and essentially this was redundant with the r0 option. 

Tag Releases, Recaptures and Reporting Rates 

The RTTP-IO tag release (2005-7) and recapture (2005-8) data are described in Hallier and Million 

(2009).  Figure 7 shows the spatial distribution of all releases and recoveries up to 2008.  The only 



11 

reporting rate estimates available are derived from tag seeding experiments in the 

European/Seychelles purse seine fisheries (Gaertner and Hallier 2009), from which the large majority 

of the recoveries were reported, so these fleets should be the most useful for interpreting the 

tagging data.  Data were processed by the IOTC Secretariat. 

In the models reported here, only the PSLS fleet recoveries were included in the model.  As noted 

previously, the PSFS fishery seemed to be a heterogeneous mix of sets with different selectivity.  

This renders the stationary selectivity assumption dubious for this fleet (and it only accounts for a 

small amount of catch as shown in Figure 6), and was expected to cause problems with the tag 

recoveries.  The LL and Other fleets have very few tag returns, and poor estimates of reporting rates, 

such that they were not expected to be very informative (recoveries and reporting rates set to 0).  

Initial explorations that included estimation of stationary reporting rates for LL and Other fleets were 

examined, but not pursued in detail.   

In the population model, tagged fish are assumed to have identical dynamics to the general 

population.  For this to be true, the tags should first fully mix with the general population.  It was 

assumed that full mixing was achieved 4 quarters after release.  However, for various reasons, 

mixing and reporting assumptions tend to not conform to the ideal situation and tag recoveries tend 

to contain greater error than expected.  The negative binomial distribution allows for overdispersion 

relative to the ideal (e.g. Poisson distribution).  Three options were explored for the overdispersion 

parameter τ (applied equally across all tag groups):   

 t2 : Overdispersion parameter = 2 (close to ideal Poisson tag recovery assumptions)  

 t20 : Overdispersion = 20 (intermediate value adopted in Pacific BET assessments)  

 t200 : Overdispersion = 200 (tags highly downweighted).  

The probability density functions for the 3 options are illustrated in Figure 12 for a mean of 100 

recoveries. The ADMB log_negbinomial_density function is parameterized in terms of τ = σ2/μ; ττ>1, 

and this is equivalent to the R function dnbinom(x, size, mu) where σ2 = μ +μ2/size, pr = size/(size+μ), 

such that for μ=100, τ = (2,20,200)  ~size = (100,5,0.5). 

The length of release of each tag is recorded in the database, but the model dynamics are based on 

ages.  The (annual) age of each individual tag was estimated based on the mean growth curve, 

assuming a 1 January birthdate, and an independent tag release event was tracked for each 

age/year/quarter release strata (24 release events in total).  This age/length processing is external to 

the model, and the discrete age assignment means that growth should not be estimated within the 

model when tags are used.   

Recovered tags that were not assigned a release length were removed from the release and 

recovery datasets.  A total of 34565 tag releases were included. 

 Recovered tags which could not be assigned to a fleet were removed from the recovery 

dataset.  These were primarily PS tags from which it was impossible to determine if they 

were PSFS or PSLS sets (i.e. set-type unknown and/or date of recovery unknown and/or area 

unknown).  It was initially assumed that this was a small number, but actually accounts for 

over 30% of recoveries.   
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 Tag shedding was assumed to be 0.  However, the instantaneous (annual) shedding rate 

estimated by Gaertner and Hallier (2008) was 0.024 (0.014 – 0.30 95% CI). 

 The tag reporting rate estimates for the European/Seychelles PS fleet were applied to the 

PSFS and PSLS fleets, however, some small portion (expected to be <10%) of the PSFS and 

PSLS fleet catch composition came from the non-European/Seychelles PS fleets, i.e. PS fleets 

from Thailand and Iran, (for which there is no reporting rate estimate, and it is presumably 

much lower than the European/Seychelles fleet). 

 For convenience of interpretation of graphical software, the recoveries of tags from the non-

mixing period were removed from the recovery dataset.  This introduces an additional error 

to the treatment of the tags because the recovered tags from the non-mixing period are 

assumed not to be caught and therefore  not removed from the population.  For a particular 

release event, this has no effect on the fishing mortality estimated within the non-mixing 

period, but the magnitude of the error in subsequent time periods will depend on the 

number of recovered tags in the non-mixing period relative to the total number of tags at 

liberty.  For the largest release event (7619 tags) the number of recovered tags in the (4 

quarter) pre-mixed period in the PSLS fishery is 974 (13%) that were not removed from the 

tag population (after including adjustment for reporting rates).  

These errors are not trivial, and they are all biased in the direction that will lead to an underestimate 

of fishing mortality.  This needs to be addressed before the tagging results can be considered 

meaningful. 

SS3 cannot admit temporal variability in tag reporting rates at this time.  Instead, the number of 

reported tags is inflated by a factor of 1/(reporting rate at time t), and the reporting rate is fixed at 

100% for the informative fleet(s).   

For the uninformative fleets (everything other than PSLS for the results presented here in detail), tag 

recoveries and reporting rates were set to 0.   

Note that the tag implementation, especially with seasonal dynamics, is a relatively new and poorly 

documented feature within SS3.  It is possible that there may be errors in the software, or current 

implementation, that adds to the exploratory nature of this assessment.  However, the initial results 

seemed to be largely consistent with expectations (this downplayed the urgency in resolving the 

remaining the tag implementation problems).  

 

Growth, Natural Mortality and Maturity 

Mean length-at-age was adopted from Shono et al. (2009) and assumed to be constant over time.  

The adoption of a von Bertalanffy growth curve does not adequately describe the sigmoid shape that 

has been estimated for this species in the Indian Ocean (e.g. Eveson 2008).  This is currently a 

limitation in SS3 software, but probably not overly influential given the other problems with the 

juvenile size composition.  Two different options for the variance of the length-at-age distribution 

were explored in the model uncertainty grids (shown in Figure 8): 

 gr05: lower variance option (adopted from Shono et al. 2009)  

 gr20: higher variance option. 
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The lower variance was judged to be less attractive than the higher variance, because it is potentially 

very restrictive in its assumptions about recruitment timing and within season growth (both of which 

would inflate the variance, particularly for the youngest fish).  The high variance option is not 

derived from any specific analysis, and the gr20 option is obviously questionable in so far as the 

variance in length at age actually declines between intermediate and older ages.  The uncertainty 

exploration suggests that there can be non-trivial implications for this assumption, but they are 

probably not important if one assumes that juvenile fishery size composition is only weakly 

informative.   

The baseline M vector and maturity schedule were derived from Shono et al. (2009), both constant 

over time (Figure 9).  Three alternative M vectors were explored in the uncertainty grid in 

recognition that this term is often poorly quantified. 

 M08: M for all ages 20% lower than Figure 9 

 M10: M as shown in Figure 9 

 M12: M for all ages 20% higher than Figure 9. 

Exploratory attempts to estimate M were not very believable, in that the model consistently 

preferred lower M for younger ages. 

Software 

The model was implemented with Stock synthesis SS V3.10B.  This is a powerful and flexible stock 

assessment package with efficient function minimization, implemented with AD Model Builder 

(http://admb-project.org/).  Technical details are (mostly) described in Methot (2000, 2009).  Typical 

function minimization required about 1 minute (up to 5 min. with non-stationary selectivity), on a 

3.0 GHz PC (not including inverse Hessian calculations).   

Model Specifications 

The assessment is described in 4 stages: 

1) Reference Case - Identify a baseline ‘reference case’ model that is plausibly consistent with 

the data (i.e. reasonable fit to the CPUE series, gross features of the size composition data 

and tagging data, and stationary recruitment assumptions).  This involved an initial 

specification, detailed analysis of diagnostics, and single dimension deviations from the 

previous specification, until a satisfactory model could be identified.   

 

2) Explore options for addressing the non-longline size composition problems - Using a 

haphazard exploration of models, we were not able to identify any specification with a good 

fit to the size composition data from the non-longline fleets.  A systematic search was 

subsequently initiated, in which 54 models were defined to examine the implication of 

various assumptions related to size composition sampling assumptions, selectivity, length-

at-age variance and the influence of the tag data (Grid B in Table 1).  On the basis of these 

results, a minimum set of alternative specifications were sought which could be described as 

 Plausible (or at least no worse than the alternatives), and  

 Sufficiently representative of the uncertainty to be carried into stage 3. 
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3) Sensitivity analyses - a grid of 108 models was defined that considers the interactions among 

4 different sets of assumptions (grid C in Table 1).  We attempt to quantify the core 

assumptions and interactions that influence the model by examining the marginal effect of 

each assumption option on the fit to the data, and key stock status reference points. 

 

4) Stock status estimates - The final stock status estimates are derived from a synthesis of the 

108 sensitivity results of gridC.  Key summary diagnostics are considered, and a somewhat 

subjective (but hopefully transparent) weighting scheme is adopted.  The stock status 

summary consists of the weighted estimates of B2008/BMSY, F2008/FMSY, presented in a Kobe 

plot, and 3 and 10 year constant catch projections presented in a Kobe 2 Strategy Matrix 

(See Uncertainty Quantification and Projections below).   

In general, models were compared on the basis of: 

 CPUE RSME – describes the fit to the CPUE series.  Ideally, this value should be very similar 

to the assumed SD of the CPUE observation errors.  In most of the models discussed here, 

the CPUE RMSE in the period of interest is <0.1, which indicates a good fit, and no 

justification for rejecting models.  This is of course because the observation error was 

assumed to be very low in the first place, because models with a poor CPUE fit were not 

worth considering. 

 ESS (Effective Sample Size) – describes the fit to the size composition data for each fleet 

(averaged over all observations).  ESS indicates how well the predicted size composition data 

fits the observations (irrespective of the assumed weighting for that data).  An ESS of 200 

means that on average, the fit is as good as would be expected for a true random sample of 

200 (regardless of what the actual sample size was).  The ESS does not explicitly distinguish 

between random noise and systematic lack of fit (and it is the latter quality that we are 

usually most interested in).  However, when used as a relative index to compare models fit 

to the same data set, lower ESS is usually associated with a higher systematic lack of fit.   

 Recruitment trend – this measure describes the systematic lack of fit that arises when the 

recruitment deviates are estimated for this specific situation (the RMSE and auto-correlation 

would be of more general interest in most applications).  The recruitment trend is defined 

here as the drop in recruitment (deviation) between years 1985 and 2007, as estimated from 

the slope of a linear regression through the recruitment dev time series.  The units were 

chosen for ease of interpretation (i.e. to consider the question – should we really believe a 

model which estimates the average recruitment dev has had a 30% decline between 1985 

and 2007, or is this indicative of a systematic problem in the model?). 

 Likelihood terms –The likelihoods are useful for qualitative discussions of which options 

appear to be more compatible, etc., but literal interpretation of likelihoods in these models 

will generally lead to some counter-intuitive results, and over-optimistic perceptions of 

precision (e.g. see below).   

Uncertainty Quantification 

The stock assessment process often appears to involve a haphazard search for one or a very few 

model specifications which appear to be plausibly consistent with the data, and a priori 

expectations.  Most commonly, some form of statistical method is used to describe uncertainty 

distributions (e.g. likelihood profiles or Bayesian posteriors) for the quantities of interest under the 
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assumption that a particular model is ‘correct’.  However, in this case, there are some fundamental 

problems with interpreting the likelihoods literally: i) the data are not the same (i.e. changing the 

input sample size between two models invalidates a direct comparison of the likelihoods), ii) these 

are complicated highly parameterized models with many assumptions that are poorly justified, 

usually with evidence of systematic failures in the model fit, that probably mean a strict 

interpretation of the likelihood is not justified, and iii) it is known from simulation studies, that some 

parameters cannot be estimated reliably with the type of data and observational contrast that are 

typically available (e.g. M, steepness).   

The process used here takes the alternative approach of focussing on the model selection 

uncertainty, which is usually much greater than the statistical uncertainty conditional on any 

individual model.  We only consider the Maximum Posterior Density (MPD) estimates, and stock 

status estimates are derived from a weighted average of the MPD estimates.  This is similar to the 

approach used by the CCSBT (originally in the context of stock assessment, and subsequently in the 

development of operating models for Management Strategy Evaluation). Figure 43 illustrates the 

idea conceptually – once it is admitted that there is a range of plausible models (e.g. the two normal 

distributions in Figure 43), if the statistical uncertainty bounds are narrow relative to the difference 

in the central tendency, it seems sensible to admit that the real uncertainty spans the broader range 

between the models (e.g. the red box, or better yet, the red box plus the tails of the black 

distributions).  

A comparison of the two approaches might be considered by an analogy of observing a large street 

mural at night.  The first case is analogous to observing the part that happens to fall under the 

streetlamp.    The second case is like walking around with a little flashlight.  The view is never as 

impressive in the second case, but you are less likely to miss something important.       

Projections 

Projections were conducted from the MPD estimates of all models at catch levels of 60%, 80%, 

100%, 120% and 140% of 2008 levels (assuming 2008 selectivity and catch allocations among fleets).  

The projections used deterministic recruitment from the stock recruitment relationship (starting in 

2007).  This approach ignores two important sources of uncertainty: statistical uncertainty in the 

parameter estimates, and recruitment variability (the latter of which cannot currently be 

accommodated within the SS3 software).  However, as in the previous section, the approach does 

incorporate the model selection uncertainty, which is probably geater than both of these sources of 

uncertainty in most cases.  Three and Ten year projection results are summarized in a management 

decision table (Kobe 2 Strategy Matrix).   

 

3. Results and Discussion 

Reference Case Model 

A number of initial model specifications were explored to identify a sensible baseline reference case 

for the assessment.  The unsuccessful attempts are not presented in detail, but a number of general 

problems are noted for the record in the methods and following discussion.  The core assumptions 

from the selected ‘ref’ model are listed inTable 1, along with two similar models that illustrate 

alternative assumptions related to tag recoveries (reft002 and reft200).  There is no preferential 
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status assigned to any of these models.  Key features of the behaviour of these models are 

illustrated in Figure 13 - Figure 19. 

Figure 13 illustrates the fit to the CPUE series (excellent for the period 1985-2008), and the PSLS tag 

recovery data.  The ref model is contrasted with models that increase (reft002) and decrease 

(reft200) the influence of the tags.  In all 3 cases, the CPUE provides an excellent fit.  The seasonal 

pattern of the tag recovery data does not fit particularly well in any case, and, qualitatively, the 

different tag overdispersion assumptions do not seem to make a big difference to the quality of fit to 

the CPUE or tags.     

Figure 17 illustrates the fit to the temporally-aggregated size distributions and time series of mean 

size for each fleet ref.  In general, the LL fit was always good, and the non-longline fleets were always 

poor.  The difference in fit between ref, reft002 and reft200 was almost imperceptible (not shown).  

Figure 16 illustrates the 2 recurring troubles with the recruitment time series when the annual 

deviates are estimated.  First, there is a downward trend from 1985-2007.  The most recent 

recruitment (which is really not influenced by the size composition data) is always very low.  The 

model uses a dev_vector assumption, in which the deviates sum to a mean of 0 and the flexibility of 

the weakly constrained cohorts is often exploited to balance large deviations in other years that are 

tightly constrained.  SS3 provides the flexibility to anchor an arbitrary number of recent recruits to 

the stock recruitment function.  If 1-2 additional years are constrained in this way, the exceptional 

deviate was simply shifted back 1-2 years (not shown).  The second problem is the low variance 

estimated on the recruitment deviates.  When applied with the bias correction on the mean, the 

recent recruits fall below the expected value.  Both of these problems tend to suggest that recent 

productivity has been lower than average due to anomalous recruitment, and that in general the 

stock should be more productive than recent years.  This interpretation might be overoptimistic (not 

estimating the recruitment deviations removes both of these problems, but it comes at a cost in 

terms of the fit to the CPUE series as discussed under Uncertainty grid C). 

Figure 18 illustrates the selectivity estimates by fleet.  It seems unlikely that the LL selectivity should 

have such a strong dome-shape, with very low selectivity after age 3.  Perhaps there is a biological 

justification on the basis of spatial partitioning by age, but it is probably a more fundamental 

problem with the growth or M assumptions.  All of the non-longline fleets show some form of 

bimodal selectivity.  Given the obvious bimodal size composition distributions in PSFS and Other 

fleets, this is not really surprising, but the specific functions estimated are questionable.  It is not 

clear that any single compromise selectivity function would be more appropriate.  The question is 

really how much the selectivity functions affect the stock status inferences.  There are two main 

effects of the selectivity: i) ensuring that the correct size/age composition is removed from the 

population, and ii) estimating relative year-class strength through the separable assumption.  For the 

non-longline fisheries the first problem should not be an issue because these fisheries are small 

relative to the LL fishery.  The second issue might cause poor estimation of some individual year 

classes (particularly the more recent years) if the selectivity changes are random, and potentially 

more serious long term biases if there is a trend in the selectivity changes.  The interaction between 

the stationary selectivity assumption and the tagging data may also have important consequences. 
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Time series of spawning biomass and fishing mortality for ref, reft002 and reft200 are shown in 

Figure 19.   Increasing influence of the tagging data tends to support a more optimistic 

interpretation of the stock status. 

 

Uncertainty Grid B: How to handle the PS size composition data?  

The reference case (and associated models), strongly suggested that there are considerable 

problems with the non-longline size composition data, and potentially the fit to the tagging data, 

that are worth further attention.  Several options were considered to reduce the problem:   

1. Improve the selectivity assumptions.  Selectivity in these models reflects the combination of 

two very different concepts, gear selectivity and availability.  Gear selectivity is a relatively 

straightforward concept that describes which of the fish exposed to the gear are captured 

(e.g. selective net mesh sizes).  Availability is the much more complicated question of the 

spatial and temporal distribution of the fish and fleet (i.e. understanding gear selectivity is 

not very helpful if you do not actually know which fish are exposed to the gear).  In most 

fisheries models the two concepts are inextricably confounded.  For Indian Ocean BET, the 

assumption of stationary selectivity, particularly in the non-longline fleets is questionable for 

a number of reasons: e.g. i) some of the fleets do not operate consistently in space and time 

(i.e. in particular the ‘Other’ fleet is a heterogeneous mix of fisheries), and ii) PS fleets (in 

particular) target schools, and different schools have different size composition 

characteristics (i.e. if you always successfully target schools with a unique size/age 

composition, it will not tell you much about the relative abundance of fish of different 

sizes/ages in other schools).  The PSFS fleet seems to have three different catch-at-size 

distributions: small fish, large fish and a bimodal mixture of the two (the latter probably 

represents the aggregation of the two set types).  The observed size composition of the PSLS 

fleet seems to be more consistent than the other two, which presumably indicates the 

consistency of the size composition of BET found around floating objects.  But it may be 

optimistic to expect that this results in stationary selectivity even for this most-homogenous 

of fleets.  If stationary selectivity is incorrectly assumed, it could have undesired 

consequences on year-class strength, and may also constrain the fit to the tagging data.  

Two possibilities were considered: 

a. Revise the fleet definitions into more heterogeneous units.  This was the reasoning 

behind the disaggregation of the non-longline fleet in the first place, and it is not 

clear that further disaggregation will help the problem.  

b. Explicitly model the temporal variability in selectivity.  This is the most satisfactory 

approach if the data are reliable.  The main downside is the added complexity and 

computation time for the model. 

 

2. Improve the representation of the size sampling.  Perhaps the selectivity is reasonably 

stationary, but the size sampling is poor.  The sampling procedures are poorly quantified in 

these fisheries, such that it is currently unclear what the sample sizes are and whether they 

are random in space and time.  Downweighting the size composition data to the point that it 

has a weak influence relative to the other data sources should remove some of the 

misleading artifacts of the size compostion data.  This might still result in unbelievable time 
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series of year-class strength, but the size composition data should not dominate when there 

are conflicts with the other data.  This will also result in fishery removals that are not very 

consistent with the observed catch-at-size samples, but this should not make a big 

difference in this case, since most of the catch is taken by the longline fisheries.   

 

3. Do not attempt to estimate the recruitment deviations.  This is an extreme way of reducing 

the size composition influence on the year-class strength. This approach essentially reduces 

the model to a form of production model.  The flexibility is greatly reduced, and the 

influence of some data sources is minimized, but may be more robust to some questionable 

data.  The downside is that useful information may be lost from other sources (i.e. tags and 

CPUE).  Option 3 was explored in the following section.    

In an attempt to find the best approach for dealing with these potentially inter-related problems, 

Grid B was defined (Table 1), which consists of 54 models with different options for 4 sets of 

assumptions related to:  

 2 X variance on length-at-age,  

 3 X selectivity (stationary or temporally variable), 

 3 X tag recovery options (overdispersion 2, 20, 200)  

 3 X different weightings for the size composition data.   

 Other assumptions as defined in Table 1 and the Methods section. 

None of the 54 model specifications seemed to experience outright convergence failures (but some 

of the models with time varying selectivity might have been marginal).  Plots of key summary 

statistics are shown in Figure 20 - Figure 28.  These figures suggest that: 

 All of the models had an excellent fit to the CPUE series (RMSE (1985-2008) ~ 0.05 – 0.1, 

Figure 20).  The quality of fit is slightly worse with the low variance growth curve (gr05) and 

higher CL data weighting (CL1010, CL1001).   

 All of the options produced a satisfactory fit to the longline size data (ESS ~ 900 – 1600), and 

none of the options produced a very good fit to the non-longline size data (ESS ~35-113) 

(Figure 21 - Figure 24). On the basis of the ESS, the PSFS fleet (with the most irregular 

bimodal catch pattern) was the best fit of the non-longline fleets, and least sensitive to the 

alternative assumptions.  Lower variance on the length-at-age function (gr05) was the most 

influential factor affecting the fit to the size composition data.  This is what might be 

expected given the rapid in-season growth of the juveniles and possibility of continuous 

recruitment.  The model is clearly doing a poor job of fitting the very small size classes, and 

this should really not be an important issue because we are reasonably comfortable 

assigning an age to these lengths.  This probably should have been handled by using fewer, 

aggregated length bins for the first age class. 

 The biomass and fishing mortality estimates among the different models show considerable 

variability (Figure 25 - Figure 27).  None of the models estimate BMSY to be exceeded (prior to 

the projection years), while 5 models suggest that F2008 > FMSY.  The tag recovery assumptions 

are the most influential with respect to the stock status estimates (higher overdispersion 

results in more pessimistic stock status interpretation).   
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 The slope of the least squares linear trend in the recruitment deviations over the period 

1985-2007 was calculated as an additional index of interest that reflects the systematic lack 

of fit to the stock recruitment relationship.  This reported value was converted to the 

percentage change from the beginning to the end of the time period, i.e. such that a value of 

-25 might be loosely interpreted as a systematic decline in recruitment of 25% between 

1985 and 2007, after accounting for the effect of changing spawning stock size.  Figure 28 

indicates that the distribution of this index closely resemble the biomass stock status 

estimates (i.e. the factors that drive the recruitment trend also increase B2008/BMSY). 

On the basis of these results, the decision was made to maintain the uncertainty in the tag 

overdispersion for the next stage of uncertainty quantification.  The other dimensions were reduced 

to a single option.  The broader length-at-age option, gr20, was maintained because, relative to 

gr05, it does a better job of admitting continuous recruitment and in-season growth, provides a 

better fit to the size composition data, and represents less of a constraint to the stock status indices.  

The stationary selectivity assumption was adopted because the temporal variability did not seem to 

resolve any problems and was computationally expensive (with potentially unreliable convergence).  

The size composition down-weighting option, CL0101, was adopted because the concerns about 

over-influential size data could not be reduced in any other way tested.    

 

Uncertainty Grid C – What are the implications of the key data and life history 

assumptions and how do they interact? 

A grid that encompasses the major elements of uncertainty for this stock was applied with a 

balanced design of 108 model specifications (Table 1), including:   

 3 X Tag recovery options (negative binomial overdispersion 2, 20, 200) 

 2 X Recruitment deviate options (sd(log(devs)) = 0.6, 0)  

 2 X CPUE series (no catchability trend, catchability trend of 0.47%/y) 

 3 X steepness option (h = 0.55, 0.75, 0.95) 

 3 X M vectors (M(age 2y+) = 0.32, 0.4, 0.48) 

 Other assumptions as defined in Table 1 and the Methods section 

The model summary diagnostics are disaggregated by the individual assumption options in Figure 29 

- Figure 37, from which we note the following points: 

 Neither the fit to the size composition nor the fit to the CPUE data provides much 

justification for selecting preferable scenarios among the grid C models: 

o The fit to the CPUE series is reasonable in all cases (Figure 29).  As would be 

expected, the models with estimated recruitment deviates (r6, RMSE ~0.04-0.07) fit 

somewhat better than the deterministic recruitment model (r0, RMSE ~0.08-0.14). 

o The fit to the LL size composition data is much better than the non-longline fleets, 

however, the difference in fit among model specifications is trivial for all of the 

model options (Figure 30-Figure 33). 

 Slightly more than half of the models suggest that B(2008)<BMSY, and slightly less than half 

the models suggest that F2008>FMSY (Figure 35 - Figure 34).  The more pessimistic scenarios 

are associated with higher tag overdispersion (t200), deterministic recruitment (r0), Effort 
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creep (EC47), lower steepness (h55) and lower M (M08).  Not surprisingly, the model options 

have similar relative effects on the MSY estimates (Figure 37). 

 With stochastic recruitment (r6), the models always estimate a downward trend in the 

deviations over time (sometimes exceeding 50%, Figure 39).  In all cases examined, the trend 

is anchored by a very large negative deviate in the last year (which cannot be justified on the 

basis of the size composition data).  In general, the same model options that lead to a more 

optimistic interpretation of stock status are also associated with larger trends in the 

recruitment deviations. 

 While one has to be careful interpreting the likelihoods in this context, there are some 

trends worth noting (Figure 40).  The objective function generally suggests a better fit for the 

more optimistic steepness (h95) and M (M12) options.  The catchability options are mixed 

(lowest and highest values are associated with effort creep EC47).  The intermediate 

overdispersion value was preferred for the tagging data (t20).  The comparison between the 

stochastic and deterministic recruitment options (r6, r0) is not very useful.   

To provide a further reference for assessing the plausibility of the different models, detailed results 

from two of the most productive (‘maxMSY’; MSY = 183000 t) and unproductive (‘minMSY’; MSY = 

89000 t) models were selected (assumptions defined in Table 1).  Figure 41 and Figure 42 illustrate 

the fit to the CPUE and tagging data for these two models.  As would be expected, the model with 

the estimated recruitment deviates (maxMSY) provides the better fit to the CPUE data; RMSE 

CPUE(1985-2008) = 0.03 vs 0.14.  But the more important question is whether the fit to the CPUE of 

minMSY is plausible?  The CPUE RMSE for minMSY is considerably higher than the assumed value in 

the model (0.05), but well within the bounds of what we would expect is reasonable for a relative 

abundance index derived from commercial CPUE.  minMSY predicts a long-term decline in 

abundance which is consistent with the CPUE, but there is a systematic failure to fit the final few 

years of relatively stable CPUE.  It would be difficult to reject outright minMSY on the basis of the 

CPUE, because this lack of fit is comfortably within the magnitude that can be attributed to 

observation error.  The tagging data also appear to be better fit for maxMSY than minMSY, which 

would be expected given the different assumed overdispersion values (combined with the difference 

in recruitment freedom).  However, none of the models provided a good fit to the seasonal 

variability in the tagging data, and it is not clear that we have enough confidence in the tagging data 

implementation to discriminate on this basis at this time.  The fit to the size composition data for 

these two models is even less informative (ESS values differ by less than 2 for all fisheries).  These 

plots are not shown, because they are almost identical to each other and the reference case (Figure 

17).  We would be inclined to conclude that the model fits to the data do not provide a sufficiently 

compelling criteria to choose between these models.  If we are prepared to accept that these two 

most extreme models are plausibly consistent with the data, then we can expect that other models 

can also be identified which span the range between the two.  

Stock Status 

The range of models represented in Grid C recognizes a considerable amount of uncertainty in the 

stock status.  The question is how much uncertainty is appropriate? 

Obviously some of the models defined in Grid C are closer to reality than others, but are we able to 

objectively choose among them (and have other important dimensions been left out?)  As in a 

classical Bayesian analysis, there are two basic ways to assign credibility to different options: 
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1) Prior weighting – experience from other fisheries systems has obviously helped to formulate 

the alternative models in the first place.  Can the different scenarios be weighted to reflect 

the prior beliefs of the analysts or broader WPTT?  There is obviously an element of 

subjectivity in this process.  But this is true in any model formulation and selection.  At least 

in this case the weightings are transparent and open to criticism. 

 

2) Likelihoods – what do the data tell us about the plausibility of the different models?  To 

weight the parameter estimates by the likelihood, we are assuming that the model is 

correct, and the data were generated according to a well-defined statistical process.  In this 

case that is exactly what we are doing within each model for some parameters (i.e. virgin 

recruitment, selectivity, LL catchability).  However, we tend to be sceptical about the 

capacity of the model to estimate many key parameters (e.g. steepness, M).  Sometimes a 

particular parameter (e.g. M) is freely estimated, and if the result is within prior expectations 

people tend to accept the result.  Otherwise they revert to the prior (which is equivalent to 

saying that they are always largely constrained by the prior).  Given the oversimplifications 

and dubious statistical assumptions in these models, some parameter estimates are always 

questionable.  Often the data appear to be very unlikely within the constraints of the model 

and this will pull a parameter estimate toward a very precise value (or bound), while 

common sense might suggest that, qualitatively, the fit to the important data sources does 

not seem all that different with alternative parameter values.  There is a further problem 

with the likelihood weighting in this case, in that it is simply not meaningful to compare all of 

these models (i.e. if we have fundamental doubts about the validity of the model to 

estimate year-class strength, the better likelihood for the stochastic recruitment model is 

not a reason for rejecting the deterministic recruitment model).   

We developed the current stock status estimates on the basis of only a prior weighting on the 

different model options.  The justification follows from consideration of the following points with 

respect to the five sets of assumption options in grid C: 

 Estimation of the stock recruitment deviations is problematic.  The models never fit the non-

longline fleet size composition data very well, the longline fleet is probably not very 

informative about year-class strength, selectivity is likely changing over time for some or all 

fleets, and the model does not seem to resolve the early growth pattern and length-at-age 

distribution very well.  Thus the prime justification for the stochastic recruitment comes 

from the CPUE series (with possibly a minor influence from the tags for the most recent 

recruits).  We weighted the two scenarios equally at this time, recognizing that the 

deterministic recruitment may lead to a more robust estimator given the size composition 

problems, but also admitting that the stochastic recruitment trends are possible, and 

required to explain the CPUE pattern.  Recruitment Variance summary weight: 

o r6 = 0.5  

o r0 = 0.5 

 

 We do not have a strong view of the validity of the effort creep scenario.  It is generally 

assumed that fleets would become more efficient over time, and Hoyle et al. (2009) provide 

evidence for this in the Pacific.  However, further analyses (Hoyle et al., 2010) were 
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inconclusive.  There are mechanisms that could undermine this assumption (e.g. changing 

target species, replacement of experienced crews and skippers during economic downturns, 

etc.).  The goodness of fit indices do not suggest that either catchability scenario is more 

consistent with the data.  In the absence of compelling evidence for effort creep, we would 

tend to favour the stable cachability scenario, but admit that effort creep remains a 

possibility.  Catchability option summary weight: 

o EC0 = 0.8  

o EC47 = 0.2 

 Stock recruitment curve steepness is generally difficult to estimate, especially if there is poor 

contrast in stock size.  There may also be physical or ecological factors driving long-term 

trends in recruitment productivity.  There is a certain self-reinforcing circularity in adopting 

values from other oceans (i.e. especially if the data are no better in these other fisheries).  

We would tend to give higher weight to the central steepness value, but not rule out the 

possibility of the higher or lower options (and note that the likelihood values tend to support 

the higher steepness).  Steepness summary weight: 

o h55 = 0.1  

o h75 = 0.7  

o h95 = 0.2  

 Subsequent to the initial analysis, definite biases in the processing of the tag data were 

identified, such that the lower tag weight is clearly preferable at this time (and removing the 

tags would be better yet).  Tag overdispersion summary weight:  

o t002 = 0.1  

o t020 = 0.3  

o t200 = 0.6 

 The different M options were all weighted equally. 

For this analysis, the best point estimates for biomass and fishing mortality reference points are 

presented as the mean of all 108 models in gridC, with each model weighted according to its specific 

combination of assumptions.  The uncertainty distribution is defined by the minimum and maximum 

of the MPD estimates from gridC (i.e. irrespective of the weighting).  In one sense it might be argued 

that this distribution overstates the uncertainty, because some of the models at the extreme may 

have a very low weighting.  Conversely, it might also be argued that the uncertainty distribution is 

under-estimated, because the most extreme models are actually MPD estimates, and the statistical 

uncertainty conditional on these models is ignored.  Using this method:  

 B2008/BMSY = 1.05 (0.64, 1.69) 

 F2008/FMSY = 0.91 (0.40, 1.78) 

The mean option-weighted time series for the biomass and fishing mortality reference points are 

shown in Figure 44, with the corresponding Kobe plot in Figure 45.  The Kobe-2 strategy matrix for 

the weighted results of grid C is presented in Table 3.   

Other members of the WPTT may be in a better position to comment on the proposed weighting 

scheme adopted, and the summary plots and matrices can easily be updated to reflect the 

deliberations of the WPTT as required.  However, it is not worth revisiting this issue unless/until the 

analysis can be updated with the new data and revised tagging assumptions.   
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4. Conclusions 
1. This analysis represents an extension of the 2009 BET stock assessments, including new fleet 

definitions, inclusion of the RTTP-IO, and an extensive exploration of model assumptions 

(and interactions among assumptions).  Unfortunately, the most recent year of data has not 

been included, and the implementation of the tagging data is biased in a known direction 

(but unknown magnitude).  If time permits, these issues will be addressed in a revised 

document before/during the WPTT.    

 

2. All of the models presented provided a reasonable fit to the CPUE series and the longline 

size compostion data.  However, despite attempts to define homogenous fleets with very 

flexible selectivity functions (including temporal variability), none of the models provided a 

satisfactory fit to the non-longline size data or the seasonal patterns in the tag data.  This 

raises a fundamental question of whether stochastic recruitment can be usefully estimated 

at this time. 

 

3. The relative credibility of the most influential assumptions in the model cannot really be 

quantified on the basis of the model fit to the data.  A subjective weighting scheme is 

proposed for synthesizing the results into stock status estimates and uncertainty 

distributions.  The central tendency of the results suggest that the stock is fully, but not 

over-exploited (near FMSY and BMSY), but the full range of results suggests that the stock 

status could be considerably more optimistic or pessimistic than the mean.  Furthermore, 

these conclusions are expected to be optimistic, given the known direction of the biases in 

the current tag implementation (though the magnitude of the bias and degree of influence 

of the tags is not known). 

 

4. A number of issues are identified for future assessments: 

 The use of the commercial longline CPUE series as a relative abundance index is critical 

to the assessment.  Any analyses that can help quantify the effects of changing 

catchability over time, or constructing realistic estimates of uncertainty around these 

series are very important.  It is noted that work undertaken in 2010 in Japan between 

the scientists of the Secretariat of the Pacific Community and the Far Seas Fishery 

laboratory has been fruitful for Pacific stocks (e.g. Hoyle et al., 2010).  Similar 

collaborative work is encouraged for the Indian Ocean. 

 

 Total fishery removals are probably the most important data in the stock assessment 

process.  Any efforts that improve the estimates (and uncertainty) of the removal data is 

valuable, and obvious points of concern include errors in the artisanal fleet catches and 

Purse Seine species composition sampling. 

  

 There are several avenues related to fitting the size composition data that can be 

attempted.  However, given the doubts about the stationary selectivity assumption in 

some fleets, it is not clear that these efforts will lead to obvious improvements in the 

estimates of year class strength in the assessment: 
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 Investigate the size composition data to better understand the statistical 

properties of the samples within and among years and fleets.  Combined with a 

spatial analysis, this may help improve the homogeneity of fleet definitions. 

 Revisit the mean growth equation in relation to the two stage growth curve 

estimated from tagging studies (this deviation from traditional growth curves 

cannot currently be represented in SS3 software). 

 Revisit the growth equation variance so that the predicted length-at-age 

distributions better represent the recruitment seasonality and within year 

growth, particularly for the youngest ages.   

 Depending on these analyses, it may prove useful to reformulate the seasonal 

representation of the SS3 model (e.g. to define model years as quarters to 

accommodate continuous recruitment, or to partition fleets by season if there is 

evidence for important seasonal changes in selectivity).  

 

 It is expected that ongoing analyses of the tagging data will be useful in multiple ways: 

 Estimates of F and M from independent tagging analyses (e.g. Brownie-Petersen 

estimators) should be compared with those derived from the integrated analysis 

to see if major discrepancies can be identified and resolved. 

 Estimates of movement from fine-scale analyses (e.g. advection-diffusion 

models) might help to determine the appropriate spatial structure of the 

assessment, and appropriate mixing times for tag releases. 

 

 Meta-analysis of other BET populations might help to constrain some of the model 

assumptions (recognizing that there is a risk of circular arguments). 

  

 While the emphasis on model selection uncertainty undertaken here probably provides 

a more realistic representation of the real assessment uncertainty, it is not clear how 

best to include this information in the management advice provided to the Commission.  

Management Strategy Evaluation is one possible avenue that can more fully exploit this 

representation of uncertainty.  In this context, this model, or something similar could be 

used as an operating model. 
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Table 1.  Model assumption combinations used in selected models and grids (where a grid represents the list of models 
with all possible combinations of the indicted options)  

 
Model Option 

Model or Grid 

ref reft002 reft200 opt pes Grid B  
(54 

models) 

Grid C 
(108 

models) 

Length-at-age 
Variance 

gr20 gr20 gr20 gr20 gr20 gr05 
gr20 

gr20 

Tag Recovery 
Overdispersion 

t020 
 

t002 
 

t200 
 

t002 
 

t200 
 

t002 
t020 
t200 

t002 
t020 
t200 

Selectivity sc sc sc sc sc sc 
st3 

st23 

sc 

Recruitment  
Deviations 

r6 r6 r6 r6 r0 r6 r0 
r6 

Catchability EC0 EC0 EC0 EC0 EC47 EC0 EC0 
EC47 

Stock-Recruit 
Steepness 

h75 h75 h75 h95 h55 h75 h55 
h75 
h95 

Natural 
Mortality 

M10 M10 M10 M08 M08 M10 M08 
M10 
M12 

Catch-at-
Length 

weighting 

CL0101 CL0101 CL0101 CL0101 CL0101 CL1010 
CL1001 
CL0101 

CL0101 
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Table 2.  Weighting scheme adopted for the 108 model scenarios represented in the Kobe-2 Strategy Matrix (Table 3).  

 Option Weighting 

Growth Curve Variance gr05  = 1.0   

Tag Overdispersion t002 = 0.1 t020 = 0.3 t200 = 0.6 

Selectivity sc = 1.0   

Recruitment sd(log(dev)) r0 = 0.5 r6 = 0.5  

Catchability EC0 = 0.8 EC47 = 0.2  

Steepness h55 = 0.1 h75 =0.7 h95 =0.2 

M M08 = 0.33 M10 = 0.33 M12 = 0.33 

Catch-at-Length weighting CL0101 = 1.0   
 

 

Table 3.  Kobe-2 Strategy Matrix indicating the estimated stock status implications of different constant catch strategies, 
with the assumptions described in grid C (Table 2). 

Stock status 

Reference  

Point 

Projection 

Time frame 

Weighted percentage of scenarios that violate the Reference Point  

C(2008) -40%  

 

C(2008) -20%  

 

 C(2008)   C(2008)+20%  C(2008)+40% 

P(Bt<Bmsy)  In 3 years 11 18 33 55 74 

In 10 years 

 

11 18 33 69 80 

P(Ft>Fmsy)  In 3 years <1 5 23 59 80 

In 10 years 

 

<1 5 23 62 80 
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Figure 1.  Regions used in the BET assessment for the definition of fleets. 

 

Figure 2.  Bigeye tuna catch in mass disaggregated by the areas shown in Figure 1.    
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Figure 3.  Bigeye tuna catch in mass (top) and numbers(bottom) disaggregated by fleet (PS=Purse Seine, LS=FAD-
associated, FS= Free School, LL=Longline, TWN=Taiwan, JPN=Japan, BB = bait boat, ART=Artisanal.     
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Figure 4. Bigeye tuna longline catch in mass over time for the Japanese (top) and Taiwanese (bottom) fleets, 
disaggregated by area. 
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Figure 5.  Bigeye tuna Purse Seine catch in mass over time for FAD-associated (top) and free school (bottom) sets, 
disaggregated by area. 
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Figure 6.  Catch partitioned by the 4 fleets adopted in this analysis.   
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Figure 7.  Summary of RTTP BET tag releases (red circles) and recoveries (black circles).  Full colour saturation indicates 
20+ tags.  The green arrow indicated the mean displacement of all recovered tags. 
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Figure 8.  Camparison of length-at-age relationships used in the models (left panel = gr05, right panel=gr20). 

 

Figure 9.  Assumed BET mortality (left) and maturity (right) schedules. 
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Figure 10.  Standardized JPN longline CPUE, and the effort creep scenario (linear 0.47%/y). 
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Figure 11.  Size composition data by fleet.  The left column represents the sum over time with all years weighted equally, 
right column represents the quarterly time series of mean length (with 95% CI for an assumed sample size of 200). 
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Figure 12.  Negative binomial probability density functions for 100 expected tag recoveries and range of overdispersion 
(τ) parameters  (2, 20, 200).  
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Figure 13.  Left panel:  Predicted (line) and observed (points) CPUE for the reference case.  Right panel:  Predicted (line) 
and observed (bars) tag recoveries for the PSLS fishery. 

 

Figure 14.  Left panel:  Predicted (line) and observed (points) CPUE for reft002 (reference case with increased tag 
influence).  Right panel:  Predicted (line) and observed (bars) tag recoveries for the PSLS fishery. 

 

Figure 15.  Left panel:  Predicted (line) and observed (points) CPUE for reft200 (reference case with decreased tag 
influence).  Right panel:  Predicted (line) and observed (bars) tag recoveries for the PSLS fishery. 
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Figure 16.  Estimated recruitment deviations (left panel), and stock recruitment relationship (right panel) for the 
reference case.  
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Figure 17.  Predicted (red) and observed (black) catch size composition for the reference model (left column is the 
aggregated distribution over time, right column is the time series of mean catch). 
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Figure 18.  Selectivity estimated for the reference case model. 
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Figure 19.  MPD Biomass and Fishing mortality time series (including 10 years of constant catch projections) for the 
reference case and models with increased (reft002) and decreased (reft200) influence of the tagging data.   refr0 
illustrates the reference case model without the estimation of recruitment deviations.  
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Figure 20.  Summary of model fit to the CPUE series for the 54 models from grid B, partitioned by the different 
assumptions. 
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Figure 21.  Summary of model fit to the LL fleet size composition data for the 54 models from grid B, partitioned by the 
different assumptions. 

 

Figure 22.  Summary of model fit to the PSFS fleet size composition data for the 54 models from grid B, partitioned by 
the different assumptions. 
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Figure 23.  Summary of model fit to the PSLS size composition data for the 54 models from grid B, partitioned by the 
different assumptions. 

 

Figure 24.  Summary of model fit to the Other fleet size composition data for the 54 models from grid B, partitioned by 
the different assumptions. 
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Figure 25.  Summary of current biomass status estimates from the 54 models from grid B, partitioned by the different 
assumptions. 

 

Figure 26.  Summary of current fishing mortality estimates from the 54 models from grid B, partitioned by the different 
assumptions. 
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Figure 27.  MPD biomass and fishing mortality time series estimates for the 54 models defined in grid B (including 10 
years of constant catch projections at C(2008).  
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Figure 28.  Summary of the recruitment deviation trend from the 54 models from gridB, partitioned by the different 
assumptions. 
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Figure 29.  Summary of model fit to the CPUE series for the 108 models from grid C, partitioned by the different 
assumptions.  Top 5 panels are the whole time series (1960-2008), bottom 5 panels are only the year with recruitment 
deviations estimated (1985-2008).   
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Figure 30.  Summary of model fit to the LL fleet size composition data for the 108 models from grid C, partitioned by the 
different assumptions. 

 

 

Figure 31.  Summary of model fit to the PSFS fleet size composition data for the 108 models from grid C, partitioned by 
the different assumptions. 
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Figure 32.  Summary of model fit to the PSLS  fleet size composition data for the 108 models from grid C, partitioned by 
the different assumptions. 

 

Figure 33.  Summary of model fit to the ‘Other’ fleet size composition data for the 108 models from grid C, partitioned 
by the different assumptions. 
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Figure 34.  MPD time series of biomass and fishing mortality from the 108 models from grid C, including 10 years of 
constant catch, C(2008), projections. 
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Figure 35.  Summary of current (2008) spawning stock biomass relative to BMSY from the 108 models from grid C, 
partitioned by the different assumptions. 

 

 

Figure 36.  Summary of the fishing mortality relative to FMSY from the 108 models from grid C, partitioned by the 
different assumptions. 
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Figure 37.  Summary of MSY estimates from the 108 models from grid C, partitioned by the different assumptions.   

 

 

Figure 38.  Summary of the recruitment deviation trend from the 108 models from grid C, partitioned by the different 
assumptions. 
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Figure 39.  Summary of the recruitment deviation trend from the 108 models from grid C, partitioned by the different 
assumptions. 

 

 

Figure 40.  Summary of the relative likelihood values  from the 108 models from grid C, partitioned by the different 
assumptions.  Note that not all likelihoods are directly comparable. 
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Figure 41.  Left panel:  Predicted (line) and observed (points) CPUE for the optimistic model maxMSY.  Right panel:  
Predicted (line) and observed (bars) tag recoveries for the PSLS fishery. 

 

 

Figure 42.  Left panel:  Predicted (line) and observed (points) CPUE for the pessimistic model minMSY.  Right panel:  
Predicted (line) and observed (bars) tag recoveries for the PSLS fishery. 
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Figure 43.  Conceptual illustration comparing statistical uncertainty (black lines, e.g. roughly corresponding to the 
Inverse Hessian multivariate normal estimates for models pes and opt) and the model selection uncertainty based on 
MPD modes (red line). 

 

Figure 44.  Time series of MSY reference point estimates from grid C, including 10 years of catch projections at 2008 
levels.  Thick black lines represent the weighted mean value across all 108 models.  Thin lines represent the most 
extreme MPD value from the 108 models.        
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Figure 45.  Kobe plot for grid C, using the authors proposed weighting scheme for model assumptions.  Black circles 
represent the weighted mean values for each year.  Blue squares indicate the MPD estimates for 2008 corresponding to 
each individual grid C model, with colour density proportional to the weighting (small black points indicate individual 
models which might not otherwise be visible).  
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Attachment 1: Update of the Indian Ocean Bigeye Tuna Stock 

Assessment, including the 2009 Data, and Revised Growth and Tag 

Recovery Assumptions  
 

Extended Summary 
This attachment briefly summarizes the update to the Indian Ocean BET assessment as conducted 

during the WPTT 2010.  The methods are essentially the same as in the main text, however, these 

results supersede the main text due to the following revisions: 

 New catch data series have been employed (1952-2009), largely unchanged except for the 

addition of 2009.   

 New size composition data series have been employed (1952-2009).  Attempts were made 

to derive a time series of effective sample size for the PS fleets, based on some assumptions 

of the sampling procedure (20% of fish sampled in a well, of which 5% are BET).  When this 

was done (including a further arbitrary downweighting by a factor of 10 for all strata), the 

sample size estimates were consistently extremely large (or 0) for all fleets.  Thus the upper 

limit of 200 was retained as described in the main text (and subjected to further down-

weigting in many cases).  However, about 30% of the original observations were removed, as 

they were the result of space/time substititutions in the 2009 data series.      

 The age-length relationship was reviewed and revised to match the Eveson and Million 

(2008) curve derived from the tagging data. However, SS3 has limited capacity to describe 

the inflection around age 2 in this curve.  This was partially accounted for in the model by 

aggregating the smallest size composition (<50cm) observations and predictions into a single 

bin.  This removes some of the information from the size composition data, but this is 

preferable to using a growth curve that is known to be grossly incorrect. 

 The length-based maturity vector was retained from the original text, but given the revision 

to the growth curve, the age of 50% maturity is older (~4 years).  

 New standardized CPUE series have been employed (1970-2009, Figure A1), largely 

unchanged except for the addition of 2009 (IOTC-2009-WPTT-29).  Notably, the trend over 

the final 5 years has actually reversed from upward to downward, but the distinction is 

probably not meaningful relative to the general level of noise in the series.   

 The treatment of the tag recovery data (including recoveries from 2009) has been revised to 

account for several biases in the estimated number of recaptures (and the revised growth 

equation).   

 Revised management advice is provided in a similar format to the main text.  The WPTT 

2010 was encouraged to review the proposed plausibility weightings for the different 

assessment options, but no specific changes were suggested. 

 A template of the SS3 Control.SS file is included in Attachment 3 to resolve any ambiguities 

in model specification.  Data and control files are archived with the IOTC secretariat. Table 4 

summarizes the main assumption interactions explored. 
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Revision of age-length relationship 

The von Bertalandffy growth equation used in the main text was compared with the function 

derived from the 2008 analysis of tagging data (Eveson and Million 2008, IOTC-2008-WPTT-09), and 

found to be considerably different (Figure 47).  The Richards model was adopted to achieve a 

considerably better, though still compromised fit (SS3 has limited growth options based on simple 

parameteric growth equations).  To minimize the effects of the growth curve deviation for ages 

younger than 2, all length observations smaller than 50cm were aggregated in a single bin.  The 

Eveson-Million growth curve was used for estimating ages of tagged fish.  There remains an 

inconsistency in the mass-at-age for the youngest ages that could not be addressed, but this is 

expected to have a trivial influence on the model overall.    

Revision of tag data 

The following points were addressed in the revised treatment of the tagging data: 

 Tag recovery data were included up to 2009 

 The tag release ages were re-estimated on the basis of the Eveson-Million (2008) growth 

curve. 

 The (instantaneous annual) tag shedding rate was assumed to be 0.024, with no initial 

shedding, as estimated by Gaertner and Hallier (2008). 

 The EU PS tag recoveries of unknown set type were re-distributed according to the total 

proportion of known FS and LS set types in the PSFS and PSLS fisheries (by quarter).   

 A correction term was applied to account for recaptures in the PSLS fleet from EU vessels 

that did not land in the Seychelles (the dominant port for landing and the only port with 

reliable tag reporting estimates).  The correction was derived from the aggregate across 

2005-2009.   

 A correction term was applied to account for recaptures in the PSLS fleet from non-EU 

vessels (these vessels do not land in the Seychelles).  The correction was derived from the 

aggregate across 2005-2009.   

 The small number of tags with unknown release length were removed from the analysis. 

 Tag recoveries from the assessment model non-mixing period were retained in the recovery 

dataset (and inflated according to the assumptions above).  These tag recoveries are 

removed from the tagged population, but are not fit in the objective function. 

The estimate for the total PSLS recaptures (where PSLS has the spatial and nation definition used in 

the assessment model) was calculated: 

 

where subscripts indicate fishery types (EU = European Union/Seychelles, LS=log set-type, 

unk=unknown set-type), and superscripts indicate recovery locations (sea = aboard the fishing 

vessel, SEZ = port of Seychelles), (time subscripts are omitted for readability): 

=estimated number of recaptures for all components of the PSLS fishery (for a particular time 

period),  
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accounts for the proportion of the PSLS recaptures that are not from the EU fleet, where P= 

0.86, was estimated as the proportion of PSLS catch from EU relative to PSLS catch from all nations 

(2005-9).  The average from individual quarters is similar at 0.87, with a range from 0.57 – 1.04 (the 

value can exceed 1.0 because of errors in conversion factors required to estimate total catches by 

nation)   

 accounts for the proportion of tags removed at sea, but not reported; r is assumed to be 1.0.   

 represents the number of recoveries at sea of known set-type LS from the recovery database. 

 is the proportion of tags recovered at sea of unknown set-type which are actually of set-type 

LS, estimated as the proportion of tags of known set-type LS recoveries at sea of all known set-type 

recoveries at sea summed over all years (=0.94).   

 is the number of recoveries from unknown set-types at sea from the recovery database. 

 is the scaling factor to account for the EU PSLS recaptures not moving through the port of 

Seychelles, estimated by the mean of the quarterly proportions of EU PSLS catch landed in the 

Seychelles relative to the total EU PSLS catch (2005-2008) = 0.85 (quarterly range of 0.57 – 0.97).  

accounts for the unreported tags from the EU PS landings in the Seychelles, where r is the 

annual reporting rate estimated from tag seeding experiments (with 2009 assumed to be equal to 

the 2008 provisional estimate of 0.9). 

represents the EU PS recoveries in the Seychelles of known set-type LS from the recovery 

database. 

 is the proportion of tags recovered in the port of Seychelles of unknown set-type which are 

actually type LS, estimated from the proportion of PSLS tags of known set-type recovered in the port 

of Seychelles = 0.91.   

  represents the EU PS recoveries in the port of Seychelles of unknown set-type from the 

recovery database. 

The coastal fleets on the east coast of Africa, i.e. in Kenya and Zanzibar,  have intercepted some tags 

near the release point, before they were fully mixed with the broader population, however reporting 

rates are largely unknown for these fleets.  This is an unknown, but probably small number of tags 

that also potentially bias the tag inferences (and would likely lead to an underestimate of the fishing 

mortality).   

 

Revisiting the interactions among the size sampling, selectivity and tag 

overdispersion assumptions  

Similar to the main text, an expanded grid of 144 models was fit to examine the interactions among 

length-at-age variance, selectivity, size composition sample assumptions, and the influence of the 

tag data:  
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 2 Length-at-age variance options (CV low, high) 

 8 Tag recovery options related to the incomplete mixing period and the negative binomial 

overdispersion parameter (τ).  Note that τ = 70 is consistet with recent WCPFC BET 

assessments (in which the input MULTIFAN-CL τ parameter is internally transformed by the 

addition of 50):  

o nt:  tags not used 

o t002:  τ = 2, 4 quarters of incomplete mixing 

o t020:  τ = 20, 4 quarters of incomplete mixing 

o  t070:  τ = 70, 4 quarters of incomplete mixing 

o  t200:  τ = 200, 4 quarters of incomplete mixing 

o  tODE:  τ estimated (~140-150 in cases examined), 4 quarters of incomplete mixing 

o M2t20:  τ = 20, 2 quarters of incomplete mixing  

o M2t70:  τ = 70, 2 quarters of incomplete mixing 

 3 PSLS selectivity assumptions (stationary, annual deviates for tagging years 2005-8, or 

annual deviates 1985-2008) 

 3 Catch-at-Length likelihood weights (approximate input sample size) (LL 200, PSLS 200), (LL 

200, PSLS 20), (LL 20, PSLS 20); in all cases PSFS and Other fisheries sample size is 20.  

 1 recruitment deviate option, SD(log(devs)) = 0.6 (annual recruitment deviates were 

estimated from 1985-2008)  

 1 CPUE series option (no catchability trend), sd(log(devs)) = 0.05 

 1 stock-recruitment steepness option (h = 0.75) 

 1 natural mortality vector M(age 2y+) = 0.4. 

Figure 48 - Figure 51 show the summary diagnostics of the fit to the CPUE, LL size composition and 

PSLS size composition, and the MSY estimates.  Conclusions are similar to those in the main text.  

Different combinations of these assumptions did not result in substantial differences in the fit to the 

CPUE or size composition data, except that the broad CV on length-at-age was probably preferable 

to the narrow CV (a large increase in the input effective sample sizes had only a trivial improvement 

in the quality of fit to the size composition data).  Assumptions related to the tagging data had the 

greatest influence on the stock productivity (MSY) estimates.  Notably (and perhaps counter-

intuitively) removal of the tagging data and the assumption of low overdispersion (τ = 2), resulted in 

similar, optimistic stock status interpretations, while intermediate-high overdispersion (τ = 20-200) 

resulted in more pessimistic stock status estimates.  This emphasizes that there is a fundamental 

qualitative difference between down-weighting the tagging data (i.e. assuming a reduced number of 

effective releases, or adding a co-efficient to the tag likelihood term) and increasing the 

overdispersion parameter.  The highest overdispersion values were dropped from further 

consideration (i.e. τ > 70), because these values assign a very high probability density to recaptures 

of 0.  The lowest rate of overdispersion (τ = 2) was also dropped because the quality of fit to the tags 

was never sufficient to suggest that the process approximates the ideal Poisson process.  Additional 

consideration is warranted on how to fit and evaluate the fit to the tagging data, and the 

appropriate mixing period.   There was also some variability in the fit to the PSLS size composition 

data in the most recent years.  This also seems to be related to conflicts with the tagging data, and 

merits further attention.  



63 

A representative range of these assumptions (most importantly spanning the range of plausible tag 

options) was carried forward into the stock status grid (below).     

 

The Updated Stock Status Grid 

As in the main text, the stock status grid of 288 models was intended to quantify the effects and 

interactions among a number of other fundamental life history assumptions that are known to be 

important and difficult to estimate.  The grid was similar to the main text, except that more options 

were included with respect to the tagging and size composition assumptions: 

 1 Length-at-age option (CV high) 

 4 Tag recovery options related to the incomplete mixing period and the negative binomial 

overdispersion parameter (τ):  

o nt:  tags not used 

o t020:  τ = 20, 4 quarters of incomplete mixing 

o t070:  τ = 70, 4 quarters of incomplete mixing 

o t70M2:  τ = 70, 2 quarters of incomplete mixing 

 1 PSLS selectivity assumption (stationary) 

 2 recruitment deviate option (SD(log(devs)) = 0.6, 0).  The latter was intended primarily to 

test whether year class strength was being strongly influenced by stationary selectivity 

assumptions, and to see if the model was using the flexibility in the poorly estimated recent 

recruits to reduce some other conflict.  

 2 CPUE options (no catchability trend, catchability trend of 0.47%/y) 

 3 steepness option (h = 0.55, 0.75, 0.95) 

 3 M vectors: M(age 2y+) = 0.32, 0.4, 0.48 

 2 Catch-at-Length input sample size assumptions (LL 200, PSLS 200) (LL 20, PSLS 20).  PSFS 

and Other fleets 20.  

The maximum posterior Density (MPD) estimates from these models indicate a broad range of 

uncertainty, including many plausible scenarios in which the BMSY and FMSY reference points were 

exceeded.  The more pessimistic interpretations were generally associated with the CPUE 

catchability trend, low stock-recruit steepness, low M, and full tag mixing after 2 quarters.  The 

likelihood of some of these assumptions cannot be compared within the context of the model (e.g. 

catchability trends, CL weighting, tag mixing periods).  Some parameters might be estimated in 

principle (e.g. M, steepness, growth), however experience with other stocks and simulations 

suggests that these estimates are frequently very poor.  For example, in these models, M estimates 

were doubtful because the youngest ages tended to have the lowest M; estimation of the variance 

on the length-at-age relationship resulted in the inference that a substantial portion of the fish 

shrink with age.   

Summary diagnostics from the stock status grid are presented in Figure 52 - Figure 56.  The fit to the 

CPUE and size composition data is similar to that described previously.  Figure 55 describes the slope 

of the recruitment deviate trend for the range of models, and suggests that i) as in the main text, 

there remains a trend in the recruitment deviates (if they are estimated), which may suggest a 

systematic lack of fit to the stock recruitment relationship, and ii) the magnitude of the trend is most 
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influenced by the tagging and CPUE catchability assumptions.  Qualitatively, it is evident that most of 

this trend is driven by the anomoulously low deviates in the most recent (poorly estimated) years 

(e.g. Figure 63), and the recruitment behaviour is generally better than the original analysis 

described in the main text. 

MSY-related reference points are partitioned by model assumption in Figure 56 - Figure 58.  Most of 

the assumptions have a non-trivial influence on the stock status estimates, with stock-recruit 

steepness being the most influential. Table 5 indicates the subjective, but transparent, scheme that 

was used to weight the results of the 288 models in the stock status grid (i.e. Bayesian posteriors 

equal to the priors), to provide a synthesis of results.  WPTT participants were encouraged to 

provide additional insight to revise the weightings, but no specific changes were proposed at the 

meeting.  The median, 5th and 95th percentiles of the biomass and fishing mortality time series are 

shown in Figure 59, along with the most extreme of the Maximum Posterior Density (MPD) 

estimates.  Key reference points are summarized in Table 6, and a Kobe plot is included in Figure 60.     

A Kobe-2 Strategy Matrix (management options decision table) is presented in Table 7, based on the 

following assumptions: 

 10 years with deterministic recruitment (from the stock recruitment relationship). 

 Constant catch with proportions distributed among fleets as in 2009.  

 5 catch levels at Catch(2009) -40%, -20%, +0%, +20%, +40%.    

There is a large degree of uncertainty in the stock status derived from this analysis, but this is not 

surprising given the uninformative ‘one way trip’ nature of the fishery to date, general uncertainty of 

life history parameters, and questionable validity of the PS stationary selectivity assumption.   

Example models  

Similar to the results in the main text, it was found that the different models fit the core features of 

most of the important data series reasonably well, as indexed by the summary diagnostics.  

However, since these diagnostics are not especially meaningful to those that are unfamiliar with 

them, or outside of the context of a specific set of models, more traditional, model-specific 

diagnostics are also provided to illustrate some key points (selected models are defined in Table 8).  

Fits to the CPUE series (Figure 61), and size composition data (Figure 62) are shown for two models 

with MSY estimates near the extremes of the observed range (biomass and fishing mortality time 

series are shown in Figure 65, illustrating that the management implications of the two models are 

very different).  The fits to the data are very similar, typical of the other models in the grid, and 

qualitatively illustrate that the data seem to be almost equally consistent with very different stock 

status interpretations.  The actual likelihood values may strongly differ for a visually similar quality of 

fit, however, as noted previously, not all models are directly comparable on the basis of the 

likelihoods.  For the models that are comparable in principle, a comparison of the likelihoods is 

useful, but we do not have enough confidence in the statistical properties of these sorts of fisheries 

models to accept a literal interpretation of the likelihood values.  The stock recruitment relationships 

are compared in Figure 63, and the problems noted in the original analysis seem to be reduced 

(though the low recent recruitment events are still questionable).  Figure 64 illustrates that the 

selectivity functions estimated for the optimistic and pessimistic models are very similar to each 

other and those from the main text. 
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The fit to the tagging data was consistently disappointing across a broad range of models.  Tag 

recovery fits are shown for the pessimistic model in Figure 66 (tags were not fit in the optimistic 

model).  Tag fits under a range of other assumptions are compared in Figure 67.  While the fit to the 

tagging data is qualitatively disappointing, it is not immediately obvious that the fit is worse than 

observed in other tuna fisheries.  We note that there are two important considerations in comparing 

the fit to the tags between these models and typical MULTIFAN-CL results (e.g. Langley et al. 2010, 

IOTC-2010-WPTT-23).  First, there are a large number of predicted and observed tags during the pre-

mixing period that are uninformative in the models, but are fit perfectly, and included in the 

MULTIFAN-CL summary graphics.  The effect of including the unmixed tags is shown for the 

pessimistic model in Figure 66 (and it is not obvious that it makes much difference in this case).  

Plotting only the fully mixed tags is clearly a more useful representation for the purposes of 

evaluating the quality of fit (though this may not be the only reason for plotting tags), and this is the 

convention adopted in Figure 67.  Second, most MULTIFAN-CL tuna applications estimate catches 

with an assumed error distribution.  This provides an extra degree of freedom that allows the model 

to partition the lack of fit to the tags between the tag recovery error and the catch prediction error 

(e.g. IOTC-2010-WPTT-23 illustrates YFT catch deviations of up to 40%, coinciding with individual tag 

recovery events in the PS fisheries).  While it is certainly possible that there could be large catch 

errors, it seems more likely that the bulk of the problem is attributable to problems with the tagging 

assumptions, at lest for the Indian Ocean PS fleets (note that catch deviations in later versions of the 

YFT assessment were more tightly constrained).    

Given the senstitivity of the stock status to the tag results, it is worth investing some effort to ensure 

that the tag data are treated properly (and the uncertainty is illustrated) i.e. i) noting the distinct 

difference between downweighting the likelihood and increasing overdispersion, ii) investigating the 

appropriate lag for the mixing period (and evidence for incomplete mixing across the whole Indian 

Ocean), and iii) properly accounting for seasonal variability in some of the tag recapture pre-

processing calculations.      

 

Priorities for the future 

One can easily improve the fit to the different data series by increasing the degrees of freedom in 

the model (e.g. adding non-stationary selectivity, spatial structure, etc.), however before doing this it 

is worth considering what one hopes to achieve.  Is more flexibility going to result in the extraction 

of useful information from the available data, in a way that makes any difference to the 

management advice, or is it simply going to introduce more uncertain parameters that obfuscate the 

important issues and make it more difficult to represent the uncertainty?  At this time, further 

tinkering with model structural assumptions is expected to be less productive than re-examining 

some of the fundamental inputs. The following is a proposed list for improvements, roughly in order 

of perceived priority:   

1. The assessment is highly dependent on the standardized Japanese CPUE series as a relative 

abundance index.  The Japanese LL fleet has had dramatic changes in spatial distribution of 

effort over time (in addition to other substantive operational changes), and it is doubtful 

that these effects are adequately accounted for in the standardization.  There is a large 

literature on this problem in tuna fisheries, and a number of approaches that have been 
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employed elsewhere should be used in the Indian Ocean as well.  It may not be possible to 

prove that a better CPUE series has been obtained, but it is easy to demonstrate a range of 

uncertainty associated with series derived from different plausible assumptions.  This key 

source of uncertainty needs to be reflected in the assessment.  

2. Fine-scale spatial analyses of the tagging, CPUE and size composition data should be 

undertaken to address a number of issues: i) homogeneity of fishery operations, (i.e. 

consistent operations are more likely to have stationary catchability/selectivity), ii) tag 

mixing rate assumptions (the assessment is sensitive to the choice of a 2 or 4 quarter mixing 

period – is there independent support for a better choice?), iii) homogeneity of the fish 

population (Is there any benefit to resolving the spatial sub-structure of the population?  Do 

we actually have enough data and the right modelling tools to resolve the spatial 

processes?).  

3. It might be possible to improve the tag recapture estimates by i) moving the non-EU catch 

from the PSLS (and PSFS) fishery to the ‘Other’ fishery, and ii) applying season-specific 

(rather than multiyear mean) correction factors for EU landings outside of the Seychelles. 

4. Improved resolution of the growth curve for fish of age less than 2 years.  This seems to 

require a modification to the SS3 software. 

5. Increased resolution of temporal processes (e.g. treating quarters as years) might be useful 

for representing seasonal spawning and higher resolution selectivity issues (e.g. the very 

sharp mode of age 1 fish in the PSLS selectivity).  However, this is most relevant for younger 

ages and probably not worth pursuing until the length-at-age representation can be 

improved for younger fish.  Furthermore, the main advantage that might be gained from this 

improvement is only realized in the context of a separable selectivity assumption in the PSLS 

fleet.  If the stationary selectivity assumption breaks down under closer scrutiny, then this 

approach is likely to introduce a heavy computational burden for no real benefit.  

6. It may be possible to re-estimate the growth curve parameters, particularly L(infinity), now 

that the RTTP tags have been at liberty for several years. 

7. The assessment is conditional on the assumption that the catch data are known without 

error.  This time series is obviously not perfect, and it is doubtful that one can estimate an 

improved catch series within the context of the model.  However, there may be reason to 

believe that the species composition estimates from the artisanal fleets are biased toward 

under-reporting of BET.  Alternative plausible estimates of the BET surface fishery catch 

should be explored to evaluate the total catch uncertainty.  If these alternative series are 

substantially different, then this uncertainty should be represented in the assessment. 
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Table 4.  Summary of assumption option abbreviations. 

Assumption Option 

Tag dynamics  
p=mixing period 
τ=overdispersion 

nt; tags are not fit  
t002;  p=4, τ=2 
t020; p=4, τ=20 
t070; p=4, τ=70 
t200; p=4, τ=200 
t20M2; p=2, τ=20 
t70M2; p=2, τ=70 
tODE; p=4, τ=estimated (~140-150 in results examined) 
 

Recruitment  
σ=sd(log(dev)) 

R6; σ=0.6  
R0; σ=0 (deviates not estimated) 

 

LL Catchability  EC0; no trend 
EC47; linear catchability increase at 0.47% / year  
 

Beverton-Holt SR 
Steepness (h) 

h55; h=0.55 
h75; h=0.75 
h95; h=0.95 
 

Natural Mortality Vector 
 

M08; 80% of Figure 9 (M(a2+)=0.32)  
M10; Figure 9 M(a=2+)=0.40  
M12; 120% of Figure 9 (M(a2+)=0.48) 
 

Catch-at-Length 
maximum input N  
(by fleet) 

CL1010; LL N=200, PSLS N=200; (PSFS N=20, Other N=20) 
CL1001; LL N=200, PSLS N=20; (PSFS N=20, Other N=20) 
CL0101; LL N=20, PSLS N=20; (PSFS N=20, Other N=20) 
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Table 5.  Weighting scheme for integrating the 288 models in the stock status grid. 

Assumption Option Weighting 

Tags (p=mixing period, 
τ=overdispersion) 

nt 
no tags 

0.5 

t020 
p=4, τ =20 

0.167 

t070 
p=4, τ=70  

0.167 

M2t70 
p=2, τ=70 

0.167 

Recruitment sd(log(dev)) R0 
σ=0 
0.5 

R6 
σ=0.6 

0.5 

  

Catchability  EC0 
no trend 

0.8 

EC47 
q increasing 

0.2 

  

SR Steepness  h55 
h=0.55 

0.1 

h75 
h=0.75 

0.7 

h95 
h=0.95 

0.2 

 

Natural Mortality  M08 
M(a=2+)=0.32 

0.33 

M10 
M(a=2+)=0.40 

0.33 

M12 
M(a=2+)=0.48 

0.33 

 

Catch-at-Length input N 
(LL, PSLS) 

CL1010 
N=200, 200 

0.5 

CL0101 
N=20, 20 

0.5 

  

 

Table 6.  Stock status summary table.  Percentiles are drawn from a cumulative frequency distribution of MPD values 
with models weighted as in Table 5. 

Reference Point median 5th and 95th percentiles MPD range 

SSB2009/SSBMSY 1.20 0.88 – 1.68 0.67 - 1.91 

F2009/FMSY 0.79 0.50 – 1.22 0.40 - 1.79 

MSY      (1000 t) 114 95 – 183 81 - 214 

SSB2009/SSB0 0.34 0.26 – 0.40 0.22 – 0.42 

SSB2009    (1000 t) 381 236 - 762 184 - 1150 
 

 

Table 7.  Kobe 2 Strategy matrix derived from the the stock status grid with models weighted as in Table 5.  

Stock status 

Reference  

Point 

Projection 

Time frame 

Weighted proportion of scenarios that violate the Reference Point  

C(2009) -40%  

 

C(2009) -20%  

 

 C(2009)   C(2009)+20%  C(2009)+40% 

P(Bt<BMSY)  In 3 years 0.19 

 

0.24 0.28 0.40 0.50 

In 10 years 

 

0.19 0.24 0.30 0.55 0.73 

P(Ft>FMSY)  In 3 years <0.01 

 

0.06 0.22 0.50 0.68 

In 10 years 

 

<0.01 

 

0.06 0.24 0.58 0.73 
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Table 8.  Grid assumptions from the example models (other assumptions are identical to each other and the other 
models described in the text). 

Assumption Example Model 

Optimistic Pessimistic 
 

Tag Fit Comparisons 

Tags (p=mixing period, 
τ=overdispersion) 

nt 
no tags 

 

t70M2 
p=2, τ =70 

 

t002; p=4, τ=2 
t020; p=4, τ=20 

t200; p=4, τ=200 
t20M2; p=2, τ=20 
tODE; p=4, τ=est. 

nt (no tags)  

Recruitment sd(log(dev)) R6 
σ=0.6 

 

R0 
σ=0 

 

R6 
σ=0.6 

 

Catchability  EC0 
no trend 

 

EC47 
q increasing 

 

EC0 
no trend 

 

SR Steepness  h95 
h=0.95 

 

h55 
h=0.55 

 

h75 
h=0.75 

 

Natural Mortality  M12 
M(a=2+)=0.48 

 

M08 
M(a=2+)=0.32 

 

M10 
M(a=2+)=0.40 

 

Catch-at-Length input N 
(LL, PSLS) 
(PSFS=20, Other=20) 

CL1010 
N=200, 200 

 

CL0101 
N=20, 20 

 

CL1010 
N=200, 200 
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Figure 46.  Comparison of standardized BET CPUE series calculated in 2009 and 2010. 

 

  

 

Figure 47.  Comparison of length-at-age relationships.  The Richards version replaces the Original-VB used in the main 
text.  Right panel indicates the 95 %iles of the preferred (gr20) length-at-age distribution.   
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Figure 48.  Summary of model fit to the CPUE series for the 144 models from the size/selectivity/tag interaction grid, 
partitioned by the different assumptions.  Model abbreviations in Table 4. 

 

 

Figure 49.  Summary of model fit to the LL size composition data for the 144 models from the size/selectivity/tag 
interaction grid, partitioned by the different assumptions. 



72 

 

Figure 50.  Summary of model fit to the PSLS size composition data for the 144 models from the size/selectivity/tag 
interaction grid, partitioned by the different assumptions. Model abbreviations in Table 4. 

 

 

Figure 51.  Summary of the MSY estimates for the 144 models from the size/selectivity/tag interaction grid, partitioned 
by the different assumptions. Model abbreviations in Table 4. 
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Figure 52.  Summary of model fit to the CPUE series for the 288 models from the stock status grid, partitioned by the 
different assumptions. Model abbreviations in Table 4.  

 

 

 

Figure 53.  Summary of model fit to the LL size composition data for the 288 models from the stock status grid, 
partitioned by the different assumptions. Model abbreviations in Table 4. 



74 

 

Figure 54.  Summary of model fit to the PSLS size composition data for the 288 models from the stock status grid, 
partitioned by the different assumptions. Model abbreviations in Table 4. 

 

 

Figure 55.  Summary of the linear trend (slope in %) in MPD recruitment deviates (1985-2009) for the 288 models from 
the stock status grid, partitioned by the different assumptions. Model abbreviations in Table 4. 
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Figure 56.  Summary of MSY MPD estimates for the 288 models from the stock status grid, partitioned by the different 
assumptions. Model abbreviations in Table 4. 

 

Figure 57.  Summary of SSB(2009)/SSB(MSY) MPD estimates for the 288 models from the stock status grid, partitioned 
by the different assumptions. Model abbreviations in Table 4. 
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Figure 58.  Summary of F(2009)/F(MSY) MPD estimates for the 288 models from the stock status grid, partitioned by the 
different assumptions. Model abbreviations in Table 4. 
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Figure 59.  Time series of MSY reference point estimates from the stock status grid, including 10 years of catch 
projections at 2009 levels.  Thick black lines represent the median MPD value from the weighted (Table 5) aggregate of 
288 models.  Thin black lines represent the 5

th
 and 95

th
 percentiles, and broken lines indicate the full MPD range.        

 

Figure 60.  Kobe plot for the 288 model stock status grid.  Black circles represent the time series of annual median values 
from the weighted (Table 5) stock status grid (white circle is 2009).  Blue squares indicate the MPD estimates for 2009 
corresponding to each individual grid C model, with colour density proportional to the weighting (each model is also 
indicated by a small black point, as the squares from highly downweighted models are not otherwise visible). 
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Figure 61. Predicted (line) and observed (points) fit to the LL CPUE series for two of the most optimistic (left) and 
pessimistic (right) models from the stock status grid. 

 

Figure 62. Predicted (red) and observed (black) fit to the size composition data for two of the most optimistic (left 2 
columns) and pessimistic (right 2 columns) models from the stock status grid.  Columns 1 and 3 represent the 
distributions aggregated over time, columns 2 and 4 represent the time series of mean size.  
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Figure 63. Estimated stock-recruitment relationships for the most optimistic (left) and pessimistic (right) models from 
the stock status grid. 

 

 

Figure 64.  Comparison of the estimated selectivity functions for the optimistic (left) and pessimistic (right) example 
models for the LL (top) and PSLS (bottom) fleets.  
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Figure 65. Biomass and fishing mortality time series from two of the most optimistic (black) and pessimistic (red) models 
from the stock status grid. 
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Figure 66.  Predicted (red broken lines) and observed (black solid lines) tag recoveries from the pessimistic example 
model.  Columns indicate tag recoveries including the period of incomplete mixing (2 quarters in this case) and are not 
informative in the model.  In the left panel, the un-mixed tags are removed from the predictions and observations, in 
the right panel the unmixed tags are included.   
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Figure 67.  Comparison of the predicted (red broken lines) and observed (black solid lines) fully mixed tag recoveries for 
a range of example models defined in Table 8.  Identical assumptions are used in all models except for the tag 
overdispersion parameter and the assumed period of complete mixing (options identified by the digits in the model 
name following ‘ref10’).   
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Attachment 2.  Template for the SS3 Control.SS file used for the analysis.  Different model options are flagged with ‘# 
xxx’ followed by the option identifier from xxx (e.g. ‘# xxx h75’ corresponds to steepness 0.75).  Individual model 
specifications are generated by removing the flags corresponding to the desired options. 

 

# templateControl.SS 
# SS3 control.SS template file used for the 2010 IO BET assessment 
# model options are flagged '# xxx' followed by the model option name 
# flags for the desired set of options need to be removed to run the model. 
1 #_N_Growth_Patterns 
1 #_N_Morphs_Within_GrowthPattern  
# 1 #_Morph_between/within_stdev_ratio (no read if N_morphs=1) 
# 1 #vector_Morphdist_(-1_in_first_val_gives_normal_approx) 
1 # 4 #  number of recruitment designs  
0 # recruitment interaction requested 
#GP seas pop 
 1 1 1 
# 1 2 1 
# 1 3 1 
# 1 4 1 
# 0 # N_movement_definitions goes here if pop > 1 
# 1.0 # first age that moves (real age at begin of season, not integer) 
# 1 1 1 2 4 10 # example move definition for seas=1, morph=1, source=1 dest=2, age1=4, age2=10 
2 #_Nblock_Designs 
5 5 # N_Blocks_per design 
1960 1988 1989 1993 1994 1998 1999 2003 2004 2009  
1960 1976 1977 1984 1985 1992 1993 2000 2001 2009  
0.5 #_fracfemale  
1 #_natM_type:_0=1Parm; 1=N_breakpoints;_2=Lorenzen;_3=agespecific;_4=agespec_withseasinterpolate 
2 #_N_breakpoints 
0 3 # age(real) at M breakpoints 
2 # GrowthModel: 1=vonBert with L1&L2; 2=vonBert with A0&Linf; 3=Richards; 4=readvector 
# note that Shono's growth curve replaced by Richards approximation to Eveson and Million 2008 
2 #_Growth_Age_for_L1 
8 #_Growth_Age_for_L2 (999 to use as Linf) ## changed from 20 to 15 (to 9-10 ? for the future ?) ## 
#try shifting one year to increase flexibility of getting yougest ages into the selectivity... 
#much better fit to PS for age-based selectivity, but note Maturity and M need to be shifted as well... 
#2 #_Growth_Age_for_L1 
#9 #_Growth_Age_for_L2 (999 to use as Linf) ## changed from 20 to 15 (to 9-10 ? for the future ?) ## 
0.1 #_SD_add_to_LAA (set to 0.1 for SS2 V1.x compatibility) 
#Shono used 0, but should see if alternates are better to admit growth effects of younger ages inflating CV 
#alternates not obviously better, but CV should be higher than 0.05 for in-season growth. 
0 #_CV_Growth_Pattern:  0 CV=f(LAA); 1 CV=F(A); 2 SD=F(LAA); 3 SD=F(A) 
1 #_maturity_option:  1=length logistic; 2=age logistic; 3=read age-maturity matrix by growth_pattern 
#_placeholder for empirical age-maturity by growth pattern 
1 #_First_Mature_Age 
1 #_fecundity option:(1)eggs=Wt*(a+b*Wt);(2)eggs=a*L^b;(3)eggs=a*Wt^b 
0 ### Hermaphroditism season ### 
3 #_parameter_offset_approach (1=none, 2= M, G, CV_G as offset from female-GP1, 3=like SS2 V1.x) 
1 #_env/block/dev_adjust_method (1=standard; 2=with logistic trans to keep within base parm bounds) 
#_growth_parms 
#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_minyr dev_maxyr dev_stddev Block Block_Fxn 
#Shono's M = M10 
# xxx M08 0.075 2 0.8 0.8 0 100            -5 0 0 0 0 0.5 0 0 # NatM_p_1_Fem_GP:1_ 
# xxx M10 0.075 2 1.0 1.0 0 100            -5 0 0 0 0 0.5 0 0 # NatM_p_1_Fem_GP:1_ 
# xxx M12 0.075 2 1.2 1.2 0 100            -5 0 0 0 0 0.5 0 0 # NatM_p_1_Fem_GP:1_ 
 -3 3 -0.91629 -0.91629 0 100 -5 0 0 0 0 0.5 0 0 # NatM_p_2_Fem_GP:1_ 
#Alternate M estimate overall scale (first) or initial slope (second) 
# 0.075 3.0 1 1 0 100    6 0 0 0 0 0.5 0 0 # NatM_p_1_Fem_GP:1_ 
# -3 3 -0.91 -0.91 0 100 7 0 0 0 0 0.5 0 0 # NatM_p_2_Fem_GP:1_ 
# from Shono 
# 10 80 75 75 0 100 -3 0 0 0 0 0.5 0 0 # L_at_Amin_Fem_GP_1_ 
# 90 170 169 169 0 100 -3 0 0 0 0 0.5 0 0 # L_at_Amax_Fem_GP_1_ 
# 0.1 0.35 0.32 0.32 0 100 -3 0 0 0 0 0.5 0 0 # VonBert_K_Fem_GP_1_ 
 
# VB Fit to Eveson 2008 growth curve for ages 2+ 
# 10 80 -3.65 -3.65 0 100 -3 0 0 0 0 0.5 0 0 # L_at_Amin_Fem_GP_1_ 
# 90 170 147.3 147.3 0 100 -3 0 0 0 0 0.5 0 0 # L_at_Amax_Fem_GP_1_ 
# 0.1 0.4 0.365 0.365 0 100 -3 0 0 0 0 0.5 0 0 # VonBert_K_Fem_GP_1_ 
 
# Richards Fit to Eveson 2008 growth curve for ages 2+ 
 10 80 49.5  49.5 0 100 -3 0 0 0 0 0.5 0 0 # L_at_Amin_Fem_GP_1_ 
 90 170 149.7 149.7 0 100 -3 0 0 0 0 0.5 0 0 # L_at_Amax_Fem_GP_1_ 
 0.1 0.4 0.4777 0.4777 0 100 -3 0 0 0 0 0.5 0 0 # VonBert_K_Fem_GP_1_ 
 0. 10000. 0.001 0.001 0 100 -3 0 0 0 0 0.5 0 0 # Richards exponent parm beta (=1/M in alternate parm) 
 
 
#Shono's CV first 
# xxx gr05    0.01 0.6 0.05 0.05 0 100 -5 0 0 0 0 0.5 0 0 # CV_young_Fem_GP_1_ #try alternates to account for growth 
# xxx gr05    -3 3 0 0 0 100           -5 0 0 0 0 0.5 0 0           # CV_old_Fem_GP_1_ #try alternates to account for growth 
# xxx gr20   0.01 60 0.2 0.2 0 100 -5 0 0 0 0 0.5 0 0 # _young_Fem_GP_1_ #try alternates to account for growth 
# xxx gr20   -3 3 -0.69 -0.69 0 100      -5 0 0 0 0 0.5 0 0  # _old_Fem_GP_1_ #try alternates to account for growth 
#Shono's length-weight relationship 
 -3 3 3.661e-005 3.661e-005 0 100 -1 0 0 0 0 0.5 0 0 # Wtlen1_Fem 
 2 4 2.901 2.901 0 100 -1 0 0 0 0 0.5 0 0 # Wtlen2_Fem 
 1 150 110.888 110.888 0 100 -1 0 0 0 0 0.5 0 0 # Mat50_Fem 
 -8 1 -0.25 -0.25 0 100 -1 0 0 0 0 0.5 0 0 # Mat_slope_Fem 
 0 2 1 1 0 100 -1 0 0 0 0 0.5 0 0 # Eggs1_Fem 
 -1 1 0 0 0 100 -1 0 0 0 0 0.5 0 0 # Eggs2_Fem 
 -4 4 0 0 -1 99 -3 0 0 0 0 0.5 0 0 # RecrDist_GP_1_ 
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 -4 4 0 0 -1 99 -3 0 0 0 0 0.5 0 0 # RecrDist_Area_1_ 
 -4 4 4 0 -1 99 -3 0 0 0 0 0.5 0 0 # RecrDist_Seas_1_ 
 -4 4 -4 0 -1 99 -3 0 0 0 0 0.5 0 0 # RecrDist_Seas_2_ 
 -4 4 -4 0 -1 99 -3 0 0 0 0 0.5 0 0 # RecrDist_Seas_3_ 
 -4 4 -4 0 -1 99 -3 0 0 0 0 0.5 0 0 # RecrDist_Seas_4_ 
 1 1 1 1 -1 99 -3 0 0 0 0 0.5 0 0 # CohortGrowDev 
# 0  #custom_MG-env_setup (0/1) 
# -2 2 0 0 -1 99 -2 #_placeholder for no MG-environ parameters 
# 0  #custom_MG-block_setup (0/1) 
# -2 2 0 0 -1 99 -2 #_placeholder for no MG-block parameters 
#_seasonal_effects_on_biology_parms 
 0 0 0 0 0 0 0 0 0 0 #_femwtlen1,femwtlen2,mat1,mat2,fec1,fec2,Malewtlen1,malewtlen2,L1,K 
# -2 2 0 0 -1 99 -2 #_placeholder for no seasonal MG parameters 
# -2 2 0 0 -1 99 -2 #_placeholder for no MG dev parameters 
# -4 # placeholder for #_MGparm_Dev_Phase 
#_Spawner-Recruitment 
1 #_SR_function 
#_LO HI INIT PRIOR PR_type SD PHASE 
 0 35 14 14 0 10 1 # SR_R0 ## changed from 15 to 14 ## 
# xxx h55 0.201 0.99 0.55 0.55 0 10 -2 # SR_steepness  
# xxx h75 0.201 0.99 0.75 0.75 0 10 -2 # SR_steepness  
# xxx h95 0.201 0.99 0.95 0.95 0 10 -2 # SR_steepness  
  0 10 0.6 0.6 0 10 -6 # SR_sigmaR 
 -5 5 0 0 0 1 -3 # SR_envlink 
 -5 5 0 0 0 1 -4 # SR_R1_offset ## changed from -4 (fixed) to 1 (estimated) ## 
 0 0.5 0 0 -1 99 -2 # SR_autocorr 
0 #_SR_env_link 
0 #_SR_env_target_0=none;1=devs;_2=R0;_3=steepness  
# xxx r0   0 #do_recdev:  0=none; 1=devvector; 2=simple deviations 
# xxx r6   1 #do_recdev:  0=none; 1=devvector; 2=simple deviations 
1985 # first year of main recr_devs; early devs can preceed this era 
2008 # last year of main recr_devs; forecast devs start in following year (from 2008 to 2007) 
4 #_recdev phase  
1 #0 # (0/1) to read 11 advanced options 
0 #_recdev_early_start (0=none; neg value makes relative to recdev_start) 
-4 #_recdev_early_phase 
-10 #_forecast_recruitment phase (incl. late recr) (0 value resets to maxphase+1) 
1 #_lambda for prior_fore_recr occurring before endyr+1 
960 #_last_early_yr_nobias_adj_in_MPD 
1492 #_first_yr_fullbias_adj_in_MPD 
2008 #_last_yr_fullbias_adj_in_MPD 
2009 #_first_recent_yr_nobias_adj_in_MPD 
1 #_max_bias_adj_in_MPD 
0 # period of cycle in recruitment  
-15 #min rec_dev 
15 #max rec_dev 
0 #_read_recdevs 
#_end of advanced SR options 
#Fishing Mortality info  
0.2 # F ballpark for tuning early phases ## changed from 0.1 to 0.4 ## 
2000 # F ballpark year(neg value to disable) 
3 # F_Method:  1=Pope; 2=instan. F; 3=hybrid (hybrid is recommended) ## changed from 1 to 3 ## 
8 # max F or harvest rate, depends on F_Method ## We can changed from 0.99 to 4 if F_method is hyblid(3) ## 
# no additional F input needed for Fmethod 1 
# read overall start F value; overall phase; N detailed inputs to read for Fmethod 2 
9 # read N iterations for tuning for Fmethod 3 (recommend 3 to 7) 
# Fleet Year Seas F_value se phase (for detailed setup of F_Method=2) 
#_initial_F_parms 
#_LO HI INIT PRIOR PR_type SD PHASE ## changed the following maximum values from 0.9 to 3.99 ## 
# Shono's initial parms  and warning... 
# 0 3.99 0.76543 0.76543 0 100  -1 # InitF_1_LL (longline) ## changed initial value from 0.07654 to 0.76543 ## 
# 0 3.99 0.00012 0.00012 0 100  -1 # InitF_2_PS (purse seine) 
# Please be careful about the above values for initial F. 
# alternates...why did Shono not free it up??? 
 0 3.99 0.0 0.0   0 100  1 # InitF_1_LL (longline) ## changed initial value from 0.07654 to 0.76543 ## 
 0 3.99 0.0 0.0   0 100  1 # InitF_2_PSFS  
 0 3.99 0.0 0.0   0 100  1 # InitF_3_PSLS  
 0 3.99 0.0 0.0   0 100  1 # InitF_4_Other 
                                            
#_Q_setup 
 # A=do power, B=env-var, C=extra SD, D=devtype(<0=mirror, 0/1=none, 2=cons, 3=rand, 4=randwalk); E=0=num/1=bio, F=err_type 
 #_A  B  C  D  E  F ## change the following values of error-type from 0 to 30 for the future ## 
 0 0 0 0 1 0 
 0 0 0 0 1 0 
 0 0 0 0 1 0 
 0 0 0 0 1 0 
 0 0 0 0 0 0 
 # 0 #_0=read one parm for each fleet with random q; 1=read a parm for each year of index 
#_Q_parms(if_any) 
# # Double normal size selectivity option 
# # Start Size Sel Block  
# #_size_selex_types 
# #_Pattern Discard Male Special 
# 24 0 0 0 # 1 
# 24 0 0 0 # 2 
# 24 0 0 0 # 3 
# 24 0 0 0 # 4 
# 5  0 0 1 # 1 
# #_age_selex_types 
# #_Pattern Discard Male Special 
# 10 0 0 0 # 1 
# 10 0 0 0 # 2 
# 10 0 0 0 # 3 
# 10 0 0 0 # 4 
# 10 0 0 0 # 5 
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# #_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_minyr dev_maxyr dev_stddev Block Block_Fxn 
# # 1. LL (longline) 
# #Begin double normal time sel time series with replacment block 
# #double normal for fishery 1 
# # LO HI INIT PRIOR PR_type SD PHASE 
# #50 200 100 100  1 99 3  0 0 0 0 0.5 2 2 # SizeSel_1P_f1 and JPN CPUE  
# #-6 4 -3    -3   1 99 3  0 0 0 0 0.5 2 2 # SizeSel_1P_2_ 
# #-1 9 8.3   8.3  1 99 3  0 0 0 0 0.5 2 2 # SizeSel_1P_3_ 
# #-1 9 4      4   1 99 3  0 0 0 0 0.5 2 2 # SizeSel_1P_4_ 
# #-15 -5 -10 -1   1 99 -3 0 0 0 0 0.5 2 2 # SizeSel_1P_5_ 
# #-5 9 1.7   -1   1 99 3  0 0 0 0 0.5 2 2 # SizeSel_1P_6_ 
# ##-15 -5 -999 -1   1 99 -3 0 0 0 0 0.5 2 2 # SizeSel_1P_5_ 
# ##-5 9   -999 -1   1 99 -3  0 0 0 0 0.5 2 2 # SizeSel_1P_6_ 
# # 
# ##double normal for fishery 2 time block 1 (element 14: 0=multiplicative, 1=additive, 2=replace) 
# #15 200 40 40  1 99 3  0 0 0 0 0.5 1 2 # SizeSel_1P_1_f2  
# #-6 4 -5    -5   1 99 3  0 0 0 0 0.5 1 2 # SizeSel_1P_2_ 
# #-1 9 8.3   8.3  1 99 3  0 0 0 0 0.5 1 2 # SizeSel_1P_3_ 
# #-1 9 4      4   1 99 3  0 0 0 0 0.5 1 2 # SizeSel_1P_4_ 
# #-15 5 -10 -1   1 99 3 0 0 0 0 0.5 1 2 # SizeSel_1P_5_ 
# #-15 9 -10   -1   1 99 3  0 0 0 0 0.5 1 2 # SizeSel_1P_6_ 
# # 
# ##double normal for survey 1 
# #-5 3 1 -4     1 0.05 -3 0 0 0 0 0.5 0 0 # size sel mirror p1 f3 
# #-5 3 -1 -4     1 0.05 -3 0 0 0 0 0.5 0 0 # size sel mirror p2 f3 
# # 
# #1 #custom block set up 
# ##double normal for fishery 1 time blocks with block Fxn=replacement 
# #15 200 100 100  1 99 3  # SizeSel_1P_1_f2  
# #15 200 100 100  1 99 -3  # SizeSel_1P_1_f2  
# #15 200 100 100  1 99 -3  # SizeSel_1P_1_f2  
# #15 200 100 100  1 99 -3  # SizeSel_1P_1_f2  
# #15 200 100 100  1 99 -3  # SizeSel_1P_1_f2  
# #-6 4 -3    -3   1 99 3  # SizeSel_1P_2_ 
# #-6 4 -3    -3   1 99 -3  # SizeSel_1P_2_ 
# #-6 4 -3    -3   1 99 -3  # SizeSel_1P_2_ 
# #-6 4 -3    -3   1 99 -3  # SizeSel_1P_2_ 
# #-6 4 -3    -3   1 99 -3  # SizeSel_1P_2_ 
# #-1 9 8.3   8.3  1 99 3  # SizeSel_1P_3_ 
# #-1 9 8.3   8.3  1 99 -3  # SizeSel_1P_3_ 
# #-1 9 8.3   8.3  1 99 -3  # SizeSel_1P_3_ 
# #-1 9 8.3   8.3  1 99 -3  # SizeSel_1P_3_ 
# #-1 9 8.3   8.3  1 99 -3  # SizeSel_1P_3_ 
# #-1 9 4      4   1 99 3  # SizeSel_1P_4_ 
# #-1 9 4      4   1 99 -3  # SizeSel_1P_4_ 
# #-1 9 4      4   1 99 -3  # SizeSel_1P_4_ 
# #-1 9 4      4   1 99 -3  # SizeSel_1P_4_ 
# #-1 9 4      4   1 99 -3  # SizeSel_1P_4_ 
# #-15 -5 -10 -1   1 99  -3 # SizeSel_1P_5_ 
# #-15 -5 -10 -1   1 99  -3 # SizeSel_1P_5_ 
# #-15 -5 -10 -1   1 99  -3 # SizeSel_1P_5_ 
# #-15 -5 -10 -1   1 99  -3 # SizeSel_1P_5_ 
# #-15 -5 -10 -1   1 99  -3 # SizeSel_1P_5_ 
# #-5 9 1.7   -1   1 99 3  # SizeSel_1P_6_ 
# #-5 9 1.7   -1   1 99 -3  # SizeSel_1P_6_ 
# #-5 9 1.7   -1   1 99 -3  # SizeSel_1P_6_ 
# #-5 9 1.7   -1   1 99 -3  # SizeSel_1P_6_ 
# #-5 9 1.7   -1   1 99 -3  # SizeSel_1P_6_ 
# # 
# ##double normal for fishery 2 time blocks with block Fxn=replacement 
# #15 200 40 40    1 99 3  # SizeSel_1P_1_f2  
# #15 200 40 40    1 99 -5  # SizeSel_1P_1_f2  
# #15 200 40 40    1 99 -5  # SizeSel_1P_1_f2  
# #15 200 40 40    1 99 -5  # SizeSel_1P_1_f2  
# #15 200 40 40    1 99 -5  # SizeSel_1P_1_f2  
# #-6 4 -5    -5   1 99 3  # SizeSel_1P_2_ 
# #-6 4 -5    -5   1 99 -5  # SizeSel_1P_2_ 
# #-6 4 -5    -5   1 99 -5  # SizeSel_1P_2_ 
# #-6 4 -5    -5   1 99 -5  # SizeSel_1P_2_ 
# #-6 4 -5    -5   1 99 -5  # SizeSel_1P_2_ 
# #-1 9 8.3   8.3  1 99 3  # SizeSel_1P_3_ 
# #-1 9 8.3   8.3  1 99 -5  # SizeSel_1P_3_ 
# #-1 9 8.3   8.3  1 99 -5  # SizeSel_1P_3_ 
# #-1 9 8.3   8.3  1 99 -5  # SizeSel_1P_3_ 
# #-1 9 8.3   8.3  1 99 -5  # SizeSel_1P_3_ 
# #-1 9 4      4   1 99 3  # SizeSel_1P_4_ 
# #-1 9 4      4   1 99 -5  # SizeSel_1P_4_ 
# #-1 9 4      4   1 99 -5  # SizeSel_1P_4_ 
# #-1 9 4      4   1 99 -5  # SizeSel_1P_4_ 
# #-1 9 4      4   1 99 -5  # SizeSel_1P_4_ 
# #-15 5 -10 -1   1 99  3 # SizeSel_1P_5_ 
# #-15 5 -10 -1   1 99  -5 # SizeSel_1P_5_ 
# #-15 5 -10 -1   1 99  -5 # SizeSel_1P_5_ 
# #-15 5 -10 -1   1 99  -5 # SizeSel_1P_5_ 
# #-15 5 -10 -1   1 99  -5 # SizeSel_1P_5_ 
# #-15 9  -10  -1   1 99 3  # SizeSel_1P_6_ 
# #-15 9  -10  -1   1 99 -5  # SizeSel_1P_6_ 
# #-15 9  -10  -1   1 99 -5  # SizeSel_1P_6_ 
# #-15 9  -10  -1   1 99 -5  # SizeSel_1P_6_ 
# #-15 9  -10  -1   1 99 -5  # SizeSel_1P_6_ 
# #2 # selparm_adjust_method 1=direct, 2=logistic transform...seems to be ignored for replacement blocks 
# ##End double normal time sel time series with replacment block 
# #Begin double normal time sel time series with multiplicative devs block 
# #double normal for fishery 1 
# # LO HI INIT PRIOR PR_type SD PHASE 
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# 50 200 100 100  1 99 2  0 0 0 0 0.5 2 0 # SizeSel_1P_f1 and JPN CPUE  
#- 6 4 -1    -1   1 99 2  0 0 0 0 0.5 2 0 # SizeSel_1P_2_ 
#- 1 9 7      7  1 99 2  0 0 0 0 0.5 2 0 # SizeSel_1P_3_ 
#- 1 9 8      8   1 99 2  0 0 0 0 0.5 2 0 # SizeSel_1P_4_ 
#- 15 -5 -10 -1   1 99 -3 0 0 0 0 0.5 2 0 # SizeSel_1P_5_ 
#- 5 9 -1   -1   1 99 2  0 0 0 0 0.5 2 0 # SizeSel_1P_6_ 
# #-15 -5 -999 -1   1 99 -3 0 0 0 0 0.5 2 2 # SizeSel_1P_5_ 
# #-5 9   -999 -1   1 99 -3  0 0 0 0 0.5 2 2 # SizeSel_1P_6_ 
# #double normal for fishery 2 time block 1 (element 14: 0=multiplicative, 1=additive, 2=replace) 
# 15 200 40 40  1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_1_f2  
#- 6 4 -5    -5   1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_2_ 
#- 1 9 8.3   8.3  1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_3_ 
#- 1 9 4      4   1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_4_ 
#- 15 5 -10 -1   1 99 3 0 0 0 0 0.5 1 0 # SizeSel_1P_5_ 
#- 15 9 -10   -1   1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_6_ 
# #double normal for fishery 3 time block 1 (element 14: 0=multiplicative, 1=additive, 2=replace) 
# 15 200 40 40  1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_1_f2  
#- 6 4 -5    -5   1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_2_ 
#- 1 9 8.3   8.3  1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_3_ 
#- 1 9 4      4   1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_4_ 
#- 15 5 -10 -1   1 99 3 0 0 0 0 0.5 1 0 # SizeSel_1P_5_ 
#- 15 9 -10   -1   1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_6_ 
# #double normal for fishery 4 time block 1 (element 14: 0=multiplicative, 1=additive, 2=replace) 
# 15 200 40 40  1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_1_f2  
#- 6 4 -5    -5   1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_2_ 
#- 1 9 8.3   8.3  1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_3_ 
#- 1 9 4      4   1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_4_ 
#- 15 5 -10 -1   1 99 3 0 0 0 0 0.5 1 0 # SizeSel_1P_5_ 
#- 15 9 -10   -1   1 99 3  0 0 0 0 0.5 1 0 # SizeSel_1P_6_ 
# #double normal for survey 1 
#- 5 3 1 -4     1 0.05 -3 0 0 0 0 0.5 0 0 # size sel mirror p1 f1 
#- 5 3 -1 -4     1 0.05 -3 0 0 0 0 0.5 0 0 # size sel mirror p2 f1 
# 1 #custom block set up 
# #double normal for fishery 1 time blocks with block Fxn=replacement 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
# #double normal for fishery 2 time blocks with block Fxn=replacement 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
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# #double normal for fishery 3 time blocks with block Fxn=replacement 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
# #double normal for fishery 4 time blocks with block Fxn=replacement 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
#- 10 10 0 0 1 99 -5 
# #End double normal time sel time series with mulitplicative devs block 
# 1 # selparm_adjust_method 1=direct, 2=logistic transform 
# Start Age sel Block  
#_size_selex_types 
#_Pattern Discard Male Special 
 0 0 0 0 # 1 
 0 0 0 0 # 2 
 0 0 0 0 # 3 
 0 0 0 0 # 4 
 0 0 0 0 # 5 
#_age_selex_types 
#_Pattern Discard Male Special 
 17 0 0 0 # 1 
 17 0 0 0 # 2 
 17 0 0 0 # 3 
 17 0 0 0 # 4 
 15 0 0 1 # 5 
#_LO HI INIT PRIOR PR_type SD PHASE env-var use_dev dev_minyr dev_maxyr dev_stddev Block Block_Fxn 
## 1. LL (longline) 
# 
# fishery 1 #max age 15 
# LO HI INIT PRIOR PR_type SD PHASE 
-1000 -1000 -1000 -1000 1 99 -3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
#0 0 0 0                 1 99 -3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 .1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 .1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 .1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 0 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 0 0 1 99 -3 0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 0 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 0 0 1 99 -3 0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 -.1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 0 0 1 99 -3 0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
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-5 9 0 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSel_1P_f1 and JPN CPUE  
# fishery 2 #max age 15 
# LO HI INIT PRIOR PR_type SD PHASE 
#-1000 -1000 -1000 -1000 1 99 -3  0 0 0 0 0.5 0 0 # AgeSelf2  
 0 0 0 0                 1 99 -3  0 0 0 0 0.5 0 0 # AgeSelf2  
-5 9 .1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 .1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 0 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 -.1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 -.1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# fishery 3 #max age 15 
# LO HI INIT PRIOR PR_type SD PHASE 
#-1000 -1000 -1000 -1000 1 99 -3  0 0 0 0 0.5 0 0 # AgeSelf2  
# xxx sc   0 0 0 0                 1 99 -3  0 0 0 0 0.5 0 0 # AgeSelf2  
# xxx sc  -5 9 .1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
# xxx sc  -5 9 .1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
# xxx sc  -5 9 0 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
# xxx sc  -5 9 -.1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
# xxx sc  -5 9 -.1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeS 
# xxx sc  -5 9 0 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
# xxx sc  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx sc  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSe 
# xxx sc  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx sc  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSe 
# xxx sc  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx sc  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx sc  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx sc  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx sc  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# fishery 3 #max age 15 
# LO HI INIT PRIOR PR_type SD PHASE 
#-1000 -1000 -1000 -1000 1 99 -3  0 0 0 0 0.5 0 0 # AgeSelf2  
# xxx st23  0 0 0 0                 1 99 -3  0 0 0 0 0.5 0 0 # AgeSelf2  
# xxx st23  -5 9 .1 0 1 99 3  0 1 1985 2008 0.6 0 0 # AgeSel with devs   
# xxx st23  -5 9 .1 0 1 99 3  0 1 1985 2008 0.6 0 0 # AgeSel with devs   
# xxx st23  -5 9 .1 0 1 99 3  0 1 1985 2008 0.6 0 0 # AgeSel with devs   
# xxx st23  -5 9 .1 0 1 99 3  0 1 1985 2008 0.6 0 0 # AgeSel with devs   
# xxx st23  -5 9 .1 0 1 99 3  0 1 1985 2008 0.6 0 0 # AgeSel with devs   
# xxx st23  -5 9 .1 0 1 99 3  0 1 1985 2008 0.6 0 0 # AgeSel with devs   
# xxx st23  -5 9 .1 0 1 99 3  0 1 1985 2008 0.6 0 0 # AgeSel with devs   
# xxx st23  -5 9 .1 0 1 99 3  0 1 1985 2008 0.6 0 0 # AgeSel with devs   
# xxx st23  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx st23  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSe 
# xxx st23  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx st23  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx st23  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx st23  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx st23  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# fishery 3 #max age 15 
# LO HI INIT PRIOR PR_type SD PHASE 
#-1000 -1000 -1000 -1000 1 99 -3  0 0 0 0 0.5 0 0 # AgeSelf2  
# xxx st3  0 0 0 0                 1 99 -3  0 0 0 0 0.5 0 0 # AgeSelf2  
# xxx st3  -5 9 .1 0 1 99 3  0 1 2005 2008 0.6 0 0 # AgeSel with devs   
# xxx st3  -5 9 .1 0 1 99 3  0 1 2005 2008 0.6 0 0 # AgeSel with devs   
# xxx st3  -5 9 .1 0 1 99 3  0 1 2005 2008 0.6 0 0 # AgeSel with devs   
# xxx st3  -5 9 .1 0 1 99 3  0 1 2005 2008 0.6 0 0 # AgeSel with devs   
# xxx st3  -5 9 .1 0 1 99 3  0 1 2005 2008 0.6 0 0 # AgeSel with devs   
# xxx st3  -5 9 .1 0 1 99 3  0 1 2005 2008 0.6 0 0 # AgeSel with devs   
# xxx st3  -5 9 .1 0 1 99 3  0 1 2005 2008 0.6 0 0 # AgeSel with devs   
# xxx st3  -5 9 .1 0 1 99 3  0 1 2005 2008 0.6 0 0 # AgeSel with devs   
# xxx st3  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx st3  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSe 
# xxx st3  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx st3  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx st3  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx st3  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# xxx st3  -5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# fishery 4 #max age 15 
# LO HI INIT PRIOR PR_type SD PHASE 
#-1000 -1000 -1000 -1000 1 99 -3  0 0 0 0 0.5 0 0 # AgeSelf2  
 0 0 0 0                 1 99 -3  0 0 0 0 0.5 0 0 # AgeSelf2  
-5 9 .1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 .1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 0 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 -.1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 -.1 0 1 99 3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
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-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeSe 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
-5 9 0 0 1 99 -3  0 0 0 0 0.5 0 0 # AgeS 
# survey age mirror parms not req'd? 
# End Age Sel Block  
# 0 #_custom_sel-env_setup (0/1)  
# -2 2 0 0 -1 99 -2 #_placeholder when no enviro fxns 
# 0 #_custom_sel-blk_setup (0/1)  
# -2 2 0 0 -1 99 -2 #_placeholder when no block usage 
# xxx st23 4 # selparm_Dev_Phase 
# xxx st23 1 # selparm_adjust_method 1=direct, 2=logistic transform 
# xxx st3 4 # selparm_Dev_Phase 
# xxx st3 1 # selparm_adjust_method 1=direct, 2=logistic transform 
# Tag loss and Tag reporting parameters go next 
#0  # TG_custom:  0=no read; 1=read if tags exist 
# -6 6 1 1 2 0.01 -4 0 0 0 0 0 0 0  #_placeholder if no parameters 
# Tag loss and Tag reporting parameters go next 
1 # TG_custom:  0=no read; 1=read 
#tag loss parameter - for each tag grp  
# -10 10 9 9 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
# chronic tag loss - for each tag group 
# -10 10 9 9 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
# Overdispersion  for the negative binomial for each tag group 
# 1 10 200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
#tag loss parameter - for each tag grp  
# -10 10 9 9 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
#set to negligible value 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ by release group what is the parameter definition; what is 1,2,3 ?! 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_2_ presumably log-scale hence very low 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_2_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_2_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_2_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_2_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_2_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_2_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_2_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_2_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_3_ 
 -15 10 -10 -10 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_init_1_ 
# chronic tag loss - for each tag group 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ by release group what is the parameter definition? 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ presumably log-scale hence very low 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
 -15 10 -3.73 -3.73 1 0.001 -4 0 0 0 0 0 0 0 # TG_loss_chronic_1_ 
# Overdispersion  for the negative binomial for each tag group 
# high value as estimated from MFCL 
# Simon's values: 
# 1 50 20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ by release group what is the parameter definition 
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# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t002 1 50   2 2 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#PS recoveries already inflated by RR (PSLS and PSFS) 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#PS recoveries already inflated by RR 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_-20  10  -10.  -10.  1  0.2  2  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_# LO HI INIT PRIOR PR_type SD PHASE 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_# Exponential decay rate in reporting rate for each fleet (default=0, negative value to get decay) 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_1 #_Variance_adjustments_to_input_values 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#_1 2 3  
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_1 #_Variance_adjustments_to_input_values 
# xxx t020  1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#_1 2 3  
 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#PS recoveries already inflated by RR (PSLS and PSFS) 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#PS recoveries already inflated by RR 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_-20  10  -10.  -10.  1  0.2  2  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_# LO HI INIT PRIOR PR_type SD PHASE 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_# Exponential decay rate in reporting rate for each fleet (default=0, negative value to get decay) 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_1 #_Variance_adjustments_to_input_values 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#_1 2 3  
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_1 #_Variance_adjustments_to_input_values 
# xxx t070  1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#_1 2 3  
 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
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# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
# xxx tODE  1.001 300   100 100 1 99. 6 0 0 0 0 0 0 0 # TG_overdispersion 
 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#PS recoveries already inflated by RR (PSLS and PSFS) 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#PS recoveries already inflated by RR (PSLS and PSFS) 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#PS recoveries already inflated by RR 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_-20  10  -10.  -10.  1  0.2  2  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_# LO HI INIT PRIOR PR_type SD PHASE 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_# Exponential decay rate in reporting rate for each fleet (default=0, negative value to get decay) 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_1 #_Variance_adjustments_to_input_values 
# xxx nt 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#_1 2 3  
 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#PS recoveries already inflated by RR (PSLS and PSFS) 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#PS recoveries already inflated by RR (PSLS and PSFS) 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#PS recoveries already inflated by RR 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_-20  10  -10.  -10.  1  0.2  2  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_# LO HI INIT PRIOR PR_type SD PHASE 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_# Exponential decay rate in reporting rate for each fleet (default=0, negative value to get decay) 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_1 #_Variance_adjustments_to_input_values 
# xxx t20M2 1 50   20 20 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#_1 2 3  
 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#PS recoveries already inflated by RR (PSLS and PSFS) 
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# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#PS recoveries already inflated by RR (PSLS and PSFS) 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#PS recoveries already inflated by RR 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_-20  10  -10.  -10.  1  0.2  2  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_# LO HI INIT PRIOR PR_type SD PHASE 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_# Exponential decay rate in reporting rate for each fleet (default=0, negative value to get decay) 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_1 #_Variance_adjustments_to_input_values 
# xxx t70M2 1 50   70 70 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#_1 2 3  
 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#PS recoveries already inflated by RR (PSLS and PSFS) 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#PS recoveries already inflated by RR (PSLS and PSFS) 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_#PS recoveries already inflated by RR 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_-20  10  -10.  -10.  1  0.2  2  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_# LO HI INIT PRIOR PR_type SD PHASE 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_# Exponential decay rate in reporting rate for each fleet (default=0, negative value to get decay) 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_ -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_2_ 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_3_1 #_Variance_adjustments_to_input_values 
# xxx t200 1 50   200 200 1 0.001 -4 0 0 0 0 0 0 0 # TG_overdispersion_1_#_1 2 3  
# Initial tag reporting rate for each fleet, tansformation = rep rate = exp(p)/(1+exp(p)) (apparently!) 
#PS recoveries already inflated by RR (PSLS and PSFS) 
#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
#-20  10  20.  20.  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
#-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
#-20  10  -2.  -2.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
#PS recoveries already inflated by RR 
-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
-20  10  -10.  -10.  1  0.2  2  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
-20  10  20  20  1  0.2  -4  0  0  0  0  0  0  0  #  TG_report_fleet:_2_ 
-20  10  -10.  -10.  1  2.  2  0  0  0  0  0  0  0  #  TG_report_fleet:_1_ 
# LO HI INIT PRIOR PR_type SD PHASE 
# Exponential decay rate in reporting rate for each fleet (default=0, negative value to get decay) 
 -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
 -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
 -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_1_ 
 -4 0 0 0 0 2 -4 0 0 0 0 0 0 0 # TG_rpt_decay_fleet:_2_ 
1 #_Variance_adjustments_to_input_values 
#_1 2 3  
  0 0 0 0 0 #_add_to_survey_CV 
  0 0 0 0 0 #_add_to_discard_CV 
  0 0 0 0 0 #_add_to_bodywt_CV 
  1 1 1 1 1 #_mult_by_lencomp_N 
  1 1 1 1 1 #_mult_by_agecomp_N 
  1 1 1 1 1 #_mult_by_size-at-age_N 
30 #_DF_for_discard_like 
30 #_DF_for_meanbodywt_like 
4 #_maxlambdaphase 
1 #_sd_offset 
13 # number of changes to make to default Lambdas (default value is 1.0) 
# Like_comp codes:  1=survey; 2=disc; 3=mnwt; 4=length; 5=age; 6=SizeFreq; 7=sizeage; 8=catch; 
# 9=init_equ_catch; 10=recrdev; 11=parm_prior; 12=parm_dev; 13=CrashPen; 14=Morphcomp; 15=Tag-comp; 16=Tag-negbin 
#like_comp fleet/survey  phase  value  sizefreq_method 
 
#CPUE 
 1 3 1 1.  1 
 1 3 2 1.  1 
 1 3 3 1.  1 
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#size 
# xxx CL1050  4 1 1 1.  1 
# xxx CL1050  4 2 1 0.1 1 
# xxx CL1050  4 3 1 5.  1 
# xxx CL1050  4 4 1 0.1 1 
 
# xxx CL1010  4 1 1 1.  1 
# xxx CL1010  4 2 1 0.1 1 
# xxx CL1010  4 3 1 1.  1 
# xxx CL1010  4 4 1 0.1 1 
 
# xxx CL1001  4 1 1 1.  1 
# xxx CL1001  4 2 1 0.1 1 
# xxx CL1001  4 3 1 0.1 1 
# xxx CL1001  4 4 1 0.1 1 
 
# xxx CL0110  4 1 1 0.1 1 
# xxx CL0110  4 2 1 0.1 1 
# xxx CL0110  4 3 1 1.  1 
# xxx CL0110  4 4 1 0.1 1 
 
# xxx CL0101  4 1 1 0.1 1 
# xxx CL0101  4 2 1 0.1 1 
# xxx CL0101  4 3 1 0.1 1 
# xxx CL0101  4 4 1 0.1 1 
 
# tags...not clear on assignment definitions 
# 15 tag-comp does not seem to show up in report file, but weightings do change result trivially?  
 15 1 2 1.  1 
 15 2 2 1.  1 
 15 1 3 1.  1 
 15 2 3 1.  1 
 15 1 4 1.  1 
 15 2 4 1.  1 
# lambdas (for info only; columns are phases) 
#  0 #_CPUE/survey:_1 
#  0 #_CPUE/survey:_2 
#  1 #_CPUE/survey:_3 
#  1 #_lencomp:_1 
#  1 #_lencomp:_2 
#  0 #_lencomp:_3 
#  1 #_init_equ_catch 
#  1 #_recruitments 
#  1 #_parameter-priors 
#  0 #_parameter-dev-vectors 
#  100 #_crashPenLambda 
0 # (0/1) read specs for extra stddev reporting  
 # 0 1 -1 5 1 5 1 -1 5 # placeholder for selex type, len/age, year, N selex bins, Growth pattern, N growth ages, NatAge_area(-1 for all), NatAge_yr, N Natages 
 # -1 1 1 1 1 # placeholder for vector of selex bins to be reported 
 # -1 1 1 1 1 # placeholder for vector of growth ages to be reported 
 # -1 1 1 1 1 # placeholder for vector of NatAges ages to be reported 
999 

 


